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Résumé

Récemment, il a été possible d’observer 'accélération du déploiement de robots dans des domaines
dépassant ’habituel cadre industriel et manufacturier. Cependant, pour la majorité des taches
autonomes, la définition d’un modele analytique ou la recherche d’une solution optimale requiert
des ressources rarement accessibles en temps-réel, favorisant par conséquent des techniques basées
sur 'apprentissage. Ces derniéres, présentant ’avantage de ne pas nécessiter de modele ainsi que
de présenter un temps de calcul en exécution relativement constant, permettent d’appréhender des
configurations et taches hautement complexes. Les techniques basées sur les données font cepen-
dant état de temps d’entrainement considérables, nécessitant fréquemment des millions d’exemples
et d’interaction avec leur environnement pour construire des politiques de controle admissibles.
Le transfert de connaissance entre modeles est crucial pour le déploiement a grande échelle des
méthodes d’apprentissage et bien que des stratégies de transmission aient été au coeur des récentes
préoccupations, elles sont essentiellement dirigées vers les domaines de vision ou de compréhension
du langage et ne sont pas directement applicables & des problématiques de transfert de compé-
tences entre robots présentant des structures cinématique différentes. Les travaux présentés dans ce
manuscrit de these se focalisent précisément sur ce point et visent a déterminer dans quelle mesure
la compréhension entre deux entités morphologiquement distinctes est possible. Cette question est
explorée via l'introduction de deux paradigmes distincts: Task-Centered et Teacher-Centered. La
famille de techniques dite Task-Centered est basée sur I'idée de la séparation du savoir-faire relatif a
une tache des stratégies de controle du robot. A la maniere d’une notice d’instruction, un tel noyau
indépendant peut par conséquent étre passé a d’autres robots de morphologie différentes et idéale-
ment rendre possible la réalisation de la tache par ce nouvel agent. Dans ce contexte, plusieurs
procédures de création de ce noyau sont proposées et évaluées sur un large panel d’environnements
simulés. Cependant, en dépit des perspectives attractives de cette formulation, le caractere "one-
size-fits-all" des techniques Task-Centered n’est pas exempte de limitations qui sont extensivement
discutées. C’est dans ce contexte que les approches Teacher-Centered sont introduites. Poursuiv-
ant le méme objectif, ces démarches innovantes font intervenir un agent expert & partir duquel le
savoir relatif a la tdche doit étre distillé dans I’agent cible. Pour ce faire, une métrique originale est
utilisée pour contourner la différence de structure entre I’agent cible et ’agent expert et permettre,

malgré cette distinction, la rétro-propagation de ’erreur afin d’optimiser 1’agent.
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Abstract

Recently, it has been possible to observe the acceleration of robot deployment in domains beyond
the usual industrial and manufacturing framework. However, for the majority of autonomous
tasks, the definition of an analytical model or the search for an optimal (or acceptable) solution
requires resources that are seldom available in real-time, thus favoring learning-based techniques.
Indeed, learned models present the advantage of being model-free as well as having a constant
execution time, consequently enabling the realization of highly complex trajectories and tasks.
Data-driven techniques, however, are hindered by considerable training time, frequently requiring
millions of examples and interactions with their environment to build acceptable control policies.
As such, knowledge transfer, also known as transfer learning, between models is crucial for large-
scale deployment of learned policies. Although transmission strategies have been the focus of
recent concerns, they are mainly directed towards the fields of vision or language understanding
and are not directly applicable to control environments where skill transfer is likely to happen
between robots with different kinematic structures. The works presented in this thesis manuscript
focus precisely on this point and aims at determining to what extent understanding between two
morphologically distinct entities is possible. This question is explored through the introduction
of two distinct paradigms: Task-Centered and Teacher-Centered. The Task-Centered family of
techniques is based on the idea of the separation of task-related know-how from robot control policy.
Such an independent kernel can therefore be passed on to other robots of different morphology and
ideally make it possible for the new agent to perform the task. In this context, several blueprints
for creating this kernel are proposed and evaluated on a wide range of simulated environments.
However, despite the attractive prospects of this formulation, the "one-size-fits-all" character of
Task-Centered techniques is not free of limitations which are extensively discussed. It is in this
context that Teacher-Centered approaches are introduced. Pursuing the same objective, these
innovative procedure involve an expert agent from which the knowledge related to the task must
be distilled into the target agent. To do this, an original metric is used to circumvent the structural
differences between the target agent and the expert agent and allow, despite this distinction, the

error to be back-propagated in order to optimize the agent.
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2 1.1. OPENING

1.1 Opening

Within the animal reign, there exists a wide variety of behaviours regarding the relation
between an adult individual and its children. For instance, most invertebrates leave their
eggs alone once laid, relying on numbers to ensure that a viable size of newborn survives.
As opposed to this, mammals are among the species that take the most care of their
offspring as adults effectively provide food and protect their children until they are strong
enough to do so for themselves. Within the invertebrate family, octopuses and squids
are famous for their particularly high brain/body ratio, their ability to use tools and
learn through observation and play. These specific features are among those who enabled
mankind to move from a hunter-gatherer existence to space exploration. Thus, among
other reasons, it is possible to consider that the absence of knowledge transmission between
generations heavily impacts the development of a specie as a whole.

Throughout their history, humans have taken the measure of how crucial knowledge trans-
mission is, to the point that it is institutionalized (in schools, universities, institutes, for
instance) in our societies. Although it is a very common and well-spread custom, transfer-
ring knowledge from one individual to another one or to another group is still, depending
on the complexity, seldom immediate and requires repetition and training over a non-
negligible period of time to be effectively assimilated.

Even though the transfer process within human communities frequently relies on the phys-
ical presence and demonstration of an expert individual (a teacher), the usage of a interme-
diate support, such as books, podcasts or videos is also widely accepted. The diversity of
such intermediate mediums illustrates that there exist several conceivable approaches for
transfer: from a personalized, individually-targeted process (a one-on-one sport class) to

an industrial, mass-directed approach (printing a widely distributed ideological pamphlet).

FIG. 1.1. A mass directed, widely distributed, list of instructions to assemble a piece of
furniture

A supplementary challenge in the transfer process is related to the diversity of the knowl-
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edge shared, that in a number of areas, is expected to yield a perfect copy while it relates
more to a desired result in others. For instance, when assembling furniture, the knowledge
written by an expert on the notice is expected to allow the customer to setup the appliance
flawlessly while the techniques given by an experimented climber to newcomers is broader
and only aim at giving them the possibility to climb in a more efficient way. The two
previous examples also highlight an important difference which relates to the degree of
control on which the transfer focuses. Specifically, the furniture case deals with high-level
instructions ("nail panel B to door A") while the climbing environment presents situations
likely to call for lower-level considerations ("Push on your left leg to stabilize your grip")

that depend directly on the attributes of the transfer target.

FIG. 1.2. Personalized advice in a bouldering configuration: the experimented climber
distills its knowledge in the student accomplishing the task

As recent progresses in robotics and artificial intelligence let us envision a future where
robot presence and activity will be ubiquitous, it is likely that, fueled by economics, cul-
tural background, and design choices, human creativity is highly liable to design robots of
various forms and shapes. As a result, these robots will certainly present a wide range of
sensors and actuators to accomplish their tasks. However, as opposed to information pro-
cessing domains such as vision or audio which can depend on a single unified representation
(pixels and soundwave, respectively), robot parts may present different kinematic struc-
tures, power and overall different mechanic functions. Consequently, while it may appear
viable to transfer a vision model, provided the good normalization, it is less straightforward
to share the same control structure.

While efforts in robotics have resulted in efficient analytical formulation for numerous
tasks and problems, the vast majority of the functions that humanity expects robots to
perform is likely to rely on learning-based control, as defining an accurate model for these
actions can be difficult. However, as of today, even the most recent algorithms are still
experience-greedy and require millions of examples and interactions with an environment

to produce acceptable policies for a single agent, thus yielding daunting considerations in
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terms of computation if this strategy was to be applied to each different robot.

Consequently, the capacity to transfer skills from one agent to another, notwithstanding
their distinct physical structure, is a crucial and essential step in the path of integrating
robots in our day-to-day lives. This work consequently proposes novel techniques to face
this issue. These approaches can be classified into two main families based on whether
they fit in the furniture example (TAsk-Centered), displayed in Figure 1.1 or climbing

configuration (TEacher-Centered) as shown in Figure 1.2.

1.2 Goals

This work challenges the current transfer learning paradigm and aims at showing that it is
possible to transfer knowledge from an agent to a kinematically different one. Metaphor-
ically, this work can be seen as an echo to George Berkeley’s immaterialism (6) theory
which denies the existence of material substance outside of the mind of perceiver. The
methods proposed in this work rotate this interrogation towards knowledge and investigate
whether the skills and knowledge to successfully complete a task are tied to the morphol-
ogy which learned to do so. To sum up, this thesis explores the following hypothesis:
is it possible to transfer knowledge, that is the expertise or control strategy in a given
environment, from one agent to another despite their potential morphology difference ?
And, if so:

e how to cope up with the action space dimensional differences ?
e can a common state be defined 7

¢ to what extend can knowledge be distinct from the body 7

1.3 Proposed Approaches

This thesis focuses on two distinct ideas for transferring knowledge: TAsk-Centered (TAC)
and TEacher-Centered (TEC). Fueling the TAsk-Centered approaches is the idea of no-
tices, similar to the ones used by non-professional humans to quickly be able to produce
an object (for instance, setting up a piece of furniture) without having specifically been
trained on this type of task. In these cases, the furniture producer writes down a set
of instructions that should enable another person to reach its goal, that is, assembling
the newly acquired furniture. In this configuration, the producer does not have access
to the customers physical abilities, but makes the assumption of basic motor skills that
would allow him to comply with the notice’s current set of instructions. In this view, the
TAsk-Centered methods first aim at constructing a notice module, independent from the
acting agent morphology. Once this notice module is available, it can be passed to other
agents that would then perform the task. This approach is schematised in Figure 1.3 that
displays an example on how two systems similarly tasked can present different strategies

to solve the given configuration.
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FIG. 1.3. TAsk-Centered (TAC) approach with the instruction "Cross the gap" can be
answered differently given the capabilities of the current agent.

It is also possible to consider TEacher-Centered approaches. In this view, instead of
having a segmentation between the knowledge and the agent morphology as in TAsk-
Centered cases, the task knowledge is tied to an agent, called the teacher or the expert.
The goal of TEacher-Centered techniques, displayed in Figure 1.4, is to provide ways to
distill this ability into another student agent of potentially different morphology. This
configuration relates to very common settings in human civilization. Indeed, there exist
numerous examples where an untrained individual can benefit from the knowledge of an

expert, thus shortening the time needed to reach mastery.

FIG. 1.4. TEacher-Centered approach to Kung-Fu. In this configuration, knowledge from
the teacher agent (right) is distilled to the learner agent (left)
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1.4 Contributions

As this report proposes several approaches, a novel approach classification was devised.
Indeed, TAsk-Centered and TEacher-Centered techniques are two newly defined families of
transfer-learning approaches that usefully draw a line between the novel methods proposed
in this work.

More precisely, in the TAsk-Centered approach, we propose the Universal Notice Network
(UNN) (84; 85) a stage-wise deep reinforcement learning based technique that creates a
task knowledge module that can then be passed to different agents. Doing so enables to
segment the task logic, that should be common to all agents, from the control parameters
inherent to each robot. This technique yields very interesting results both for the learning
part as well as the transfer, as it enables other agents to reach performances level similar to
the expert in a fraction of the training time. Besides, the segmentation pipeline involved
in this construction presents unexpected, yet highly appealing features, with respect to
agent control parameters. Specifically, in the pre-training phase, it is easier to induce
biased behaviors in the agent low-level control. These behaviors can then importantly
ease the learning process in the target task and also contribute to prevent undesired or
unsuitable actions downstream.

For the TEacher-Centered framework, this report investigates innovative unsupervised
techniques to distill the teacher knowledge into a student agent. As opposed to TAsk-
Centered techniques, where the transfer of knowledge is horizontal, these methods are
based on a clear hierarchy and the student quality is directly submitted to the teacher’s,
which was less straightforward for TAsk-Centered framework. Nevertheless, TEacher-
Centered methods present several strong advantages. Notably, this form of transfer is
faster, and does not require student-environment interactions, thus lessening the cost of
transfer. Furthermore, TEacher-Centered methods embed more freedom in the objective
function design, ultimately offering a very wide application spectrum due to their enhanced
flexibility.

1.5 Manuscript outline

The remainder of the thesis is organized as follows: Chapter 2 provides an overview of
the concepts and theoretical notions required. It introduces the recent paradigm machine
learning and quickly focuses on deep learning. After laying out the mechanisms of neural
networks, it goes over the most popular deep learning applications. After an outline of
supervised learning, it examines thoroughly reinforcement learning as it is heavily relied
upon in the next chapters. Eventually, Chapter 2 looks at unsupervised learning and
knowledge representation by presenting attractive frameworks: Generative Adversarial
Networks and Variational AutoEncoders that are also used in the works presented in this
report.

Chapter 3 sums up current state of the art techniques, modern trends in transfer learning

and highlights their major advantages as well as their limitations, thus motivating the
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proposed transfer-learning approaches.

In Chapter 4, the Universal Notice Network, a TAsk-Centered transfer learning approach
is introduced. This chapter details its main features and presents a series of experiments
in multiple use cases to underline the applicability of this method.

TEacher-Centered methods are at the center of Chapter 5, which develops the essential
aspects of the CoachGAN and Task-Specific Loss (TSL) methods and lays down the results
of various trials designed to underline the potentiality of these techniques.

Eventually, as could be expected, Chapter 6 sets up the stage for a thorough comparison
between all developed methods in this works, demonstrating multiple cases of transfer be-
tween a series of robots on a common task, ultimately leading to an analysis and conclusion

on transfer-learning in the control-tasks paradigms.
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As introduced in the previous chapter, this work aims at presenting various techniques and
concepts for the transfer of knowledge between heterogeneously shaped agents. To do so,
it relies extensively on the numerical methods tied with neural networks. Consequently,
this chapter presents the theoretical background required for the work addressed in this
PhD thesis. It begins by introducing the general principle and motivation of Machine
Learning. Then it focuses on Neural Networks concepts and main architectures. Once
these building blocks are in place, it goes over the principal learning paradigms, super-
vised learning, reinforcement learning and finally unsupervised learning techniques and

knowledge representation.

2.1 Machine Learning

The idea of intelligent machines can be found in many cultures, some of them reporting
back to the antiquity, in the form of thought-capable artificial beings (113). Closer to
the modern times, various fictions explored this concept further, such as Frank Baum’s
Wizard of Oz, Mary Shelley’s Frankeinsten or Karel Capek’s R.U.R. (143). The field of
Artificial Intelligence draws from these ideas, but even more from the famous Computing
Machinery and Intelligence from Alan Turing (17; 138) in 1950.

Artificial Intelligence (Al) is the science that investigates the ability of a digital computer
or computer-controlled robot to perform tasks commonly associated with intelligent beings
(18). The beginnings of Al research are commonly associated with the Dartmouth 1956
computer science conference which reunited some of the brightest minds of the era and was
expected to lay out the main principles that would ultimately lead to reproduce the human
mind in silico. Initially, Al was dominated by rationalist ideas, which, inspired by thinkers
such as Descartes, Spinoza or Leibniz, consider that our perceptions are fallible and that
only reason can be a reliable guide. In practice, these ideas lead to knowledge engineering
implementations that require formal description of a problem. Despite impressive first
successes, such as the General Problem Solver or the Ax algorithm (113), these approaches
proved inefficient at best for many complex tasks that can be considered intuitive, such

as recognizing a face or spoken words.

Machine Learning (ML), in contrast, is inspired by empiricists such as Locke, Berkeley
or Hume, which refute the idea that only reason is reliable and would preferably use
their perceptions to guide them in the world (23; 113). Consequently, ML can be loosely
defined as gathering knowledge from experience. Specifically, the main idea fueling the ML
paradigm is that, instead of hard-coding knowledge within an Al system, it is possible to
find patterns in raw data and consequently use these patterns to solve various challenging
tasks that would require tedious and particularly complex algorithms otherwise. As of
today, ML algorithms are able to segment images and generate new human faces with a
strong accuracy or even predict the best moves in Go (126; 127), a high-dimensional game

that remained out of reach for many years.
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2.2 Neural Networks

Neural networks, also known as artificial neural networks, are the results of attemps to
find mathematical representations of how information was processed in biological systems.
It is currently a highly popular technique in machine learning that is used for pattern
recognition by extracting statistical features (8; 39). As hinted by their designation,
neural networks can be seen as a combination of single neurons, recalling their biological
counterpart. The next sections present an overview of these systems, going from a single

neuron as a computational unit to more complex architectures.

2.2.1 Neurons

In the field of deep learning, the term neuron n is commonly used to refer to a computa-
tional unit that takes as input a vector X € RY, with N € N*, and computes an output
value a € R given a bias b € R, a vector of weights W € R and an activation function
g. More precisely, the neuron computes the pre-activation value a as the weighted sum of

the input vector and adds a bias:

N
a:WTX—Fb:Zwixi—Fb (2.1)
i=1

The result of the operation described in Equation 2.1 goes through an activation function

a that returns the final value o for this specific unit:
0= g(a) (2:2)
A neuron is considered deterministic if its output o is a function such as:
o= g(a) where R = ¢ CR (2.3)

Similarly, a neuron is labelled stochastic if its output o is sampled from a density function

depending on the pre-activation function
o~ g(a) (2.4)

Figure 2.1 shows a scheme of this computational unit and the operation it performs.

z,~ Wi /7\\

\/3 -
.’I:Q_wg> ‘\\z:izl (331 X wl) aF b/] e g —» 0
1’3/’603' A . 7

j— 14

FIG. 2.1. The neuron is the basic computational unit in a neural network.
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A neural network, also known as Multi-Layer Perceptron (MLP), is created when several
layers of multiple neuron units followed by non-linear activation functions are assembled.
In general, MLPs are able to learn complex mappings and, as demonstrated by the Uni-
versal Approximation Theorem, a neural network with three layers wide enough can in

theory approximate any function (19; 45; 47).

2.2.2 Feed forward neural networks

Modern neural network architectures are defined as Feed Forward Neural Networks (FFNN).
The word feedforward stems from the fact that information flows through the various lay-
ers, producing intermediate representations to be used by the next layer of perceptrons,
until the final prediction. More formally, it is possible to describe these architectures as a
directed acyclic (no cycle and no self-connections) graph that composes several functions.
These functions are in fact each of the network layers, usually referred to as input, hidden
and output, for the first layer, the intermediate layers and the last layer respectively, see
Figure 2.2. Beside FFNN, there exists alternative designs, such as Recurrent Neural Net-
work (RNN) that prove useful when considering time-series processing. These networks
usually rely on specific neurons to function, such as the Long Short Term Memory (LSTM)

and will not be detailed in this report.

Forward

A4 L1
Input Hidden Output
Layer Layer Layer

FIG. 2.2. Feedforward neural network: vectors are sequentially processed by each layer,
first applying the layer weight parameters and then the non-linearity activation function.
The last layer returns a value that is usually used to compute the loss.

Figure 2.2 represents a simple feedforward neural network architecture. Specifically, the
network displayed contains 3 units in its input layer (yellow), 4 in its unique hidden layer

(green) and finally 1 in the output layer (red).



14 2.2. NEURAL NETWORKS

In Hid., Hid., Out In Hid., Hid., Out
02 N0,
/N V'Y
e }‘%’QA

X\
S
X V%

:%:"3 RS
SARR T NORARY
XY . Y.
OS2

J

VAN

(a) Fully connected layer. (b) Partially connected layer.

FIG. 2.3. Layer connections.

2.2.2.1 Layers

The neural network displayed in Figure 2.3a has only fully-connected layers. Recently, it
has become more common to create architectures relying on partially connected layers. In
particular, the Convolutional Neural Networks (CNN) architecture that uses convolutional
kernels as trainable weights has generated considerable interest in recent years. Differences
between these layers are displayed in Figure 2.3.

A layer is called fully-connected if each unit of a given layer [ is connected to each unit of

the previous layer [ — 1. In this case, the activations can be computed as:

N1
Vie {1.N}, ab= > wl o+ (2.5)
j=1
and the outputs are given by:
Vi€ {1..N;}, ol = gi(a}) (2.6)

where N, is the number of units in the layer [, wéj being the weight between the jth
neuron of the layer [ — 1 and the ith neuron of the layer I and b is the bias of the ith
neuron in layer /.

In contrast, a layer [ is considered partially connected if it contains at least one unit that
is not connected to the previous layer [ — 1. It is possible to devise the activation and
output of a partially-connected layer by setting to 0 the connection weight between two
unconnected neurons. A particularly common instance of partially-connected layer is the
convolutional layer, most commonly used in image processing. Beside the obvious decrease
in computational load when relying on partially connected layers, convolutional layers also

offer, by design, a larger perception field, which allows them to detect hierarchical patterns,
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thus justifying their usage when considering high-dimensional structured inputs.

2.2.2.2 Activation functions

The pattern recognition ability of neural networks is rooted in the presence of non-linear
activation functions. Indeed, a neural network with many layers featuring solely linear
activation functions is equivalent to a single-layer linear neural network, which limits its
expressivity and flexibility (39). This section introduces the most common activation

functions in recent literature.

Sigmoid

The sigmoid function was particularly popular in the early days of neural networks due
to the fact that it recalls the behaviour of a biological neuron. It outputs values ranging

from 0 to 1 and is a monotonically increasing function. Mathematically, it can be put as:

gsigmoid(x> = U(x) = (1 + C_x)_l (2.7)

One of the main drawbacks of this activation function is that it saturates for considerable
values and, as can be seen in Figure 2.4, its derivative never exceeds 0.25, which leads to
shrinking gradient signals when several layers using this activation function are composed.
This consequently prevents the first layers of a neural network to be efficiently modified
and thus, to learn. This issue is common when training neural networks and is usually
referred to as gradient vanishing. The Sigmoid function is nevertheless still in usage,
particularly at the end of neural networks with a single output, where the resulting value

can be understood as probabilities.

104— Sigmoid
Derivative
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FIG. 2.4. The sigmoid function and its derivative.
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TanH

The hyperbolic tangent, or TanH, activation function closely resembles the sigmoid func-
tion but presents a larger range of [—1,1] and is symmetric with respect to the origin.
While it is also liable to saturate to important values, it nevertheless provides more gradi-
ents than the sigmoid, thus being less likely to cause gradient vanishing. This non-linearity
is particularly frequent in reinforcement learning architectures. Mathematically, it can be
described by:

e — 1
e2r 41
Figure 2.5 displays the hyperbolic tangent and its derivative.

Jtanh = (28)

—— TanH
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FIG. 2.5. The TanH function and its derivative.

ReLU

The Rectified Linear Unit (ReLU) function, is a linear function for the positive domain
but returns 0 when its input is negative. Consequently, the gradient for this function
is either 0 or 1, effectively preventing the gradient vanishing issue, as shown in Figure
2.6. It is computationally efficient and has gained a lot of popularity over the past years.
The fact that this function does not saturate improves networks performances in terms of
convergence rate and accuracy for discriminative settings (39). On the downside, it has
been shown that ReLU activation function can kill neurons by pushing them too far in the
negative region during the backpropagation operation. Specifically, this means that the
neuron’s weight implies that it will always return an activation value of 0, which in turn
yields a null gradient, making the unit unresponsive for the rest of the training process.

Mathematically, we have:
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FIG. 2.6. The ReLU function and its derivative.

greru = max(0, x) (2.9)

2.2.3 Loss function and backpropagation for optimization

Deep learning models are usually constructed and trained to perform as well as possible in
a given specific task. For a single task, their performance J(W') depends entirely on their
vector of parameters W. Consequently, two models with same architecture will exhibit
different accuracies if their parameters are distinct. As such, the training process of a
neural network means finding a set of parameters W that will reduce the model error that
is usually computed through a loss function .. While multiple training methods are still
currently explored by the community, we focus here on the stochastic gradient descent,

one of the most popular training procedure.

In a supervised learning context, and for a given set of input x and the expected vector
y, the model m predicts an output vector § = m(z). The error can be computed by
the evaluation of the distance between the model prediction and the expected value e =
Z(y,79). The model parameters w are then affected by the error gradients resulting from
the cost function. The backpropagation algorithm allows to affect to each unit a gradient
correction proportional to its participation in the average loss (39; 8). A common error

function is the mean square error. In this case:

N
B(X,0) = 50> (- 0)? (210)
=1
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where y is the target value and ¢ is the neural network prediction. As explained above,
this error should be minimized with respect to the network’s weights. For the N examples,

this can be expressed as:

dE(X,0) 1 Y ( 1 Y
o = % 2 g (3000 90°) = 5 2 o 2.1)
awl,] N d:1 N : l,j
Using the chain rule, it is possible to write the error partial derivative:
OF OF Oa*
— == ’JC (2.12)
ow;;  Oaj dwy;

where ag? is the activation value of neuron j in layer k, before the activation function, as

detailled in Equation 2.1. The first term in Equation 2.12 called the error, is denoted:

st _ OF

j k
aaj

(2.13)

Using the activation value calculation, the second term in Equation 2.12 can be expressed

as:

aak Tk—1
Pk = Bk, (Z wy';0, ) = ot (2.14)
7]

7.7

Consequently, the partial derivative of the error function F with respect to a weight w i
is the product between the error term of neuron j in layer k and the output of node ¢ from

the previous layer.

—— = koMt (2.15)
k J

8wi’j !

The error term computation depends on the neuron position in the network and starts

from the final layer m. It can be expressed as:

(y — go(al))? (2.16)

where go(z) is the activation function for the output layer. With the chain rule, the partial

derivative is:

m

= (9o(ai") = y)g,(a") = (§ — y)go(ai) (2.17)

Finally, the partial derivative of the error function F with respect to a weight in the final

layer w;’; is:

o = (5 - gy o (2.18)
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For the hidden layers, it is necessary to rely on the chain rule again:

k+1
OFE OE daytt
gk = 98 _ 2.19
S =9 2 5T aaE (2.19)

Using the error value from the next layer enables to rewrite the equation as:

k+1 a
a
Z oRHL L l (2.20)
With the activation af“ being af“ = ;k 1 wﬁrlg ( ) the second term in Equation
2.20 can be put as:
pht1 pht1
k k+1, k41 k E+1, k+1
oF =y & Wi g (af) = ¢ (af) D ol (2.21)
=1 =1

Finally, by putting it all these elements together, the partial derivative error E with respect

to a weight located in the hidden layers can be expressed as:

OF Ly
o = 5;;04;71 ok Z wk+15k+1 (2.22)
Wi 5

2.3 Supervised Learning

Supervised learning is the most straightforward approach when using deep learning and
neural networks. This technique has been applied to a very wide range of tasks, featur-
ing spam detection, image classification, video frame interpolation, system identification
and regression tasks. Despite requiring a considerable volume of examples to be success-
ful, recent supervised learning algorithms have improved the state-of-the-art in numerous

challenging tasks (39).

In practice, it requires a dataset that relates input and output pairs, generally denoted
(X,Y) and consists in finding statistical relationship between these elements. Specifi-
cally, with x; a given input example in the dataset, the neural network f predicts a label
¥; = f(x;) which is compared to the dataset label and returns an error for this example.
Mathematically:

e; = 2(Yi, yi) (2.23)

where & is a function that evaluates the distance between the predicted label and the real
target. This error is then averaged with other examples from the dataset, to compute the

neural network loss and thus the optimization gradients.
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2.4 Reinforcement Learning

Reinforcement Learning (RL) algorithms are a class of machine learning algorithms that
adresses the problem of optimal decisions over time (70; 125; 131). Specifically, it features
an agent tasked to select actions in an environment in order to maximize a sum of rewards
along the time it interacts with its world. RL is a particularly well-suited way to tackle
robotics challenges as it is able to propose successful control policies without having to

analytically define a model of the dynamics, which often proves to be challenging.

2.4.1 Principle and main concepts

Reinforcement Learning is a deep learning branch that, instead of training a model on
a fixed dataset, features an agent interacting with an environment, which has also its
own dynamics. Furthermore, the environment provides the agent with observations and
rewards. A simplified view of this process is displayed Figure 2.7.

The agent’s goal is to maximize the cumulative reward, also called return. While doing
so, the agent learns how to make decisions for objectives defined by the reward function.
Formally, environments are Markov Decision Processes (MDP), which are a 5-tuple <
S AR, P, py > with:

o ¥ is the set of all valid states,
e o/ is the set of all valid actions,
e R:. Y x4 x — Ris the reward function

o x4 — PP(s)is the transition probability function that estimates the probability
to reach a certain state based on the previous state and the action: P(s'|s,a), with

s’ being the next state, s,a the state and the action respectively.
e po the start-state distribution

Furthermore, a MDP must satisfy the Markov property which states that a transition
depends only on the most recent state and action, setting the influence of previous states

to zero.

Observation,
Reward

Action

Environment

FIG. 2.7. RL principle.
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2.4.1.1 Observations

The environment/world can be described by a state s € .. Depending on the environment
considered, the observation o C s € % that is provided to the agent is a subset of s,
potentially omitting information. Most of the time, states and observations are real-
valued vectors or higher-order tensors (RGB images, for instance). The reception of an

observation precedes the agent’s action selection.

2.4.1.2 Policy

The logic used by an agent to make decisions (that is, to select actions) is referred to as a
policy. As an analogy, it can be seen as the agent’s brain. In usual deep RL framework,
these policies rely on parameters, such as the weights of the agent’s neural network, often
denoted as 6. They can either be deterministic, see Equation 2.24, or stochastic, see

Equation 2.25.
ar = pp(st) (2.24)

ag ~ ﬂg(-’St) (225)

Stochastic policies commonly belong to categorical policies or diagonal Gaussian policies,
depending on the action space. Categorical policies are affiliated with discrete action
spaces, while Gaussian policies are used whenever the environment features a continuous

action space.

2.4.1.3 Actions

The state observation enables the agent to select an action wia its current policy. The
action chosen by the agent can potentially affect and alter the environment it interacts
with. As different environment would provide different observations, they similarly allow
different actions. As such, actions can be real-valued vectors, for continuous action spaces
or indices, for discrete action spaces. In RL, entire classes of algorithms can only be applied

to one setting or another, underlining the importance of the action-space description.

2.4.1.4 Trajectory and episodes

Most of the time, agents will alternate between state observation and action selection. As
such, in the RL framework, a trajectory 7 defines a sequence of observations or states

provided by the environment and actions from the agent.
T = {(507 a0)7 (817 Cll), ceey (Sna an)}
The first state is sampled from the start-state distribution pg:

S0 = Po(‘)
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State transition depends both on the environment, which can have a stochastic part, and
the most recent agent action, as required by MDP. Thus, for a deterministic transition,

we have:

sp41 = f(se,a8)

while for a stochastic, one transition can be written:
St+1 ™~ P(”Staat)

In RL, an episode is a trajectory that ends with a termination state: a termination state
is a state that calls for a reset of the environment. It can be the goal state (reaching a
specific point in space, for instance) or an absorption state (the agent pushed the object
it was supposed to grasp out of its reach). It is also possible to consider that an episode

is over after a given number of steps.

2.4.1.5 Reward Function

The action selected by the agent after state observation is usually met by an evaluation
from the environment: the reward. The reward function R holds a paramount importance
in RL, as it is the main tool for shaping the agent behaviour. Formally, the reward function
is a real-valued function Z:.% x & x . — R that evaluates an action taken in a given
state and its effect. That is:

re = R(s¢, at, S141)

Reward functions revet various forms. Specifically, two main classes of rewards can be

referenced:

e Sparse rewards: Also known as impulse rewards, this class of functions affects a
reward ry to a small area of the explorable space, while most of the environment
returns a reward r; with r, >> ;. A classic example of sparse rewards is the Atari
Pong environment (81) where a positive reward is only given to the agent when it
scores, and inversely a negative reward is perceived when the agent lets the ball go

through. Otherwise, the reward is null

e Shaped rewards: As opposed to a sparse reward, a shaped reward provides a learning
signal in the majority of the explorable space, offering a gradient of reward to the
agent that may sometimes ease the learning phase. A reward inversely proportional
to the distance with the target point in a robotic reaching task is a common usage

of shaped rewards.

Reward functions are not necessarily linear nor continue, thus giving an important flex-
ibility to shape the agent behaviour. The sum of rewards over an episode is called the

return.
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2.4.1.6 Reinforcement Learning Objective

In RL, the ultimate goal is to train a policy 7 that maximizes the expected return J(m)
in an environment, also known as the performance, which corresponds to the average

cumulative reward over a certain number of episodes. The expected return can be written

as:
J(x) = / P(r|m)R(r) = Err[R(7)] (2.26)
where P(7|m) is the probability of a T'—steps trajectory 7 under policy 7w and can be
written as:
T—1
P(r|m) = H P(s41]st, ar)m(ae]se) (2.27)
t=0

Consequently, the optimal policy 7* being the one that maximizes J(7), it can be put as:

" = argmax J(m) (2.28)

™

2.4.1.7 Value functions

To train the agent policy and improve the global performance, most RL algorithms embed
a value function (131; 120; 122). Value functions are used to represent the desirability of
a state. There exist several main value functions:

On-policy Value Function: V7 (s), in this case, the value corresponds to the expected

return starting from state s and using policy 7 until episode termination.
V™(s) =E;ur[R(T)|s0 = 5] (2.29)

On-policy Action-Value Function: Q7 (s, a), also known as quality-function, represents
the expected return starting from state s and taking action a and following the policy 7
afterwards:

Q7 (s,a) = Err[R(T)|s0 = 8,00 = a (2.30)

It is then possible to define the optimal value function and the optimal action value
function which are similar to the previously defined functions but where the policy is the

optimal policy 7*. Respectively, we have:
V*(s) = Ern[R(T)]50 = 9] (2.31)

Q" (s,a) = Ernr [R(7) |80 = 5,00 = a (2.32)

2.4.1.8 Bellman Equations

The four equations introduced in Section 2.4.1.7 are tied with a set of equations called the
Bellman equations (5) that state that the value of a starting state can be computed

as the expected reward of this state plus the next state value. Formally, this can
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be written for both the value function as well as the action-value function as:
V™ (s) = Egmr sp[r(s,a) + VT ()] (2.33)

where the discount factor v € [0, 1] indicates weights the importance of future rewards.

The closer the discount factor 7 is to 1, the more significant future rewards are. (131)

Q" (s,a) = Egplr(s,a) + VEy Q" (s',a’)] (2.34)

where s’ ~ P stands for s’ ~ P(:|s,a) that indicates that the next state is sampled from
the environment’s transition probability. Similarly, a ~ 7 and a’ ~ 7 mean that the action
and next actions are sampled from the policy, based on the state a ~ m(-|s) or next state
s', a' ~ 7(-]s'), respectively.

Bellman equations can be adapted for the optimal value functions as well:
Vi(s) = max Eg~p[r(s,a) +yV*(s")] (2.35)

Q*(s,a) =Eg_plr(s,a) + 7 max Q*(s',ad)] (2.36)

2.4.1.9 Advantage function

The advantage function is a way to discriminate useful actions. Mathematically, the
advantage corresponds to the subtraction of the value function V from the action-value
function Q.

A" (s,a) = Q" (s,a) — V™ (s) (2.37)

As can be deduced from this relation, an action better than the average would result in a

positive advantage. This notion is at the center of various recent RL algorithms (121)

2.4.2 Practical aspects of RL
2.4.2.1 The Exploration-Exploitation trade-off

Usually, a RL agent has initially no specific knowledge about the environment it must
interact with. In practice, this is represented by randomly initialized parameters for a
neural network or a uniform state for a tabular approach. The exploration of the environ-
ment, through a trial-and-error process, is a way for the agent to gather knowledge and
understand how to reach highly valuable states. Indeed, the more the agent knows about
the environment, the quicker it can optimize the policy reflecting its behaviour. How-
ever, due to the potentially infinite size of a wide range of environments, pure exploration
can not be considered as an efficient resources usage and is likely to confuse the agent.
Similarly, systematic exploitation of available knowledge (selecting the current supposed
best action) may result in sub-optimal or poor performance overall. Consequently, a suc-

cessful RL algorithm must take into account these notions and find a trade-off between
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the two attitudes and an important quantity of works was devoted to this critical issue
(4; 26; 103; 131)

2.4.2.2 Credit assignment problem

The credit-assignment problem is a frequently encountered issue in environment with
sparse rewards. Specifically, as the agent seldom receives a reward signal, it is most of the
time at the end of a trajectory. Consequently, a full sequence of states and actions was
involved in order to get to the state that provided the reward. In these cases, it becomes
difficult to effectively discriminate between useful and detrimental actions (81; 121). There
exist numerous examples of such environments, such as the games of Chess or Go, or
simulated environments like Pong, where the reward function sends a signal only on episode
termination. In those, as the episode trajectories can frequently exceed several dozens of

transitions, the credit assignment problem becomes obvious.

2.4.2.3 Sample (In)efficiency

While RL algorithms have drastically improved recently, training an efficient policy in the
RL framework still requires a very large quantity of trajectories. In the widely recognized
DQN paper (82), the trained agent never reaches 50% of human performance even after
200 million frames, which corresponds to over 900 hours of practice in real-time. More
recently, the impressive results of OpenAl and in the Hide-and-Seek environment were
obtained after several billions of frames. However, for simpler environments, it is still
possible to train acceptable policies within an reasonable time frame. Along with potential
cost of damaged robots during training, it is one of the main motivations for simulated

environments.

2.4.3 Modern RL algorithms

This section introduces practical implementations of recent RL algorithms. Starting from
the broad perspective of model-free or model-based approaches, it progressively narrows
its focus until introducing the main RL algorithm used in this work: Proximal Policy

Optimization, see Figure 2.8.

2.4.3.1 Model-free and model-based RL

The question of using model-free or model-based algorithms can be formulated as: Does
the agent have access to the environment model 7 This has heavy implications
as having access to the environment model implies that the agent is aware of the func-
tions governing the states transitions as well as the rewards. This hypothesis has practical
upsides, as it allows the agent to plan its actions ahead, exploring various choices and
weighting their consequences. A recent example of successful application of model-based
techniques is AlphaGo(126; 127). However, in practice, a reliable environment model is

seldom available, thus hindering the performances of the agent when used in the real
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FIG. 2.8. A taxonomy of RL algorithms.

settings. An alternative approach is to learn the environment dynamics. In this configu-
ration, agents usually alternate between learning the environment model and improving
their policy. Nevertheless, this is likely to result in a biased model that is prone to be ex-
ploited by the agent. Although it can lead to satisfying results in simulated environments,
it is often correlated with poor behavior once deployed to the real target environments.
Techniques that renounce in using the environment dynamics are classified as model-free
methods. They are currently very popular and widely used in the literature and, as the

rest of this report relies on this class of methods, model-based will not be detailed further.

2.4.3.2 On-Policy vs. Off-Policy

Among model-free algorithms, another crucial branching divides again the algorithmic
pool into two notable groups: on-policy or off-policy algorithms. On-policy algorithms
optimize the parameters 0 of a policy my by performing gradient ascent on the gradient of
their performance J(my) or an approximation of it. Each update (optimization) relies on
data collected by the latest policy version, which partially explains the sample inefficiency
of these techniques. On the contrary, off-policy methods learn an approximator of action-
values Qg(s,a) and their updates rely on the Bellman equation. Consequently, they do
not require that the data provided for the update be generated by the latest policy. This
presents various advantages, such as having the possibility to insert expert trajectories or
human examples within the data used to train the policy. While this idea is appealing, as
is the fact that off-policy algorithms are more sample efficient, they are also more brittle as
they do not optimize directly for the performance (given that they optimize for Qy(s,a)).
In contrast, on-policy methods are more stable and reliable (as they directly optimize for
the performance J(mg)). The main RL algorithm used in this report is PPO and is an

on-policy method.
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2.4.4 Proximal Policy Optimization

Proximal Policy Optimization (PPO) is an on-policy, actor-critic with trust-region RL
algorithm (120) introduced in 2017 (122). Despite its relative simplicity, this method is
robust, scalable and reliable and has been at the center of various impressive RL achieve-

ments in recent works (100).

On-policy updates As explained in section 2.4.3.2, the goal is to maximize the agent

performance that equates with maximizing the expected return:
I (1) = Ernry[R(T)] (2.38)
The gradient ascent update can be written:
Or+1 = 0k + aVoJ ()], (2.39)

where VyJ(mg) is the policy gradient, 6 the policy parametrization at step k and « is
the learning rate. To compute the policy gradient, an analytical gradient of the policy

performance is necessary. It can be written as:

VoJ(mg) = Err,[Volog mg(ar|se) R(T)] (2.40)

The updates resulting from Equation 2.40 increase the probability of an action rewarded
positively, while discouraging the agent to select actions that were met with a negative

reward.

Actor-Critic As can be seen in Equation 2.40, the probability to select an action is
directly dependent on the sum of rewards obtained in the trajectory. In practice, however,
this signal may be noisy and present an important variance. Actor-critic approaches
were designed to mitigate the noise from the reward, leading to a faster and more robust
training. Specifically, they rely on an additional network parametrized by weights ¢, called
the critic, that estimates the value Vj(s) of each state. This scalar is then subtracted from
the reward, allowing the action to be evaluated on whether or not it yields a superior

return than the expected. Consequently, Equation 2.40 becomes:

VoJ(mg) = Ermr,[Valogmg(as|se) (R(T) — Vig(st))] (2.41)

In these methods, the critic is also trained and thus provides only an approximation of

the state value. The most common loss function for the value function is:

o = arg;nin Es, Rimomy [V (5¢) — Ry (2.42)

where the discounted return can be expressed as R; = SN, ry' =
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Proximal Policy Optimization The PPO algorithm was designed to prevent a policy
from taking too important update steps that harm the performance, sometimes beyond
recovery, while still going as far as possible in the gradient ascent. To do so, it relies on
the notion of trust-regions. Trust-regions were introduced in (120) and rely on gradient
clipping in the objective function to avoid moving the new policy too far from the previous

one. The PPO objective function can be written as:

L(s,a,004,0) = min(r,(0)A™w (s, a), clip(ry(0),1 —e,1 4+ €)A™% (s,a)) (2.43)

where 7,(6) is the ratio of the probabilities between the previous policy and the current

one for a given pair of state and action. This ratio can be expressed as:

my(als)

TOo1a (S’ a)

p(0) = (2.44)

and the clip function ensures that the ratio stays in the [1 — ¢, 1 + ¢|range

2.5 Generative Adversarial Learning

RL algorithms represent the go-to approach when considering control environments and
are extensively used in the Universal Notice Network method presented in Chapter 4.
Nevertheless, the unsupervised learning framework offers interesting concepts and some
approaches can be repurposed in a context that is beyond their usual scope. This part
introduces the Generative Adversarial Learning (GAN) (40) framework, an unsupervised
generative modelling technique on which the CoachGAN transfer technique (86), one of

our main contributions, see Section 5.1, relies heavily.

2.5.1 Principle

The concept of Generative Adversarial Networks (GAN) is rooted in Information The-
ory and generative modelling. In this paradigm, the goal is to estimate the underlying
data probability Pgyata of a given dataset. As opposed to discriminative modelling which
objective is to infer labels y from data samples, the optimization of a generative model
yields a function able to generate unseen samples from a distribution matching the training
dataset, as shown in Figure 2.9. Within the GAN framework, this process is implemented

through a competitive setting involving two functions:
e a generator that creates samples
e a discriminator: an adversarial function that evaluates the samples

In this setting, the two networks share an objective function and are jointly trained using

the following minimax game.

mein quéle V(G@, D¢) = EINPdata [log D(b(l‘)} + E@szZ [log(l - D¢(G9(Z)))] (2.45)
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FIG. 2.9. GAN principle.

where Gy is the generator, using a vector of parameters 6 and Dy is the discriminator re-
lying on weights ¢, Pqata is the training dataset and P, is a probability distribution for the
latent variable z used by the generator to produce samples. This latent variable is, in prac-
tice, a noise vector sampled from a uniform or unit Gaussian distribution and then mapped
to samples by the generator. In return, the discriminator D assigns a scalar value to the
sample Gy(z) representing how likely this sample belongs to the training distribution, thus
acting as an adversarial classifier. Formally, Equation 2.45 states that the optimal dis-
criminator must be able to perfectly distinguish between synthetic (generator-produced)
samples and real samples from the training dataset. In practice means to respectively
affect a value of Dy(Gy(z)) = 0 to synthetic samples and a value of Dg(x) = 1 to real
samples. On the other hand, the optimal generator should be able to confuse the dis-
criminator and produce synthetic samples of high likelihood with respect to the dataset
that would systematically be classified as real by the discriminator. This adversarial setup
consequently provides a suitable way to use each model to train the other one (i.e: the
discriminator is penalized for each synthetic sample classified as real and vice-versa). The

discriminator and generator loss function can respectively be expressed as:

m

Zg, = 3 [~ Tog(Dy(a")) — log(1 — Dy(Co(=)] (2.46)
=1
L4y = =3 log(1 - Dy(Gy(=) (2.47)

i=1

2.5.2 Reaching optimality

As introduced in Equation 2.45, for a fixed generator Gy, the discriminator does a binary
classification. Practically, it should assign a value of 1 to data from the training set

x ~ Pyata and a value of 0 to samples coming from the generator x ~ Pg,. Thus, for a
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given sample z, the optimal discriminator can be written:

Dé(%) - Pdata(ﬂj)

" Piawa(z) + Pg, (z) (2.48)

If the generator has perfectly captured the training distribution, then the optimal dis-
criminator will assign a value of 0.5 to the samples, which equates to randomly guessing
whether the sample is real or synthetic. On the other hand, optimizing the generator based
on the optimal discriminator D¢, evaluations is known as minimizing the Jensen-Shannon

(JS) divergence between the training distribution and the synthetic distribution:
2D (Paatal [Per) — 1og(2) (2.49)

While theoretically sound, this approach is debatable in practice due to the models ar-
chitecture. Specifically, as the discriminator outputs probabilities (as its last activation
function is a sigmoid), a highly confident discriminator results in small gradients that fail
to give a proper improvement signal to the generator. Consequently, the adverserial pair
is commonly trained jointly with the optimization process focusing alternatively on gen-
erator and discriminator. Several recent works were dedicated to these issues and propose

alternative architectures that alleviate this problem.

2.5.3 Common issues and failure cases
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FIG. 2.10. Mode collapse during GAN training (78). The first row shows samples of a
rather successful generator as the quality gradually increase as well as the diversity (each
MNIST class is represented). The lower row displays an example of Mode Collapse where
the generator focuses on a single point in the target space even though various noise vectors
are provided.

Due to the adversarial part and the minimax aspect of the loss function, training GANs
is notoriously difficult. While potentially affected by the usual issues of neural networks,

generative adversarial networks are additionally subject to specific problems. Mainly :
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« Unstability: As the existence of an equilibrium is not guaranteed, it is possible that
the discriminator and the generator start a cycle of periodic domination. A symptom
of this can be a sinus-like loss for both models and regular drop in generator samples.

Carefully tuned hyper-parameters and model architectures can mitigate this issue.

e Mode collapse: In these cases, the generator fails to diversify its samples, basically
mapping all latent vectors to a single point or a small area of the output space,
which is considered real by the discriminator. Such a phenomenon is represented in
Figure 2.10.

e Discriminator domination: In some cases, the discriminator initialization allows it
to detect most of synthetic samples early in training, resulting in an increase in

discriminator confidence that diminishes the gradients available for the generator.

e Overfitting: The generator is only able to generate samples that too much resemble

the training set.

Despite its extended representative and modelling power, the GAN framework offers little
straightforward process to control the latent space. Various works have been able to iden-
tify the main latent space axes by examining large quantities of samples and determining
the transformation vector between two elements. Alternative modelling approaches, such
as the Variational AutoEncoder, the main concept of the Task-Specific Loss (TSL), see
Section 5.2, constraints the latent space to be more manageable, which in turn endows

the user with a closer supervision on the model output.

2.6 Knowledge representation

For a large class of problems, finding the good set of features to represent the datapoint
constitutes in itself an important part of the solution. However, it is most of the time
unclear how to find these features. For instance, let us consider the problem of finding a
human face in a picture. One could consider that a face has been found if a nose and two
eyes can be detected. Nevertheless, it is not straightforward to provide the description
of such a feature in pixel space, as eyes and nose can have various shapes, size, and
color. Although it is manageable to define space boundaries for these elements, it is also
necessary to deal with various lighting setting, shadows and element occlusion (due to face
orientation, for example). A common approach in modern machine learning is to assign
the feature representation to the model as well as the discovery of the relation between
the input and output. Among the various architectures that implement this concept, the

AutoEncoder (AE) is the most notorious instance (39; 8).

2.6.1 Autoencoders

Autoencoders are neural networks that are trained to learn to copy the input they are

presented. While this may seem like a trivial task that could be accomplished with an
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identity function, autoencoders present a more sophisticated architecture that gives them
interesting properties. Specifically, autoencoders can be decomposed into two functions

with well established purposes:

e an encoder fy, parametrized by weights 6, that projects the input into a small

abstract representation, also called the code h = fy(x)
« a decoder g, that reconstructs the code in the initial space & = g4 (h)

A usual autoencoder architecture is shown in Figure 2.11.
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—>—>E—>( Decoder }—>»
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Latent code z
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High-Dimensional Reconstructed
input vector input vector

FIG. 2.11. An autoencoder architecture.

As mentioned, if the model were to learn an identity function, its usefulness would be
questionnable. Consequently, the code created by the encoder is usually a vector which
dimensionality is importantly lower than the initial input. Thus, the decoder must retrieve
the initial signal with compressed information. This forces the whole model to learn which
features should be prioritized. Consequently, the code produced by the encoder captures
the most salient parameters of the training set.

The objective function for this class of models aims at minimizing the distance between

the initial input and its reconstructed version. Formally:

L(0,¢) = [l — &[] = [l — g (fo(x))| (2.50)

While the straightforward vanilla autoencoder approach may appear to have limited use
cases, despite having the properties of a non-linear PCA (Principal Component Analysis),
several recent works have applied AE variants to a large set of cases, demonstrating the
architecture usefulness. For example, the denoising AE proposes to replace the initial

input x with corrupted data and train the model to reconstruct the noise-free version:

Lpag = [[z = g4 (fo(2))]] (2.51)

where x,, = x +n ~ A (u,0) is the corrupted version of the input.
Other more recent works leverage the code representational capacity to repurpose AE

architecture for generative modelling
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2.6.2 VAE

Variational Autoencoders (62; 39)are an AutoEncoder alternative designed for generative
modelling. In practice, this approach presents a crucial modification with the vanilla
AutoEncoder. Namely, they are designed so that the constructed latent space is continu-
ous, allowing samples drawn from the code distribution to produce realistic outputs once
decoded.

In practice, the AE architecture is also modified to transform the previously deterministic
encoder into a stochastic version. Specifically, the last encoder layer that was ultimately
projecting the processed inputs to the latent space is replaced by a two-headed layer that
outputs instead a vector of means u and a vector of standard deviations o, shown in Figure
2.12.

Std dev. Latent code z
Zz~pt+o@Ge

1%
Meanl

— Encoder ~|:: :l—'E —>( Decoder )|—>
o

High-Dimensional Reconstructed
input vector x input vector x

FIG. 2.12. From AE to VAE: a probabilistic encoder projects the input in a Gaussian
constrained latent space.

Consequently, the code is not the result of a series of deterministic operations but is
rather sampled from a normal distribution governed by the parameters generated by the
encoder. This means that even for a same input, the code is likely to be slightly different
for each pass, resulting in a probable area instead of a single point for the reconstruction.
As a result, this effectively trains the decoder to be less sensitive and generalizes to latent
areas instead of specific encodings as it is exposed to more variations. However, relying
on the reconstruction loss alone with the sampling mechanism is not enough to create an
interpolable latent space. Indeed, as there is no limit nor constraint on the mean vector u
and the standard deviation vector o, the encoder is likely to cluster the different classes,
generating distribution parameters that are very far in the latent space, thus creating a
sparse latent space.

To prevent this, the loss function for VAE introduces an additional term that aims at

regularizing the probability distribution of the code:

L(07¢) - _Ezwfg(z\z)[loggM)(x’z)] - KL(fg(Z‘(L‘)Hp(Z)) (252)

In the expression in Equation 2.52, the first term is the reconstruction loss. It is the expec-
tation of the negative log-likelihood of a datapoint z. This value depends on the encoder

distribution over the representation fyp(z|z). The regularization on the encoder distribu-
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tion is enforced by the second term. It introduces the Kullback—Leibler divergence (KL
divergence) (64) within the objective function. The KL function computes the divergence
between two probability distributions. Hence, reducing the KL term means ensuring that
the encoder outputs codes that are likely under the target distribution. In practice, the
target distribution is usually the unit-centered Gaussian distribution .47(0, 1) because it
offers a tractable expression for the KL divergence as well as an easy way to sample once
training is over. An example of code distribution on the classic MNIST handwritten digits

dataset using the various losses involved in VAE training is shown in Figure 2.13.

Reconstruction Loss Reconstruction + KL

FIG. 2.13. Code distribution for VAE on the MNIST dataset.

Despite their simplicity, VAE have recently been in the center of a large spectrum of
generative modelling works, spanning from images, synthetic text or even music. They
are generally more reliable than their GAN counterparts, but they tend to produce blurrier

output, due to the sampling mechanism trade-off.

2.7 Conclusion

This chapter introduced the major concepts that support the tools and frameworks devel-
oped in the manuscript. Going beyond simple feed forward neural networks, it presented
the main ideas behind modern Reinforcement Learning (RL), which are used extensively
in TAsk-Centered approaches presented in this report. To provide the necessary materials
to fully understand TEacher-Centered techniques, several important unsupervised learn-
ing processes were also introduced such as Generative Adversarial Networks (GAN) and
Variational AutoEncoder (VAE).
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3.1 Societal Needs for Transfer Learning

Industry 4.0, as foreseen in (123), will correspond to an era of higher integration of cyber
and physical systems. In this views, industrial actors expect a strong interconnection be-
tween machines and devices, comprehensive information from the technology implemented
and the ability of cyber systems to take decentralized decisions. These design principles
are driven by the need for increased flexibility in terms of tasks, short industrial prod-
uct series, consequently easily reconfigurable workplaces and finally highly diverse pool of
robots.

This very dynamic industrial context introduces new and complex challenges that may
prove difficult to formalize in mathematical frameworks. Indeed, perform complex mo-
tions to complete a task is still an open issue. While there exist optimization methods
based on complete models (59; 60; 67), these are usually computationally intensive and
may not satisfy real-time constraints. To tackle this issue, the community has also been
leveraging predictive methods that are completely suitable for real-time control. However,
this execution efficiency is usually achieved by sacrificing the model complexity and thus
considering simplified versions that may not have enough degrees of freedom to express
the full problem spectrum (22). These two methods present the str