
UNIVERSITÉ CLERMONT AUVERGNE
ÉCOLE DOCTORALE DES SCIENCES POUR L’INGÉNIEUR DE CLERMONT FERRAND

Thèse
Présentée par

Mehdi Mounsif
pour obtenir le grade de

DOCTEUR D’UNIVERSITÉ

Spécialité

Électronique et Systèmes

Exploration of Teacher-Centered and Task-Centered
paradigms for efficient transfer of skills between

morphologically distinct robots

Soutenue publiquement le 15 Décembre 2020 devant le Jury :

David FILLIAT Professeur - ENSTA ParisTech Rapporteur
Olivier STASSE Directeur de Recherche - LAAS Rapporteur
Gentiane VENTURE Professeur - TUAT (Japon) Examinateur
Sébastien DRUON Maître de Conférences - LIRMM, UM Examinateur
Lounis ADOUANE Professeur - Heudiasyc, UTC Directeur de thèse
Benoit THUILOT Maître de Conférences - Institut Pascal, UCA Co-encadrant
Sébastien LENGAGNE Maître de Conférences - Institut Pascal, UCA Co-encadrant

ii

À mon père,
à qui j’aurais voulu montrer

le potentiel professionnalisant des jeux vidéos.

iii

I have to finish this.

Ellie in The Last of Us, Part II - Naughty Dog, 2020

iv

Remerciements

En dépit de ma maîtrise, inédite dans mon entourage (même après trois ans de labeur), des
notions d’acteur-critique, de divergence de Kullback-Leibler et de l’architecture de ML-Agents, il
m’est difficile d’imaginer un scénario d’achèvement de ces travaux de thèse couronné de succès sans
le soutien capital de toutes les personnes qui ont pris part, de près ou de loin, à cette aventure et
à qui je voudrais ici exprimer ma reconnaissance.

Si ces supports ont été de natures diverses, ils ont pavé la route vers l’achèvement de cette
thèse d’un parterre d’herbe chatouilleuse. Sans parvenir à masquer totalement les rares, mais
inévitables, aspérités du chemin, le niveau de confort que j’ai perçu excédait de très loin la rugosité
et les irrégularités irritantes qu’aurait sans nul doute comporté une trajectoire isolée.

J’aimerais tout d’abord exprimer ma profonde gratitude envers mon directeur de thèse, Lou-
nis ADOUANE. Dans une époque lointaine, ses réponses patientes à mes interrogations sur les
systèmes multi-agents ont eu un poids non-négligeable dans mes choix d’orientations. Plus récem-
ment cependant, je voudrais lui signifier mon appréciation pour sa sage vision à long-terme, ses
encouragements et ses conseils tactiques en terme de publications qui m’ont permis de valoriser
mes travaux. Si je regrette et te présente mes excuses pour t’avoir emprunté ton bureau, je suis
prêt à te le parier sur le résultat d’un match de basket.

Premier par la chronologie, l’acuité et la pertinence de ses questions lors de la rédaction de
nos papiers, je tiens à remercier Benoit THUILOT, qui, après un interrogatoire inoubliable lors
de notre première rencontre, m’a permis de rentrer en M1 Robotique, m’ouvrant ainsi le véritable
point de départ de cette odyssée. Ainsi, Benoit, si je suspecte que la quantité de sueurs froides et
de palpitations que j’ai induite chez toi avec mes robots volants et autres modèles de jeux vidéo
dépasse de très loin le quota autorisé, je te remercie ta pédagogie, ton humour et ton bon sens qui
ont été salvateurs à plus d’un égard.

Finalement, une mention particulière à Sébastien LENGAGNE, troisième membre de l’équipe
encadrante (la team des Boyz, comme je m’y référais dans le secret du bureau 3106). Au cours de
ces trois ans au front, Sébastien à vaillamment endossé le rôle d’encadrant de terrain. N’hésitant
jamais à me lancer à l’assaut des territoires inexplorés et dangereux du transfert entre agents
de morphologie différentes, guidé par une connaissance intime des réflexes de la communauté
robotique, il m’a permis de mettre en place des plans d’expériences ambitieux sur l’Universal Notice
Network qui feraient pâlir d’envie les clusters de calcul des GAFAM. Je voudrais te témoigner
Sébastien, ma profonde gratitude: tu as été un encadrant d’une rare gentillesse, attentif et à
l’écoute. Malgré nos épisodiques divergences sur le mode de programmation des robots, dont Benoit
pourra certainement attester, tu as supporté et encouragé la grande majorité de mes initiatives
scientifiques en trouvant un délicat équilibre entre le pilotage et l’autonomie. Je suis tout à fait
conscient de la chance que j’ai eu.

J’aimerais aussi adresser mes remerciements aux membres du jury, Gentiane VENTURE,
Olivier STASSE, David FILLIAT et Sébastien DRUON dont les questions sagaces, la justesse

v

vi

scientifique, l’ouverture d’esprit et l’amabilité ont conféré une aura particulière au souvenir que je
garde du 15 décembre 2020.

Plus familièrement maintenant, je dédie mon prochain big-up aux locataires du bureau 3016
avec qui j’ai partagé, somme toute, une proportion non-négligeable de mon temps éveillé de ces
dernières années. Pendant ces moments, nous avons partagé les joies et les peines communes des
doctorants, l’effusion des nouvelles idées et l’émulation scientifique, des courses à la deadline, des
meetings MAACS, des pétitions contre le bruit des machines de l’étage du dessus ainsi que des
discussions animées, parfois profondes et parfois un peu moins, mais systématiquement rythmées
par le bruits de la chasse d’eau des sanitaires d’en face. Mention particulière à Nadhir et sa douceur,
à Lobna, à Kamel, à Jojo la Fripouille. À Dimia aussi, sans qui je n’aurais jamais pu m’inscrire en
deuxième année, faute de compétences techniques suffisantes pour le scanner du deuxième étage.

J’adresse aussi une pensée transpirante au club de boxe anglaise de Clermont Boxe St-Jacques,
dont l’affiche à longtemps trôné sur la porte du bureau, indiquant aux visiteurs, grâce à une
inscription manuscrite de Dimia, ma victoire du 30 Novembre 2018. Merci à Adel et Bénédicte
d’avoir joué un rôle si structurant pendant ces années et de m’avoir offert un environnement dans
lequel j’ai pu me défouler, progresser comme boxeur et pratiquer mes talents d’orateurs en tant
que coach.

Pour conclure, je destine le dernier paragraphe de ces remerciements à mon premier cercle,
plus restreint, mais dont le soutient fut incontournable au cours de cette thèse. À ma mère et ma
soeur, inconditionnelles dans leur amour stratosphérique et leur affection et que j’espère rendre
aussi fières de moi que je le suis d’elles. À Héloïse également, Capitaine de mon navire, qui attendait
la conclusion de cette thèse et notre départ vers la vie de JCD (Jeunes Cadres Dynamiques) avec
encore plus d’impatience que moi.

Afin de ne pas diminuer excessivement la patience du lecteur qui doit encore traverser plusieurs
dizaines de pages pour arriver au bout de ce manuscrit, j’abrégerais ces remerciements en saluant
tous ceux, proches, amis et famille, que je n’ai pas directement cités ici, mais dont l’affection restera
liée dans mon esprit à ces trois années inoubliables.

vii

Résumé

Récemment, il a été possible d’observer l’accélération du déploiement de robots dans des domaines
dépassant l’habituel cadre industriel et manufacturier. Cependant, pour la majorité des tâches
autonomes, la définition d’un modèle analytique ou la recherche d’une solution optimale requiert
des ressources rarement accessibles en temps-réel, favorisant par conséquent des techniques basées
sur l’apprentissage. Ces dernières, présentant l’avantage de ne pas nécessiter de modèle ainsi que
de présenter un temps de calcul en exécution relativement constant, permettent d’appréhender des
configurations et tâches hautement complexes. Les techniques basées sur les données font cepen-
dant état de temps d’entraînement considérables, nécessitant fréquemment des millions d’exemples
et d’interaction avec leur environnement pour construire des politiques de contrôle admissibles.
Le transfert de connaissance entre modèles est crucial pour le déploiement à grande échelle des
méthodes d’apprentissage et bien que des stratégies de transmission aient été au coeur des récentes
préoccupations, elles sont essentiellement dirigées vers les domaines de vision ou de compréhension
du langage et ne sont pas directement applicables à des problématiques de transfert de compé-
tences entre robots présentant des structures cinématique différentes. Les travaux présentés dans ce
manuscrit de thèse se focalisent précisément sur ce point et visent à déterminer dans quelle mesure
la compréhension entre deux entités morphologiquement distinctes est possible. Cette question est
explorée via l’introduction de deux paradigmes distincts: Task-Centered et Teacher-Centered. La
famille de techniques dite Task-Centered est basée sur l’idée de la séparation du savoir-faire relatif à
une tâche des stratégies de contrôle du robot. A la manière d’une notice d’instruction, un tel noyau
indépendant peut par conséquent être passé à d’autres robots de morphologie différentes et idéale-
ment rendre possible la réalisation de la tâche par ce nouvel agent. Dans ce contexte, plusieurs
procédures de création de ce noyau sont proposées et évaluées sur un large panel d’environnements
simulés. Cependant, en dépit des perspectives attractives de cette formulation, le caractère "one-
size-fits-all" des techniques Task-Centered n’est pas exempte de limitations qui sont extensivement
discutées. C’est dans ce contexte que les approches Teacher-Centered sont introduites. Poursuiv-
ant le même objectif, ces démarches innovantes font intervenir un agent expert à partir duquel le
savoir relatif à la tâche doit être distillé dans l’agent cible. Pour ce faire, une métrique originale est
utilisée pour contourner la différence de structure entre l’agent cible et l’agent expert et permettre,
malgré cette distinction, la rétro-propagation de l’erreur afin d’optimiser l’agent.

viii

Abstract

Recently, it has been possible to observe the acceleration of robot deployment in domains beyond
the usual industrial and manufacturing framework. However, for the majority of autonomous
tasks, the definition of an analytical model or the search for an optimal (or acceptable) solution
requires resources that are seldom available in real-time, thus favoring learning-based techniques.
Indeed, learned models present the advantage of being model-free as well as having a constant
execution time, consequently enabling the realization of highly complex trajectories and tasks.
Data-driven techniques, however, are hindered by considerable training time, frequently requiring
millions of examples and interactions with their environment to build acceptable control policies.
As such, knowledge transfer, also known as transfer learning, between models is crucial for large-
scale deployment of learned policies. Although transmission strategies have been the focus of
recent concerns, they are mainly directed towards the fields of vision or language understanding
and are not directly applicable to control environments where skill transfer is likely to happen
between robots with different kinematic structures. The works presented in this thesis manuscript
focus precisely on this point and aims at determining to what extent understanding between two
morphologically distinct entities is possible. This question is explored through the introduction
of two distinct paradigms: Task-Centered and Teacher-Centered. The Task-Centered family of
techniques is based on the idea of the separation of task-related know-how from robot control policy.
Such an independent kernel can therefore be passed on to other robots of different morphology and
ideally make it possible for the new agent to perform the task. In this context, several blueprints
for creating this kernel are proposed and evaluated on a wide range of simulated environments.
However, despite the attractive prospects of this formulation, the "one-size-fits-all" character of
Task-Centered techniques is not free of limitations which are extensively discussed. It is in this
context that Teacher-Centered approaches are introduced. Pursuing the same objective, these
innovative procedure involve an expert agent from which the knowledge related to the task must
be distilled into the target agent. To do this, an original metric is used to circumvent the structural
differences between the target agent and the expert agent and allow, despite this distinction, the
error to be back-propagated in order to optimize the agent.

ix

Acronyms

• AE . AutoEncoder

• BAM . Base Abstracted Modelling

• BERT Bidirectional Encoder Representations from Transformers

• CNN . Convolutional Neural Network

• CV .Computer Vision

• DC . Differentiable Collision

• FFNN . Feed Forward Neural Network

• GAN .Generative Adversarial Network

• ISV . Intermediate State Variable

• KL .Kullback-Leibler

• LSTM . Long Short-Term Memory

• MDP .Markov Decision Process

• ML .Machine Learning

• NN . Neural Networks

• NLP . Natural Language Processing

• PPO .Proximal Policy Optimization

• RL .Reinforcement Learning

• RNN .Recurrent Neural Network

• SAC .Soft Actor-Critic

• SL . Supervised Learning

• TAC . TAsk-Centered

• TEC . TEacher-Centered

• TSL .Task-Specific Loss

• UNN . Universal Notice Network

• VAE . Variational AutoEncoder

• WGAN-GP . . .Watterstein Generative Adversarial Neural with Gradient Penalty

x

Contents

1 Introduction 1
1.1 Opening . 2
1.2 Goals . 4
1.3 Proposed Approaches . 4
1.4 Contributions . 6
1.5 Manuscript outline . 6

2 Neural Networks and Learning Frameworks: Theoretical Background 9
2.1 Machine Learning . 11
2.2 Neural Networks . 12

2.2.1 Neurons . 12
2.2.2 Feed forward neural networks . 13

2.2.2.1 Layers . 14
2.2.2.2 Activation functions . 15

2.2.3 Loss function and backpropagation for optimization 17
2.3 Supervised Learning . 19
2.4 Reinforcement Learning . 20

2.4.1 Principle and main concepts . 20
2.4.1.1 Observations . 21
2.4.1.2 Policy . 21
2.4.1.3 Actions . 21
2.4.1.4 Trajectory and episodes . 21
2.4.1.5 Reward Function . 22
2.4.1.6 Reinforcement Learning Objective 23
2.4.1.7 Value functions . 23
2.4.1.8 Bellman Equations . 23
2.4.1.9 Advantage function . 24

2.4.2 Practical aspects of RL . 24
2.4.2.1 The Exploration-Exploitation trade-off 24
2.4.2.2 Credit assignment problem 25

xii CONTENTS

2.4.2.3 Sample (In)efficiency . 25
2.4.3 Modern RL algorithms . 25

2.4.3.1 Model-free and model-based RL 25
2.4.3.2 On-Policy vs. Off-Policy . 26

2.4.4 Proximal Policy Optimization . 27
2.5 Generative Adversarial Learning . 28

2.5.1 Principle . 28
2.5.2 Reaching optimality . 29
2.5.3 Common issues and failure cases . 30

2.6 Knowledge representation . 31
2.6.1 Autoencoders . 31
2.6.2 VAE . 33

2.7 Conclusion . 34

3 Transfer Learning & Related works 35
3.1 Societal Needs for Transfer Learning . 36
3.2 Transfer Learning Principles . 36
3.3 Common cases of Transfer Learning . 38
3.4 Computer Vision . 40
3.5 Natural Language Processing . 43
3.6 Transfer Learning in control tasks . 45

3.6.1 Deep learning based control . 45
3.6.2 From simulation to real world . 46
3.6.3 Transfer between tasks . 47

3.6.3.1 Reward-Based Transfer . 47
3.6.3.2 Curriculum Based Transfer 47
3.6.3.3 Intrinsically motivated Transfer 48
3.6.3.4 Meta-Learning . 48
3.6.3.5 Transfer in Hierarchical Settings 49

3.7 Knowledge representation in Transfer Learning 50
3.8 Conclusion on Transfer Learning . 51

4 Task-Centered Transfer 53
4.1 Universal Notice Network . 54

4.1.1 Principle . 54
4.1.2 The UNN workflow . 55
4.1.3 The UNN Pipeline . 56
4.1.4 Base Abstracted Modelling . 57
4.1.5 Building and using UNN modules . 58

4.2 Experiments . 59
4.2.1 Vanilla transfer . 60
4.2.2 Learning setup . 61

CONTENTS xiii

4.2.3 Controlled Robots . 62
4.2.4 Base Manipulation: Reacher . 63
4.2.5 A lonely manipulation: Tennis . 64
4.2.6 Biped walking . 67
4.2.7 Cooperative Manipulation UNN: Cooperative Move Plank 71
4.2.8 Cooperative BAM Manipulation: Dual Move Plank 73

4.3 Conclusion on TAsk-Centered methods . 77

5 Teacher-Centered Transfer 79
5.1 CoachGAN . 80

5.1.1 From Task to Teacher . 80
5.1.2 The CoachGAN method . 80
5.1.3 WGAN-GP for a suitable learning signal 83
5.1.4 Task and Intermediate State Variables 84
5.1.5 Training the Expert . 86
5.1.6 CoachGAN Results . 87

5.1.6.1 Effector Position ISV . 87
5.1.6.2 Approximated Kinematics ISV 89
5.1.6.3 Ball Rebound Speed ISV 89
5.1.6.4 Analysis . 90

5.1.7 Conclusion on CoachGAN . 92
5.2 Task-Specific Loss . 92

5.2.1 The TSL Principle . 93
5.2.2 Method . 94
5.2.3 Transfer . 95
5.2.4 Experimental setup . 97

5.2.4.1 Tasks and Agents . 97
5.2.4.2 Models . 99

5.2.5 Results . 99
5.2.5.1 Circle to Circle Contour Displacement 99
5.2.5.2 Tennis task . 100
5.2.5.3 Autonomous TSL . 103
5.2.5.4 Training Time & Assistive aspects 105

5.2.6 Conclusion on Task-Specific Loss . 105
5.3 Conclusion on TEacher-Centered methods 106

6 General Conclusion & Prospects 109

A UNN in Mobile Manipulators settings 127

xiv CONTENTS

List of Figures

1.1 A mass directed, widely distributed, list of instructions to assemble a piece
of furniture . 2

1.2 Personalized advice in a bouldering configuration: the experimented climber
distills its knowledge in the student accomplishing the task 3

1.3 TAsk-Centered (TAC) approach with the instruction "Cross the gap" can
be answered differently given the capabilities of the current agent. 5

1.4 TEacher-Centered approach to Kung-Fu. In this configuration, knowledge
from the teacher agent (right) is distilled to the learner agent (left) 5

2.1 The neuron is the basic computational unit in a neural network. 12
2.2 Feedforward neural network: vectors are sequentially processed by each

layer, first applying the layer weight parameters and then the non-linearity
activation function. The last layer returns a value that is usually used to
compute the loss. 13

2.3 Layer connections. 14
2.4 The sigmoid function and its derivative. 15
2.5 The TanH function and its derivative. 16
2.6 The ReLU function and its derivative. 17
2.7 RL principle. 20
2.8 A taxonomy of RL algorithms. 26
2.9 GAN principle. 29
2.10 Mode collapse during GAN training (78). The first row shows samples of

a rather successful generator as the quality gradually increase as well as
the diversity (each MNIST class is represented). The lower row displays an
example of Mode Collapse where the generator focuses on a single point in
the target space even though various noise vectors are provided. 30

2.11 An autoencoder architecture. 32
2.12 From AE to VAE: a probabilistic encoder projects the input in a Gaussian

constrained latent space. 33
2.13 Code distribution for VAE on the MNIST dataset. 34

xvi LIST OF FIGURES

3.1 Transfer Learning principle. 37
3.2 CNN filters detect different features based on their depth location in the

model. 40
3.3 CNN fine-tuning/Transfer Learning process. 41
3.4 Left: Detection model based on a pretrained backbone (37). 42
3.5 Segmentation results (30). 42
3.6 Segmentation models. Up: Fully-Connected Networks (FCN) (124). Down:

U-Nets (112). 43
3.7 PCA representation of words (79). 44
3.8 Language Model based Transfer Learning. 45
3.9 CycleGAN training method. 51

4.1 Knowledge location comparison. 55
4.2 The original UNN Pipeline staged training first creates a primitive agent

controller (in blue box) for a chosen agent configuration. The UNN for
the task relies on the generated primitive motor skills to learn a successful
policy (in light red box). 56

4.3 The successive steps for deploying the transferred UNN to a new configuration. 56
4.4 The UNN Pipeline is composed of three stages: the input and output bases

(in green and red) are specific to the robot, while the UNN (blue) is task-
related. 57

4.5 The BAM version of the environment prevents specific behaviour from leak-
ing in the task model, leading the UNN closer to a bias-free logic. 58

4.6 The UNN workflow: Various solutions for creating and using modules and
UNNs. Dashed violet paths are to pair the robot with its module. Dashed
blue paths are to pair the task with its UNN. Black and red paths are to
create new robot modules. Orange and blue paths are to create new task
module (UNN). 59

4.7 Exchanging model layers between similar agents. 60
4.8 Mean reward evolution on BipedalWalker-v3 environment. 61
4.9 Comparison of all configurations. Genuine configurations are able to reach

high scores while all recomposed one fail to exceed a very low threshold. . . 62
4.10 From left to right: Generic-3 robot, Berkeley Blue, Kuka-LWR, Leg Type

1, Leg Type 2. 63
4.11 Reacher Task. 64
4.12 Mean reward along training on the primitive reacher task. 65
4.13 Tennis Task. 65
4.14 Learning performances in the Tennis environment. PPO and UNN are

performed using Kuka robot, transfer to Berkeley Blue robot. 66
4.15 Undesirable configurations that ultimately return positive rewards are likely

to be considered as valuable states by the agent. 68
4.16 Dual UNN Architecture. 68

LIST OF FIGURES xvii

4.17 Biped walk task. 69
4.18 Learning performances in Biped Walk environment. PPO and UNN are

performed using 2 legs of Type1, transfer to robot composed of Leg Type1
and Leg Type 2. 70

4.19 Left: Free configurations. Right: Enforced semi-folded configurations. . . . 71
4.20 UNN pretraining can nudge the policy towards a more human-like gait. . . 71
4.21 Cooperative Move Plank Task. 72
4.22 Cooperative Move Plank Task results. 73
4.23 Dual-Arm Move Plank Task. 74
4.24 Dual-Arm Move Plank Task. 74
4.25 Learning performances in Dual-Arm Raise Plank environment for PPO and

UNN policies using two Kuka arms and then transferred to two Berkeley
Blue robots. 75

5.1 In its current formulation, the UNN framework is likely to find limitations
for cases where the UNN output instruction is not directly applicable to the
transfer target. 81

5.2 It is possible to extend the UNN approach by implementing a less rigid
interface between the task model and the agent. 82

5.3 An educated enough external observer is able to provide a feedback on the
actions performed, which can be used, to some extend, to improve perfor-
mance. In this stylized example, the discriminator evaluates the fighter
ability through the heavy bag movement. 82

5.4 The CoachGAN principle. The green frame depicts the teacher discrimi-
nator training process, that is then used for training the student generator
(orange frame). 83

5.5 Student Generator (in orange) optimization in experiments Actual Kine-
matics andApproximated Kinematics. Discriminator evaluation passes
through the RISV module before reaching the generator. 85

5.6 Training predictor to forsee next step ball speed. 85
5.7 Training discriminator based on predictor outputs. 85
5.8 Student generator (in orange) training setup for experimentBall Rebound.

Discriminator evaluation goes through the predictor and RISV before mod-
ifying generator parameters. 86

5.9 Adversarial losses along training. 87
5.10 Normalized discriminator evaluation of ISV (effector positions) in the task

space for two given starting ball configurations. Higher values (yellow) are
favored. 88

5.11 Sampled solutions for actual and approximated ISV in green. Baseline from
untrained generator in white. 88

5.12 Task-space evaluation by the discriminator based on predictor results. . . . 89

xviii LIST OF FIGURES

5.13 2D representation of the solution distribution. Successful solutions are ei-
ther overlapping expert position or in the ball path. 90

5.14 Interception performance and training time. 91
5.15 The TSL defines an Intermediate State Variable (ISV) of interest that is

responsible for sending relevant error signal to the student. In this picture,
the ISV is represented by the painting. Body position having no influence
on this value, the green configuration yields a low error, while the red setting
returns a strong error value. 93

5.16 TSL penalizes the student when its movement does not preserve the esti-
mated metric at the previous timestep. 94

5.17 User-assisted VAE architecture during training phase. 95
5.18 User-assisted VAE architecture during usage/testing phase. 95
5.19 Distillation process from the teacher to the student agent via TSL. 96
5.20 Various teaching cases and their corresponding losses and importance weight.

The teacher’s joints are drawn in blue, while green is used for the student. . 98
5.21 Reconstruction loss along training epochs and 2D code distribution on the

test set for the circle task. 100
5.22 Distribution of the distance between effectors for 1000 samples after 10

successive actions using the same user input z. 101
5.23 Mean Cumulative Reward Evolution and ball impact distribution for 100

shots per target point. 102
5.24 Tennis Teacher training metrics and code distribution of a randomly sam-

pled batch of 2048 examples. 103
5.25 Comparison of assistive performances of several players using both teacher

and student agent with baseline. 104
5.26 Comparison of TSL-based controlled for autonomous agent and user-controlled

agent in a relevant environment. 104
5.27 Impact distribution and action magnitude of an autonomous student along

several episodes. 108

A.1 A subset of the possible agent configurations. From left to right: Bicycle
KUKA, Omnidirectional BLUE, Differential G3. Parts can be exchanged
between agents. 128

A.2 Training performances on Primitive reaching task for 4 predefined configu-
rations . 130

A.3 Comparative Pick’n Place training performances 131
A.4 Comparative Stacking training performances 132
A.5 Pick’n Place transfer fine-tuning performances 132
A.6 Stacking transfer fine-tuning . 133

List of Tables

3.1 Recent CNN architectures, performances on the ImageNet classification
task and number of parameters (millions). 38

3.2 Recent NLP architectures characteristics: Number of parameters (millions),
dataset training size and evaluation score on the GLUE benchmark. 39

4.1 Tennis Summary. 66
4.2 Biped Summary. 70
4.3 Cooperative Move Plank. 73
4.4 Dual Arm Raise Plank Summary. 76

A.1 Transfer: Pick’n Place . 133
A.2 Transfer: Stacking . 134

xx LIST OF TABLES

Chapter 1
Introduction
Contents

1.1 Opening . 2
1.2 Goals . 4
1.3 Proposed Approaches . 4
1.4 Contributions . 6
1.5 Manuscript outline . 6

1

2 1.1. OPENING

1.1 Opening

Within the animal reign, there exists a wide variety of behaviours regarding the relation
between an adult individual and its children. For instance, most invertebrates leave their
eggs alone once laid, relying on numbers to ensure that a viable size of newborn survives.
As opposed to this, mammals are among the species that take the most care of their
offspring as adults effectively provide food and protect their children until they are strong
enough to do so for themselves. Within the invertebrate family, octopuses and squids
are famous for their particularly high brain/body ratio, their ability to use tools and
learn through observation and play. These specific features are among those who enabled
mankind to move from a hunter-gatherer existence to space exploration. Thus, among
other reasons, it is possible to consider that the absence of knowledge transmission between
generations heavily impacts the development of a specie as a whole.
Throughout their history, humans have taken the measure of how crucial knowledge trans-
mission is, to the point that it is institutionalized (in schools, universities, institutes, for
instance) in our societies. Although it is a very common and well-spread custom, transfer-
ring knowledge from one individual to another one or to another group is still, depending
on the complexity, seldom immediate and requires repetition and training over a non-
negligible period of time to be effectively assimilated.
Even though the transfer process within human communities frequently relies on the phys-
ical presence and demonstration of an expert individual (a teacher), the usage of a interme-
diate support, such as books, podcasts or videos is also widely accepted. The diversity of
such intermediate mediums illustrates that there exist several conceivable approaches for
transfer: from a personalized, individually-targeted process (a one-on-one sport class) to
an industrial, mass-directed approach (printing a widely distributed ideological pamphlet).

FIG. 1.1. A mass directed, widely distributed, list of instructions to assemble a piece of
furniture

A supplementary challenge in the transfer process is related to the diversity of the knowl-

CHAPTER 1. INTRODUCTION 3

edge shared, that in a number of areas, is expected to yield a perfect copy while it relates
more to a desired result in others. For instance, when assembling furniture, the knowledge
written by an expert on the notice is expected to allow the customer to setup the appliance
flawlessly while the techniques given by an experimented climber to newcomers is broader
and only aim at giving them the possibility to climb in a more efficient way. The two
previous examples also highlight an important difference which relates to the degree of
control on which the transfer focuses. Specifically, the furniture case deals with high-level
instructions ("nail panel B to door A") while the climbing environment presents situations
likely to call for lower-level considerations ("Push on your left leg to stabilize your grip")
that depend directly on the attributes of the transfer target.

FIG. 1.2. Personalized advice in a bouldering configuration: the experimented climber
distills its knowledge in the student accomplishing the task

As recent progresses in robotics and artificial intelligence let us envision a future where
robot presence and activity will be ubiquitous, it is likely that, fueled by economics, cul-
tural background, and design choices, human creativity is highly liable to design robots of
various forms and shapes. As a result, these robots will certainly present a wide range of
sensors and actuators to accomplish their tasks. However, as opposed to information pro-
cessing domains such as vision or audio which can depend on a single unified representation
(pixels and soundwave, respectively), robot parts may present different kinematic struc-
tures, power and overall different mechanic functions. Consequently, while it may appear
viable to transfer a vision model, provided the good normalization, it is less straightforward
to share the same control structure.
While efforts in robotics have resulted in efficient analytical formulation for numerous
tasks and problems, the vast majority of the functions that humanity expects robots to
perform is likely to rely on learning-based control, as defining an accurate model for these
actions can be difficult. However, as of today, even the most recent algorithms are still
experience-greedy and require millions of examples and interactions with an environment
to produce acceptable policies for a single agent, thus yielding daunting considerations in

4 1.2. GOALS

terms of computation if this strategy was to be applied to each different robot.
Consequently, the capacity to transfer skills from one agent to another, notwithstanding
their distinct physical structure, is a crucial and essential step in the path of integrating
robots in our day-to-day lives. This work consequently proposes novel techniques to face
this issue. These approaches can be classified into two main families based on whether
they fit in the furniture example (TAsk-Centered), displayed in Figure 1.1 or climbing
configuration (TEacher-Centered) as shown in Figure 1.2.

1.2 Goals

This work challenges the current transfer learning paradigm and aims at showing that it is
possible to transfer knowledge from an agent to a kinematically different one. Metaphor-
ically, this work can be seen as an echo to George Berkeley’s immaterialism (6) theory
which denies the existence of material substance outside of the mind of perceiver. The
methods proposed in this work rotate this interrogation towards knowledge and investigate
whether the skills and knowledge to successfully complete a task are tied to the morphol-
ogy which learned to do so. To sum up, this thesis explores the following hypothesis:
is it possible to transfer knowledge, that is the expertise or control strategy in a given
environment, from one agent to another despite their potential morphology difference ?
And, if so:

• how to cope up with the action space dimensional differences ?

• can a common state be defined ?

• to what extend can knowledge be distinct from the body ?

1.3 Proposed Approaches

This thesis focuses on two distinct ideas for transferring knowledge: TAsk-Centered (TAC)
and TEacher-Centered (TEC). Fueling the TAsk-Centered approaches is the idea of no-
tices, similar to the ones used by non-professional humans to quickly be able to produce
an object (for instance, setting up a piece of furniture) without having specifically been
trained on this type of task. In these cases, the furniture producer writes down a set
of instructions that should enable another person to reach its goal, that is, assembling
the newly acquired furniture. In this configuration, the producer does not have access
to the customers physical abilities, but makes the assumption of basic motor skills that
would allow him to comply with the notice’s current set of instructions. In this view, the
TAsk-Centered methods first aim at constructing a notice module, independent from the
acting agent morphology. Once this notice module is available, it can be passed to other
agents that would then perform the task. This approach is schematised in Figure 1.3 that
displays an example on how two systems similarly tasked can present different strategies
to solve the given configuration.

CHAPTER 1. INTRODUCTION 5

FIG. 1.3. TAsk-Centered (TAC) approach with the instruction "Cross the gap" can be
answered differently given the capabilities of the current agent.

It is also possible to consider TEacher-Centered approaches. In this view, instead of
having a segmentation between the knowledge and the agent morphology as in TAsk-
Centered cases, the task knowledge is tied to an agent, called the teacher or the expert.
The goal of TEacher-Centered techniques, displayed in Figure 1.4, is to provide ways to
distill this ability into another student agent of potentially different morphology. This
configuration relates to very common settings in human civilization. Indeed, there exist
numerous examples where an untrained individual can benefit from the knowledge of an
expert, thus shortening the time needed to reach mastery.

FIG. 1.4. TEacher-Centered approach to Kung-Fu. In this configuration, knowledge from
the teacher agent (right) is distilled to the learner agent (left)

6 1.4. CONTRIBUTIONS

1.4 Contributions

As this report proposes several approaches, a novel approach classification was devised.
Indeed, TAsk-Centered and TEacher-Centered techniques are two newly defined families of
transfer-learning approaches that usefully draw a line between the novel methods proposed
in this work.
More precisely, in the TAsk-Centered approach, we propose the Universal Notice Network
(UNN) (84; 85) a stage-wise deep reinforcement learning based technique that creates a
task knowledge module that can then be passed to different agents. Doing so enables to
segment the task logic, that should be common to all agents, from the control parameters
inherent to each robot. This technique yields very interesting results both for the learning
part as well as the transfer, as it enables other agents to reach performances level similar to
the expert in a fraction of the training time. Besides, the segmentation pipeline involved
in this construction presents unexpected, yet highly appealing features, with respect to
agent control parameters. Specifically, in the pre-training phase, it is easier to induce
biased behaviors in the agent low-level control. These behaviors can then importantly
ease the learning process in the target task and also contribute to prevent undesired or
unsuitable actions downstream.
For the TEacher-Centered framework, this report investigates innovative unsupervised
techniques to distill the teacher knowledge into a student agent. As opposed to TAsk-
Centered techniques, where the transfer of knowledge is horizontal, these methods are
based on a clear hierarchy and the student quality is directly submitted to the teacher’s,
which was less straightforward for TAsk-Centered framework. Nevertheless, TEacher-
Centered methods present several strong advantages. Notably, this form of transfer is
faster, and does not require student-environment interactions, thus lessening the cost of
transfer. Furthermore, TEacher-Centered methods embed more freedom in the objective
function design, ultimately offering a very wide application spectrum due to their enhanced
flexibility.

1.5 Manuscript outline

The remainder of the thesis is organized as follows: Chapter 2 provides an overview of
the concepts and theoretical notions required. It introduces the recent paradigm machine
learning and quickly focuses on deep learning. After laying out the mechanisms of neural
networks, it goes over the most popular deep learning applications. After an outline of
supervised learning, it examines thoroughly reinforcement learning as it is heavily relied
upon in the next chapters. Eventually, Chapter 2 looks at unsupervised learning and
knowledge representation by presenting attractive frameworks: Generative Adversarial
Networks and Variational AutoEncoders that are also used in the works presented in this
report.
Chapter 3 sums up current state of the art techniques, modern trends in transfer learning
and highlights their major advantages as well as their limitations, thus motivating the

CHAPTER 1. INTRODUCTION 7

proposed transfer-learning approaches.
In Chapter 4, the Universal Notice Network, a TAsk-Centered transfer learning approach
is introduced. This chapter details its main features and presents a series of experiments
in multiple use cases to underline the applicability of this method.
TEacher-Centered methods are at the center of Chapter 5, which develops the essential
aspects of the CoachGAN and Task-Specific Loss (TSL) methods and lays down the results
of various trials designed to underline the potentiality of these techniques.
Eventually, as could be expected, Chapter 6 sets up the stage for a thorough comparison
between all developed methods in this works, demonstrating multiple cases of transfer be-
tween a series of robots on a common task, ultimately leading to an analysis and conclusion
on transfer-learning in the control-tasks paradigms.

8 1.5. MANUSCRIPT OUTLINE

Chapter 2
Neural Networks and Learning
Frameworks: Theoretical Background

Contents
2.1 Machine Learning . 11
2.2 Neural Networks . 12

2.2.1 Neurons . 12
2.2.2 Feed forward neural networks 13

2.2.2.1 Layers . 14
2.2.2.2 Activation functions 15

2.2.3 Loss function and backpropagation for optimization 17
2.3 Supervised Learning . 19
2.4 Reinforcement Learning . 20

2.4.1 Principle and main concepts . 20
2.4.1.1 Observations . 21
2.4.1.2 Policy . 21
2.4.1.3 Actions . 21
2.4.1.4 Trajectory and episodes 21
2.4.1.5 Reward Function . 22
2.4.1.6 Reinforcement Learning Objective 23
2.4.1.7 Value functions . 23
2.4.1.8 Bellman Equations 23
2.4.1.9 Advantage function 24

2.4.2 Practical aspects of RL . 24
2.4.2.1 The Exploration-Exploitation trade-off 24
2.4.2.2 Credit assignment problem 25
2.4.2.3 Sample (In)efficiency 25

2.4.3 Modern RL algorithms . 25
2.4.3.1 Model-free and model-based RL 25
2.4.3.2 On-Policy vs. Off-Policy 26

2.4.4 Proximal Policy Optimization 27
2.5 Generative Adversarial Learning . 28

9

10

2.5.1 Principle . 28
2.5.2 Reaching optimality . 29
2.5.3 Common issues and failure cases 30

2.6 Knowledge representation . 31
2.6.1 Autoencoders . 31
2.6.2 VAE . 33

2.7 Conclusion . 34

CHAPTER 2. NEURAL NETWORKS AND LEARNING FRAMEWORKS:
THEORETICAL BACKGROUND 11

As introduced in the previous chapter, this work aims at presenting various techniques and
concepts for the transfer of knowledge between heterogeneously shaped agents. To do so,
it relies extensively on the numerical methods tied with neural networks. Consequently,
this chapter presents the theoretical background required for the work addressed in this
PhD thesis. It begins by introducing the general principle and motivation of Machine
Learning. Then it focuses on Neural Networks concepts and main architectures. Once
these building blocks are in place, it goes over the principal learning paradigms, super-
vised learning, reinforcement learning and finally unsupervised learning techniques and
knowledge representation.

2.1 Machine Learning

The idea of intelligent machines can be found in many cultures, some of them reporting
back to the antiquity, in the form of thought-capable artificial beings (113). Closer to
the modern times, various fictions explored this concept further, such as Frank Baum’s
Wizard of Oz, Mary Shelley’s Frankeinsten or Karel Capek’s R.U.R. (143). The field of
Artificial Intelligence draws from these ideas, but even more from the famous Computing
Machinery and Intelligence from Alan Turing (17; 138) in 1950.

Artificial Intelligence (AI) is the science that investigates the ability of a digital computer
or computer-controlled robot to perform tasks commonly associated with intelligent beings
(18). The beginnings of AI research are commonly associated with the Dartmouth 1956
computer science conference which reunited some of the brightest minds of the era and was
expected to lay out the main principles that would ultimately lead to reproduce the human
mind in silico. Initially, AI was dominated by rationalist ideas, which, inspired by thinkers
such as Descartes, Spinoza or Leibniz, consider that our perceptions are fallible and that
only reason can be a reliable guide. In practice, these ideas lead to knowledge engineering
implementations that require formal description of a problem. Despite impressive first
successes, such as the General Problem Solver or theA? algorithm (113), these approaches
proved inefficient at best for many complex tasks that can be considered intuitive, such
as recognizing a face or spoken words.

Machine Learning (ML), in contrast, is inspired by empiricists such as Locke, Berkeley
or Hume, which refute the idea that only reason is reliable and would preferably use
their perceptions to guide them in the world (23; 113). Consequently, ML can be loosely
defined as gathering knowledge from experience. Specifically, the main idea fueling the ML
paradigm is that, instead of hard-coding knowledge within an AI system, it is possible to
find patterns in raw data and consequently use these patterns to solve various challenging
tasks that would require tedious and particularly complex algorithms otherwise. As of
today, ML algorithms are able to segment images and generate new human faces with a
strong accuracy or even predict the best moves in Go (126; 127), a high-dimensional game
that remained out of reach for many years.

12 2.2. NEURAL NETWORKS

2.2 Neural Networks

Neural networks, also known as artificial neural networks, are the results of attemps to
find mathematical representations of how information was processed in biological systems.
It is currently a highly popular technique in machine learning that is used for pattern
recognition by extracting statistical features (8; 39). As hinted by their designation,
neural networks can be seen as a combination of single neurons, recalling their biological
counterpart. The next sections present an overview of these systems, going from a single
neuron as a computational unit to more complex architectures.

2.2.1 Neurons

In the field of deep learning, the term neuron n is commonly used to refer to a computa-
tional unit that takes as input a vector X ∈ RN , with N ∈ N+, and computes an output
value a ∈ R given a bias b ∈ R, a vector of weights W ∈ RN and an activation function
g. More precisely, the neuron computes the pre-activation value a as the weighted sum of
the input vector and adds a bias:

a = W TX + b =
N∑
i=1

wixi + b (2.1)

The result of the operation described in Equation 2.1 goes through an activation function
a that returns the final value o for this specific unit:

o = g(a) (2.2)

A neuron is considered deterministic if its output o is a function such as:

o = g(a) where g:R→ ε ⊂ R (2.3)

Similarly, a neuron is labelled stochastic if its output o is sampled from a density function
depending on the pre-activation function

o ∼ g(a) (2.4)

Figure 2.1 shows a scheme of this computational unit and the operation it performs.

FIG. 2.1. The neuron is the basic computational unit in a neural network.

CHAPTER 2. NEURAL NETWORKS AND LEARNING FRAMEWORKS:
THEORETICAL BACKGROUND 13

A neural network, also known as Multi-Layer Perceptron (MLP), is created when several
layers of multiple neuron units followed by non-linear activation functions are assembled.
In general, MLPs are able to learn complex mappings and, as demonstrated by the Uni-
versal Approximation Theorem, a neural network with three layers wide enough can in
theory approximate any function (19; 45; 47).

2.2.2 Feed forward neural networks

Modern neural network architectures are defined as Feed Forward Neural Networks (FFNN).
The word feedforward stems from the fact that information flows through the various lay-
ers, producing intermediate representations to be used by the next layer of perceptrons,
until the final prediction. More formally, it is possible to describe these architectures as a
directed acyclic (no cycle and no self-connections) graph that composes several functions.
These functions are in fact each of the network layers, usually referred to as input, hidden
and output, for the first layer, the intermediate layers and the last layer respectively, see
Figure 2.2. Beside FFNN, there exists alternative designs, such as Recurrent Neural Net-
work (RNN) that prove useful when considering time-series processing. These networks
usually rely on specific neurons to function, such as the Long Short Term Memory (LSTM)
and will not be detailed in this report.

FIG. 2.2. Feedforward neural network: vectors are sequentially processed by each layer,
first applying the layer weight parameters and then the non-linearity activation function.
The last layer returns a value that is usually used to compute the loss.

Figure 2.2 represents a simple feedforward neural network architecture. Specifically, the
network displayed contains 3 units in its input layer (yellow), 4 in its unique hidden layer
(green) and finally 1 in the output layer (red).

14 2.2. NEURAL NETWORKS

(a) Fully connected layer. (b) Partially connected layer.

FIG. 2.3. Layer connections.

2.2.2.1 Layers

The neural network displayed in Figure 2.3a has only fully-connected layers. Recently, it
has become more common to create architectures relying on partially connected layers. In
particular, the Convolutional Neural Networks (CNN) architecture that uses convolutional
kernels as trainable weights has generated considerable interest in recent years. Differences
between these layers are displayed in Figure 2.3.
A layer is called fully-connected if each unit of a given layer l is connected to each unit of
the previous layer l − 1. In this case, the activations can be computed as:

∀i ∈ {1...Nl}, ali =
Nl−1∑
j=1

wli,jo
l
j + bli (2.5)

and the outputs are given by:

∀i ∈ {1...Nl}, oli = gl(ali) (2.6)

where Nl is the number of units in the layer l, wli,j being the weight between the jth
neuron of the layer l − 1 and the ith neuron of the layer l and bli is the bias of the ith
neuron in layer l.
In contrast, a layer l is considered partially connected if it contains at least one unit that
is not connected to the previous layer l − 1. It is possible to devise the activation and
output of a partially-connected layer by setting to 0 the connection weight between two
unconnected neurons. A particularly common instance of partially-connected layer is the
convolutional layer, most commonly used in image processing. Beside the obvious decrease
in computational load when relying on partially connected layers, convolutional layers also
offer, by design, a larger perception field, which allows them to detect hierarchical patterns,

CHAPTER 2. NEURAL NETWORKS AND LEARNING FRAMEWORKS:
THEORETICAL BACKGROUND 15

thus justifying their usage when considering high-dimensional structured inputs.

2.2.2.2 Activation functions

The pattern recognition ability of neural networks is rooted in the presence of non-linear
activation functions. Indeed, a neural network with many layers featuring solely linear
activation functions is equivalent to a single-layer linear neural network, which limits its
expressivity and flexibility (39). This section introduces the most common activation
functions in recent literature.

Sigmoid

The sigmoid function was particularly popular in the early days of neural networks due
to the fact that it recalls the behaviour of a biological neuron. It outputs values ranging
from 0 to 1 and is a monotonically increasing function. Mathematically, it can be put as:

gsigmoid(x) = σ(x) = (1 + e−x)−1 (2.7)

One of the main drawbacks of this activation function is that it saturates for considerable
values and, as can be seen in Figure 2.4, its derivative never exceeds 0.25, which leads to
shrinking gradient signals when several layers using this activation function are composed.
This consequently prevents the first layers of a neural network to be efficiently modified
and thus, to learn. This issue is common when training neural networks and is usually
referred to as gradient vanishing. The Sigmoid function is nevertheless still in usage,
particularly at the end of neural networks with a single output, where the resulting value
can be understood as probabilities.

FIG. 2.4. The sigmoid function and its derivative.

16 2.2. NEURAL NETWORKS

TanH

The hyperbolic tangent, or TanH, activation function closely resembles the sigmoid func-
tion but presents a larger range of [−1, 1] and is symmetric with respect to the origin.
While it is also liable to saturate to important values, it nevertheless provides more gradi-
ents than the sigmoid, thus being less likely to cause gradient vanishing. This non-linearity
is particularly frequent in reinforcement learning architectures. Mathematically, it can be
described by:

gtanh = e2x − 1
e2x + 1 (2.8)

Figure 2.5 displays the hyperbolic tangent and its derivative.

FIG. 2.5. The TanH function and its derivative.

ReLU

The Rectified Linear Unit (ReLU) function, is a linear function for the positive domain
but returns 0 when its input is negative. Consequently, the gradient for this function
is either 0 or 1, effectively preventing the gradient vanishing issue, as shown in Figure
2.6. It is computationally efficient and has gained a lot of popularity over the past years.
The fact that this function does not saturate improves networks performances in terms of
convergence rate and accuracy for discriminative settings (39). On the downside, it has
been shown that ReLU activation function can kill neurons by pushing them too far in the
negative region during the backpropagation operation. Specifically, this means that the
neuron’s weight implies that it will always return an activation value of 0, which in turn
yields a null gradient, making the unit unresponsive for the rest of the training process.
Mathematically, we have:

CHAPTER 2. NEURAL NETWORKS AND LEARNING FRAMEWORKS:
THEORETICAL BACKGROUND 17

FIG. 2.6. The ReLU function and its derivative.

gReLU = max(0, x) (2.9)

2.2.3 Loss function and backpropagation for optimization

Deep learning models are usually constructed and trained to perform as well as possible in
a given specific task. For a single task, their performance J(W) depends entirely on their
vector of parameters W . Consequently, two models with same architecture will exhibit
different accuracies if their parameters are distinct. As such, the training process of a
neural network means finding a set of parameters W that will reduce the model error that
is usually computed through a loss function L . While multiple training methods are still
currently explored by the community, we focus here on the stochastic gradient descent,
one of the most popular training procedure.
In a supervised learning context, and for a given set of input x and the expected vector
y, the model m predicts an output vector ŷ = m(x). The error can be computed by
the evaluation of the distance between the model prediction and the expected value e =
L (y, ŷ). The model parameters w are then affected by the error gradients resulting from
the cost function. The backpropagation algorithm allows to affect to each unit a gradient
correction proportional to its participation in the average loss (39; 8). A common error
function is the mean square error. In this case:

E(X, θ) = 1
2N

N∑
i=1

(y − ŷ)2 (2.10)

18 2.2. NEURAL NETWORKS

where y is the target value and ŷ is the neural network prediction. As explained above,
this error should be minimized with respect to the network’s weights. For the N examples,
this can be expressed as:

∂E(X, θ)
∂wki,j

= 1
N

N∑
d=1

∂

∂wki,j

(1
2(yd − ŷd)2

)
= 1
N

N∑
d=1

∂Ed
∂wki,j

(2.11)

Using the chain rule, it is possible to write the error partial derivative:

∂E

∂wki,j
= ∂E

∂akj

∂akj
∂wki,j

(2.12)

where akj is the activation value of neuron j in layer k, before the activation function, as
detailled in Equation 2.1. The first term in Equation 2.12 called the error, is denoted:

δkj = ∂E

∂akj
(2.13)

Using the activation value calculation, the second term in Equation 2.12 can be expressed
as:

∂akj
∂wki,j

= ∂

∂wki,j

(rk−1∑
l=0

wkl,jo
k−1
l

)
= ok−1 (2.14)

Consequently, the partial derivative of the error function E with respect to a weight wki,j
is the product between the error term of neuron j in layer k and the output of node i from
the previous layer.

∂E

∂wki,j
= δkj o

k−1
i (2.15)

The error term computation depends on the neuron position in the network and starts
from the final layer m. It can be expressed as:

E = 1
2(y − ŷ)2 = 1

2(y − go(am1))2 (2.16)

where g0(x) is the activation function for the output layer. With the chain rule, the partial
derivative is:

δm1 = (go(am1)− y)g′o(am1) = (ŷ − y)g′o(am1) (2.17)

Finally, the partial derivative of the error function E with respect to a weight in the final
layer wmi,j is:

∂E

∂wmi,j
= δm1 o

m−1
i = (ŷ − y)g′0(am1)om−1

i (2.18)

CHAPTER 2. NEURAL NETWORKS AND LEARNING FRAMEWORKS:
THEORETICAL BACKGROUND 19

For the hidden layers, it is necessary to rely on the chain rule again:

δkj = ∂E

∂akj
=

rk+1∑
l=1

∂E

∂ak+1
l

∂ak+1
l

∂akj
(2.19)

Using the error value from the next layer enables to rewrite the equation as:

δkj =
rk+1∑
l=1

δk+1
j

∂ak+1
l

∂akj
(2.20)

With the activation ak+1
l being ak+1

l =
∑rk

j=1w
k+1
j,l g

(
akj

)
, the second term in Equation

2.20 can be put as:

δkj =
rk+1∑
l=1

δk+1
l wk+1

j,l g′(akj) = g′(akj)
rk+1∑
l=1

δk+1
l wk+1

j,l (2.21)

Finally, by putting it all these elements together, the partial derivative error E with respect
to a weight located in the hidden layers can be expressed as:

∂E

∂wki,j
= δkj o

k−1
i = g′(akj)ok−1

i

rk+1∑
l=1

wk+1
j,l δk+1

l (2.22)

2.3 Supervised Learning

Supervised learning is the most straightforward approach when using deep learning and
neural networks. This technique has been applied to a very wide range of tasks, featur-
ing spam detection, image classification, video frame interpolation, system identification
and regression tasks. Despite requiring a considerable volume of examples to be success-
ful, recent supervised learning algorithms have improved the state-of-the-art in numerous
challenging tasks (39).

In practice, it requires a dataset that relates input and output pairs, generally denoted
(X,Y) and consists in finding statistical relationship between these elements. Specifi-
cally, with xi a given input example in the dataset, the neural network f predicts a label
ŷi = f(xi) which is compared to the dataset label and returns an error for this example.
Mathematically:

ei = D(ŷi, yi) (2.23)

where D is a function that evaluates the distance between the predicted label and the real
target. This error is then averaged with other examples from the dataset, to compute the
neural network loss and thus the optimization gradients.

20 2.4. REINFORCEMENT LEARNING

2.4 Reinforcement Learning

Reinforcement Learning (RL) algorithms are a class of machine learning algorithms that
adresses the problem of optimal decisions over time (70; 125; 131). Specifically, it features
an agent tasked to select actions in an environment in order to maximize a sum of rewards
along the time it interacts with its world. RL is a particularly well-suited way to tackle
robotics challenges as it is able to propose successful control policies without having to
analytically define a model of the dynamics, which often proves to be challenging.

2.4.1 Principle and main concepts

Reinforcement Learning is a deep learning branch that, instead of training a model on
a fixed dataset, features an agent interacting with an environment, which has also its
own dynamics. Furthermore, the environment provides the agent with observations and
rewards. A simplified view of this process is displayed Figure 2.7.
The agent’s goal is to maximize the cumulative reward, also called return. While doing
so, the agent learns how to make decisions for objectives defined by the reward function.
Formally, environments are Markov Decision Processes (MDP), which are a 5-tuple <
S ,A ,R,P, ρ0 > with:

• S is the set of all valid states,

• A is the set of all valid actions,

• R : S ×A ×S → R is the reward function

• S ×A →P(s) is the transition probability function that estimates the probability
to reach a certain state based on the previous state and the action: P (s′|s, a), with
s′ being the next state, s, a the state and the action respectively.

• ρ0 the start-state distribution

Furthermore, a MDP must satisfy the Markov property which states that a transition
depends only on the most recent state and action, setting the influence of previous states
to zero.

FIG. 2.7. RL principle.

CHAPTER 2. NEURAL NETWORKS AND LEARNING FRAMEWORKS:
THEORETICAL BACKGROUND 21

2.4.1.1 Observations

The environment/world can be described by a state s ∈ S . Depending on the environment
considered, the observation o ⊂ s ∈ S that is provided to the agent is a subset of s,
potentially omitting information. Most of the time, states and observations are real-
valued vectors or higher-order tensors (RGB images, for instance). The reception of an
observation precedes the agent’s action selection.

2.4.1.2 Policy

The logic used by an agent to make decisions (that is, to select actions) is referred to as a
policy. As an analogy, it can be seen as the agent’s brain. In usual deep RL framework,
these policies rely on parameters, such as the weights of the agent’s neural network, often
denoted as θ. They can either be deterministic, see Equation 2.24, or stochastic, see
Equation 2.25.

at = µθ(st) (2.24)

at ∼ πθ(·|st) (2.25)

Stochastic policies commonly belong to categorical policies or diagonal Gaussian policies,
depending on the action space. Categorical policies are affiliated with discrete action
spaces, while Gaussian policies are used whenever the environment features a continuous
action space.

2.4.1.3 Actions

The state observation enables the agent to select an action via its current policy. The
action chosen by the agent can potentially affect and alter the environment it interacts
with. As different environment would provide different observations, they similarly allow
different actions. As such, actions can be real-valued vectors, for continuous action spaces
or indices, for discrete action spaces. In RL, entire classes of algorithms can only be applied
to one setting or another, underlining the importance of the action-space description.

2.4.1.4 Trajectory and episodes

Most of the time, agents will alternate between state observation and action selection. As
such, in the RL framework, a trajectory τ defines a sequence of observations or states
provided by the environment and actions from the agent.

τ = {(s0, a0), (s1, a1), ..., (sn, an)}

The first state is sampled from the start-state distribution ρ0:

s0 = ρ0(·)

22 2.4. REINFORCEMENT LEARNING

State transition depends both on the environment, which can have a stochastic part, and
the most recent agent action, as required by MDP. Thus, for a deterministic transition,
we have:

st+1 = f(st, at)

while for a stochastic, one transition can be written:

st+1 ∼ P (·|st, at)

In RL, an episode is a trajectory that ends with a termination state: a termination state
is a state that calls for a reset of the environment. It can be the goal state (reaching a
specific point in space, for instance) or an absorption state (the agent pushed the object
it was supposed to grasp out of its reach). It is also possible to consider that an episode
is over after a given number of steps.

2.4.1.5 Reward Function

The action selected by the agent after state observation is usually met by an evaluation
from the environment: the reward. The reward function R holds a paramount importance
in RL, as it is the main tool for shaping the agent behaviour. Formally, the reward function
is a real-valued function R:S × A ×S → R that evaluates an action taken in a given
state and its effect. That is:

rt = R(st, at, st+1)

Reward functions revet various forms. Specifically, two main classes of rewards can be
referenced:

• Sparse rewards: Also known as impulse rewards, this class of functions affects a
reward rg to a small area of the explorable space, while most of the environment
returns a reward rl with rg >> rl. A classic example of sparse rewards is the Atari
Pong environment (81) where a positive reward is only given to the agent when it
scores, and inversely a negative reward is perceived when the agent lets the ball go
through. Otherwise, the reward is null

• Shaped rewards: As opposed to a sparse reward, a shaped reward provides a learning
signal in the majority of the explorable space, offering a gradient of reward to the
agent that may sometimes ease the learning phase. A reward inversely proportional
to the distance with the target point in a robotic reaching task is a common usage
of shaped rewards.

Reward functions are not necessarily linear nor continue, thus giving an important flex-
ibility to shape the agent behaviour. The sum of rewards over an episode is called the
return.

CHAPTER 2. NEURAL NETWORKS AND LEARNING FRAMEWORKS:
THEORETICAL BACKGROUND 23

2.4.1.6 Reinforcement Learning Objective

In RL, the ultimate goal is to train a policy π that maximizes the expected return J(π)
in an environment, also known as the performance, which corresponds to the average
cumulative reward over a certain number of episodes. The expected return can be written
as:

J(π) =
∫
τ
P (τ |π)R(τ) = Eτ∼π[R(τ)] (2.26)

where P (τ |π) is the probability of a T−steps trajectory τ under policy π and can be
written as:

P (τ |π) =
T−1∏
t=0

P (st+1|st, at)π(at|st) (2.27)

Consequently, the optimal policy π∗ being the one that maximizes J(π), it can be put as:

π∗ = arg max
π

J(π) (2.28)

2.4.1.7 Value functions

To train the agent policy and improve the global performance, most RL algorithms embed
a value function (131; 120; 122). Value functions are used to represent the desirability of
a state. There exist several main value functions:
On-policy Value Function: V π(s), in this case, the value corresponds to the expected
return starting from state s and using policy π until episode termination.

V π(s) = Eτ∼π[R(τ)|s0 = s] (2.29)

On-policy Action-Value Function: Qπ(s, a), also known as quality-function, represents
the expected return starting from state s and taking action a and following the policy π
afterwards:

Qπ(s, a) = Eτ∼π[R(τ)|s0 = s, a0 = a] (2.30)

It is then possible to define the optimal value function and the optimal action value
function which are similar to the previously defined functions but where the policy is the
optimal policy π∗. Respectively, we have:

V ∗(s) = Eτ∼π∗ [R(τ)|s0 = s] (2.31)

Q∗(s, a) = Eτ∼π∗ [R(τ)|s0 = s, a0 = a] (2.32)

2.4.1.8 Bellman Equations

The four equations introduced in Section 2.4.1.7 are tied with a set of equations called the
Bellman equations (5) that state that the value of a starting state can be computed
as the expected reward of this state plus the next state value. Formally, this can

24 2.4. REINFORCEMENT LEARNING

be written for both the value function as well as the action-value function as:

V π(s) = Ea∼π,s′∼P [r(s, a) + γV π(s′)] (2.33)

where the discount factor γ ∈ [0, 1] indicates weights the importance of future rewards.
The closer the discount factor γ is to 1, the more significant future rewards are. (131)

Qπ(s, a) = Es′∼P [r(s, a) + γEa′∼πQπ(s′, a′)] (2.34)

where s′ ∼ P stands for s′ ∼ P (·|s, a) that indicates that the next state is sampled from
the environment’s transition probability. Similarly, a ∼ π and a′ ∼ π mean that the action
and next actions are sampled from the policy, based on the state a ∼ π(·|s) or next state
s′, a′ ∼ π(·|s′), respectively.
Bellman equations can be adapted for the optimal value functions as well:

V ∗(s) = max
a

Es′∼P [r(s, a) + γV ∗(s′)] (2.35)

Q∗(s, a) = Es′∼P [r(s, a) + γmax
a′

Q∗(s′, a′)] (2.36)

2.4.1.9 Advantage function

The advantage function is a way to discriminate useful actions. Mathematically, the
advantage corresponds to the subtraction of the value function V from the action-value
function Q.

Aπ(s, a) = Qπ(s, a)− V π(s) (2.37)

As can be deduced from this relation, an action better than the average would result in a
positive advantage. This notion is at the center of various recent RL algorithms (121)

2.4.2 Practical aspects of RL

2.4.2.1 The Exploration-Exploitation trade-off

Usually, a RL agent has initially no specific knowledge about the environment it must
interact with. In practice, this is represented by randomly initialized parameters for a
neural network or a uniform state for a tabular approach. The exploration of the environ-
ment, through a trial-and-error process, is a way for the agent to gather knowledge and
understand how to reach highly valuable states. Indeed, the more the agent knows about
the environment, the quicker it can optimize the policy reflecting its behaviour. How-
ever, due to the potentially infinite size of a wide range of environments, pure exploration
can not be considered as an efficient resources usage and is likely to confuse the agent.
Similarly, systematic exploitation of available knowledge (selecting the current supposed
best action) may result in sub-optimal or poor performance overall. Consequently, a suc-
cessful RL algorithm must take into account these notions and find a trade-off between

CHAPTER 2. NEURAL NETWORKS AND LEARNING FRAMEWORKS:
THEORETICAL BACKGROUND 25

the two attitudes and an important quantity of works was devoted to this critical issue
(4; 26; 103; 131)

2.4.2.2 Credit assignment problem

The credit-assignment problem is a frequently encountered issue in environment with
sparse rewards. Specifically, as the agent seldom receives a reward signal, it is most of the
time at the end of a trajectory. Consequently, a full sequence of states and actions was
involved in order to get to the state that provided the reward. In these cases, it becomes
difficult to effectively discriminate between useful and detrimental actions (81; 121). There
exist numerous examples of such environments, such as the games of Chess or Go, or
simulated environments like Pong, where the reward function sends a signal only on episode
termination. In those, as the episode trajectories can frequently exceed several dozens of
transitions, the credit assignment problem becomes obvious.

2.4.2.3 Sample (In)efficiency

While RL algorithms have drastically improved recently, training an efficient policy in the
RL framework still requires a very large quantity of trajectories. In the widely recognized
DQN paper (82), the trained agent never reaches 50% of human performance even after
200 million frames, which corresponds to over 900 hours of practice in real-time. More
recently, the impressive results of OpenAI and in the Hide-and-Seek environment were
obtained after several billions of frames. However, for simpler environments, it is still
possible to train acceptable policies within an reasonable time frame. Along with potential
cost of damaged robots during training, it is one of the main motivations for simulated
environments.

2.4.3 Modern RL algorithms

This section introduces practical implementations of recent RL algorithms. Starting from
the broad perspective of model-free or model-based approaches, it progressively narrows
its focus until introducing the main RL algorithm used in this work: Proximal Policy
Optimization, see Figure 2.8.

2.4.3.1 Model-free and model-based RL

The question of using model-free or model-based algorithms can be formulated as: Does
the agent have access to the environment model ? This has heavy implications
as having access to the environment model implies that the agent is aware of the func-
tions governing the states transitions as well as the rewards. This hypothesis has practical
upsides, as it allows the agent to plan its actions ahead, exploring various choices and
weighting their consequences. A recent example of successful application of model-based
techniques is AlphaGo(126; 127). However, in practice, a reliable environment model is
seldom available, thus hindering the performances of the agent when used in the real

26 2.4. REINFORCEMENT LEARNING

FIG. 2.8. A taxonomy of RL algorithms.

settings. An alternative approach is to learn the environment dynamics. In this configu-
ration, agents usually alternate between learning the environment model and improving
their policy. Nevertheless, this is likely to result in a biased model that is prone to be ex-
ploited by the agent. Although it can lead to satisfying results in simulated environments,
it is often correlated with poor behavior once deployed to the real target environments.
Techniques that renounce in using the environment dynamics are classified as model-free
methods. They are currently very popular and widely used in the literature and, as the
rest of this report relies on this class of methods, model-based will not be detailed further.

2.4.3.2 On-Policy vs. Off-Policy

Among model-free algorithms, another crucial branching divides again the algorithmic
pool into two notable groups: on-policy or off-policy algorithms. On-policy algorithms
optimize the parameters θ of a policy πθ by performing gradient ascent on the gradient of
their performance J(πθ) or an approximation of it. Each update (optimization) relies on
data collected by the latest policy version, which partially explains the sample inefficiency
of these techniques. On the contrary, off-policy methods learn an approximator of action-
values Qθ(s, a) and their updates rely on the Bellman equation. Consequently, they do
not require that the data provided for the update be generated by the latest policy. This
presents various advantages, such as having the possibility to insert expert trajectories or
human examples within the data used to train the policy. While this idea is appealing, as
is the fact that off-policy algorithms are more sample efficient, they are also more brittle as
they do not optimize directly for the performance (given that they optimize for Qθ(s, a)).
In contrast, on-policy methods are more stable and reliable (as they directly optimize for
the performance J(πθ)). The main RL algorithm used in this report is PPO and is an
on-policy method.

CHAPTER 2. NEURAL NETWORKS AND LEARNING FRAMEWORKS:
THEORETICAL BACKGROUND 27

2.4.4 Proximal Policy Optimization

Proximal Policy Optimization (PPO) is an on-policy, actor-critic with trust-region RL
algorithm (120) introduced in 2017 (122). Despite its relative simplicity, this method is
robust, scalable and reliable and has been at the center of various impressive RL achieve-
ments in recent works (100).

On-policy updates As explained in section 2.4.3.2, the goal is to maximize the agent
performance that equates with maximizing the expected return:

J(πθ) = Eτ∼πθ [R(τ)] (2.38)

The gradient ascent update can be written:

θk+1 = θk + α∇θJ(πθ)|θk (2.39)

where ∇θJ(πθ) is the policy gradient, θk the policy parametrization at step k and α is
the learning rate. To compute the policy gradient, an analytical gradient of the policy
performance is necessary. It can be written as:

∇θJ(πθ) = Eτ∼πθ [∇θ log πθ(at|st)R(τ)] (2.40)

The updates resulting from Equation 2.40 increase the probability of an action rewarded
positively, while discouraging the agent to select actions that were met with a negative
reward.

Actor-Critic As can be seen in Equation 2.40, the probability to select an action is
directly dependent on the sum of rewards obtained in the trajectory. In practice, however,
this signal may be noisy and present an important variance. Actor-critic approaches
were designed to mitigate the noise from the reward, leading to a faster and more robust
training. Specifically, they rely on an additional network parametrized by weights φ, called
the critic, that estimates the value Vφ(s) of each state. This scalar is then subtracted from
the reward, allowing the action to be evaluated on whether or not it yields a superior
return than the expected. Consequently, Equation 2.40 becomes:

∇θJ(πθ) = Eτ∼πθ [∇θ log πθ(at|st)(R(τ)− Vφ(st))] (2.41)

In these methods, the critic is also trained and thus provides only an approximation of
the state value. The most common loss function for the value function is:

φk = arg min
φ

Est,Rt∼πk [Vφ(st)−Rt] (2.42)

where the discounted return can be expressed as Rt =
∑N
i=t riγ

i−t

28 2.5. GENERATIVE ADVERSARIAL LEARNING

Proximal Policy Optimization The PPO algorithm was designed to prevent a policy
from taking too important update steps that harm the performance, sometimes beyond
recovery, while still going as far as possible in the gradient ascent. To do so, it relies on
the notion of trust-regions. Trust-regions were introduced in (120) and rely on gradient
clipping in the objective function to avoid moving the new policy too far from the previous
one. The PPO objective function can be written as:

L(s, a, θold, θ) = min(rt(θ)Aπθold (s, a), clip(rt(θ), 1− ε, 1 + ε)Aπθk (s, a)) (2.43)

where rt(θ) is the ratio of the probabilities between the previous policy and the current
one for a given pair of state and action. This ratio can be expressed as:

ρt(θ) = πθ(a|s)
πθold(s, a) (2.44)

and the clip function ensures that the ratio stays in the [1− ε, 1 + ε]range

2.5 Generative Adversarial Learning

RL algorithms represent the go-to approach when considering control environments and
are extensively used in the Universal Notice Network method presented in Chapter 4.
Nevertheless, the unsupervised learning framework offers interesting concepts and some
approaches can be repurposed in a context that is beyond their usual scope. This part
introduces the Generative Adversarial Learning (GAN) (40) framework, an unsupervised
generative modelling technique on which the CoachGAN transfer technique (86), one of
our main contributions, see Section 5.1, relies heavily.

2.5.1 Principle

The concept of Generative Adversarial Networks (GAN) is rooted in Information The-
ory and generative modelling. In this paradigm, the goal is to estimate the underlying
data probability Pdata of a given dataset. As opposed to discriminative modelling which
objective is to infer labels y from data samples, the optimization of a generative model
yields a function able to generate unseen samples from a distribution matching the training
dataset, as shown in Figure 2.9. Within the GAN framework, this process is implemented
through a competitive setting involving two functions:

• a generator that creates samples

• a discriminator: an adversarial function that evaluates the samples

In this setting, the two networks share an objective function and are jointly trained using
the following minimax game.

min
θ

max
φ

V (Gθ, Dφ) = Ex∼Pdata [logDφ(x)] + Eθz∼Pz [log(1−Dφ(Gθ(z)))] (2.45)

CHAPTER 2. NEURAL NETWORKS AND LEARNING FRAMEWORKS:
THEORETICAL BACKGROUND 29

FIG. 2.9. GAN principle.

where Gθ is the generator, using a vector of parameters θ and Dφ is the discriminator re-
lying on weights φ, Pdata is the training dataset and Pz is a probability distribution for the
latent variable z used by the generator to produce samples. This latent variable is, in prac-
tice, a noise vector sampled from a uniform or unit Gaussian distribution and then mapped
to samples by the generator. In return, the discriminator D assigns a scalar value to the
sample Gθ(z) representing how likely this sample belongs to the training distribution, thus
acting as an adversarial classifier. Formally, Equation 2.45 states that the optimal dis-
criminator must be able to perfectly distinguish between synthetic (generator-produced)
samples and real samples from the training dataset. In practice means to respectively
affect a value of Dφ(Gθ(z)) = 0 to synthetic samples and a value of Dφ(x) = 1 to real
samples. On the other hand, the optimal generator should be able to confuse the dis-
criminator and produce synthetic samples of high likelihood with respect to the dataset
that would systematically be classified as real by the discriminator. This adversarial setup
consequently provides a suitable way to use each model to train the other one (i.e: the
discriminator is penalized for each synthetic sample classified as real and vice-versa). The
discriminator and generator loss function can respectively be expressed as:

LDφ = 1
m

m∑
i=1

[− log(Dφ(xi))− log(1−Dφ(Gθ(zi)))] (2.46)

LGθ = 1
m

m∑
i=1

log(1−Dφ(Gθ(zi))) (2.47)

2.5.2 Reaching optimality

As introduced in Equation 2.45, for a fixed generator Gθ, the discriminator does a binary
classification. Practically, it should assign a value of 1 to data from the training set
x ∼ Pdata and a value of 0 to samples coming from the generator x ∼ PGθ . Thus, for a

30 2.5. GENERATIVE ADVERSARIAL LEARNING

given sample x, the optimal discriminator can be written:

D∗G(x) = Pdata(x)
Pdata(x) + PGθ(x) (2.48)

If the generator has perfectly captured the training distribution, then the optimal dis-
criminator will assign a value of 0.5 to the samples, which equates to randomly guessing
whether the sample is real or synthetic. On the other hand, optimizing the generator based
on the optimal discriminator D∗G evaluations is known as minimizing the Jensen-Shannon
(JS) divergence between the training distribution and the synthetic distribution:

2DJS(Pdata||PG)− log(2) (2.49)

While theoretically sound, this approach is debatable in practice due to the models ar-
chitecture. Specifically, as the discriminator outputs probabilities (as its last activation
function is a sigmoid), a highly confident discriminator results in small gradients that fail
to give a proper improvement signal to the generator. Consequently, the adverserial pair
is commonly trained jointly with the optimization process focusing alternatively on gen-
erator and discriminator. Several recent works were dedicated to these issues and propose
alternative architectures that alleviate this problem.

2.5.3 Common issues and failure cases

FIG. 2.10. Mode collapse during GAN training (78). The first row shows samples of a
rather successful generator as the quality gradually increase as well as the diversity (each
MNIST class is represented). The lower row displays an example of Mode Collapse where
the generator focuses on a single point in the target space even though various noise vectors
are provided.

Due to the adversarial part and the minimax aspect of the loss function, training GANs
is notoriously difficult. While potentially affected by the usual issues of neural networks,
generative adversarial networks are additionally subject to specific problems. Mainly :

CHAPTER 2. NEURAL NETWORKS AND LEARNING FRAMEWORKS:
THEORETICAL BACKGROUND 31

• Unstability: As the existence of an equilibrium is not guaranteed, it is possible that
the discriminator and the generator start a cycle of periodic domination. A symptom
of this can be a sinus-like loss for both models and regular drop in generator samples.
Carefully tuned hyper-parameters and model architectures can mitigate this issue.

• Mode collapse: In these cases, the generator fails to diversify its samples, basically
mapping all latent vectors to a single point or a small area of the output space,
which is considered real by the discriminator. Such a phenomenon is represented in
Figure 2.10.

• Discriminator domination: In some cases, the discriminator initialization allows it
to detect most of synthetic samples early in training, resulting in an increase in
discriminator confidence that diminishes the gradients available for the generator.

• Overfitting: The generator is only able to generate samples that too much resemble
the training set.

Despite its extended representative and modelling power, the GAN framework offers little
straightforward process to control the latent space. Various works have been able to iden-
tify the main latent space axes by examining large quantities of samples and determining
the transformation vector between two elements. Alternative modelling approaches, such
as the Variational AutoEncoder, the main concept of the Task-Specific Loss (TSL), see
Section 5.2, constraints the latent space to be more manageable, which in turn endows
the user with a closer supervision on the model output.

2.6 Knowledge representation

For a large class of problems, finding the good set of features to represent the datapoint
constitutes in itself an important part of the solution. However, it is most of the time
unclear how to find these features. For instance, let us consider the problem of finding a
human face in a picture. One could consider that a face has been found if a nose and two
eyes can be detected. Nevertheless, it is not straightforward to provide the description
of such a feature in pixel space, as eyes and nose can have various shapes, size, and
color. Although it is manageable to define space boundaries for these elements, it is also
necessary to deal with various lighting setting, shadows and element occlusion (due to face
orientation, for example). A common approach in modern machine learning is to assign
the feature representation to the model as well as the discovery of the relation between
the input and output. Among the various architectures that implement this concept, the
AutoEncoder (AE) is the most notorious instance (39; 8).

2.6.1 Autoencoders

Autoencoders are neural networks that are trained to learn to copy the input they are
presented. While this may seem like a trivial task that could be accomplished with an

32 2.6. KNOWLEDGE REPRESENTATION

identity function, autoencoders present a more sophisticated architecture that gives them
interesting properties. Specifically, autoencoders can be decomposed into two functions
with well established purposes:

• an encoder fθ, parametrized by weights θ, that projects the input into a small
abstract representation, also called the code h = fθ(x)

• a decoder gφ that reconstructs the code in the initial space x̂ = gφ(h)

A usual autoencoder architecture is shown in Figure 2.11.

FIG. 2.11. An autoencoder architecture.

As mentioned, if the model were to learn an identity function, its usefulness would be
questionnable. Consequently, the code created by the encoder is usually a vector which
dimensionality is importantly lower than the initial input. Thus, the decoder must retrieve
the initial signal with compressed information. This forces the whole model to learn which
features should be prioritized. Consequently, the code produced by the encoder captures
the most salient parameters of the training set.
The objective function for this class of models aims at minimizing the distance between
the initial input and its reconstructed version. Formally:

L(θ, φ) = ||x− x̂|| = ||x− gφ(fθ(x))|| (2.50)

While the straightforward vanilla autoencoder approach may appear to have limited use
cases, despite having the properties of a non-linear PCA (Principal Component Analysis),
several recent works have applied AE variants to a large set of cases, demonstrating the
architecture usefulness. For example, the denoising AE proposes to replace the initial
input x with corrupted data and train the model to reconstruct the noise-free version:

LDAE = ||x− gφ(fθ(x))|| (2.51)

where xn = x+ n ∼ N (µ, σ) is the corrupted version of the input.
Other more recent works leverage the code representational capacity to repurpose AE
architecture for generative modelling

CHAPTER 2. NEURAL NETWORKS AND LEARNING FRAMEWORKS:
THEORETICAL BACKGROUND 33

2.6.2 VAE

Variational Autoencoders (62; 39)are an AutoEncoder alternative designed for generative
modelling. In practice, this approach presents a crucial modification with the vanilla
AutoEncoder. Namely, they are designed so that the constructed latent space is continu-
ous, allowing samples drawn from the code distribution to produce realistic outputs once
decoded.
In practice, the AE architecture is also modified to transform the previously deterministic
encoder into a stochastic version. Specifically, the last encoder layer that was ultimately
projecting the processed inputs to the latent space is replaced by a two-headed layer that
outputs instead a vector of means µ and a vector of standard deviations σ, shown in Figure
2.12.

FIG. 2.12. From AE to VAE: a probabilistic encoder projects the input in a Gaussian
constrained latent space.

Consequently, the code is not the result of a series of deterministic operations but is
rather sampled from a normal distribution governed by the parameters generated by the
encoder. This means that even for a same input, the code is likely to be slightly different
for each pass, resulting in a probable area instead of a single point for the reconstruction.
As a result, this effectively trains the decoder to be less sensitive and generalizes to latent
areas instead of specific encodings as it is exposed to more variations. However, relying
on the reconstruction loss alone with the sampling mechanism is not enough to create an
interpolable latent space. Indeed, as there is no limit nor constraint on the mean vector µ
and the standard deviation vector σ, the encoder is likely to cluster the different classes,
generating distribution parameters that are very far in the latent space, thus creating a
sparse latent space.
To prevent this, the loss function for VAE introduces an additional term that aims at
regularizing the probability distribution of the code:

L(θ, φ) = −Ez∼fθ(z|x)[log gφ(x|z)]−KL(fθ(z|x)||p(z)) (2.52)

In the expression in Equation 2.52, the first term is the reconstruction loss. It is the expec-
tation of the negative log-likelihood of a datapoint x. This value depends on the encoder
distribution over the representation fθ(z|x). The regularization on the encoder distribu-

34 2.7. CONCLUSION

tion is enforced by the second term. It introduces the Kullback–Leibler divergence (KL
divergence) (64) within the objective function. The KL function computes the divergence
between two probability distributions. Hence, reducing the KL term means ensuring that
the encoder outputs codes that are likely under the target distribution. In practice, the
target distribution is usually the unit-centered Gaussian distribution N (0, 1) because it
offers a tractable expression for the KL divergence as well as an easy way to sample once
training is over. An example of code distribution on the classic MNIST handwritten digits
dataset using the various losses involved in VAE training is shown in Figure 2.13.

FIG. 2.13. Code distribution for VAE on the MNIST dataset.

Despite their simplicity, VAE have recently been in the center of a large spectrum of
generative modelling works, spanning from images, synthetic text or even music. They
are generally more reliable than their GAN counterparts, but they tend to produce blurrier
output, due to the sampling mechanism trade-off.

2.7 Conclusion

This chapter introduced the major concepts that support the tools and frameworks devel-
oped in the manuscript. Going beyond simple feed forward neural networks, it presented
the main ideas behind modern Reinforcement Learning (RL), which are used extensively
in TAsk-Centered approaches presented in this report. To provide the necessary materials
to fully understand TEacher-Centered techniques, several important unsupervised learn-
ing processes were also introduced such as Generative Adversarial Networks (GAN) and
Variational AutoEncoder (VAE).

Chapter 3
Transfer Learning & Related works

Contents
3.1 Societal Needs for Transfer Learning . 36
3.2 Transfer Learning Principles . 36
3.3 Common cases of Transfer Learning . 38
3.4 Computer Vision . 40
3.5 Natural Language Processing . 43
3.6 Transfer Learning in control tasks . 45

3.6.1 Deep learning based control . 45
3.6.2 From simulation to real world 46
3.6.3 Transfer between tasks . 47

3.6.3.1 Reward-Based Transfer 47
3.6.3.2 Curriculum Based Transfer 47
3.6.3.3 Intrinsically motivated Transfer 48
3.6.3.4 Meta-Learning . 48
3.6.3.5 Transfer in Hierarchical Settings 49

3.7 Knowledge representation in Transfer Learning 50
3.8 Conclusion on Transfer Learning . 51

35

36 3.1. SOCIETAL NEEDS FOR TRANSFER LEARNING

3.1 Societal Needs for Transfer Learning

Industry 4.0, as foreseen in (123), will correspond to an era of higher integration of cyber
and physical systems. In this views, industrial actors expect a strong interconnection be-
tween machines and devices, comprehensive information from the technology implemented
and the ability of cyber systems to take decentralized decisions. These design principles
are driven by the need for increased flexibility in terms of tasks, short industrial prod-
uct series, consequently easily reconfigurable workplaces and finally highly diverse pool of
robots.
This very dynamic industrial context introduces new and complex challenges that may
prove difficult to formalize in mathematical frameworks. Indeed, perform complex mo-
tions to complete a task is still an open issue. While there exist optimization methods
based on complete models (59; 60; 67), these are usually computationally intensive and
may not satisfy real-time constraints. To tackle this issue, the community has also been
leveraging predictive methods that are completely suitable for real-time control. However,
this execution efficiency is usually achieved by sacrificing the model complexity and thus
considering simplified versions that may not have enough degrees of freedom to express
the full problem spectrum (22). These two methods present the strong and undeniable
advantage of allowing direct transfer of skills between different agents. However, while it
is possible to conceive hybrid controllers that can mitigate each approach’s weaknesses,
they nevertheless rely on an analytical model for both the task and the robot that can be
hard if not impossible to define. As a result, it is common to integrate various hypotheses
and assumptions that highly impact the precision of the model.
Recently, data-driven approaches, in particular deep learning based approaches, have been
on the rise, as they can be used to find a nearly optimal solution in order to speed
up the computation time in execution, while still being able to represent highly non-
linear processes. As the amount of data recorded and generated in the I4.0 processes is
considerable, there appear to be strong incentives for learning-based approaches to become
one of the go-to frameworks in the future.
As such, this chapter introduces the main principles and ideas on which Transfer Learning
relies and proposes an overview of its applications in current literature.

3.2 Transfer Learning Principles

Transfer Learning, also sometimes referred to as domain adaptation, corresponds to con-
figurations where it is desirable to exploit elements or features, that were learned in a
given domain to improve generalization in another. Transfer Learning has become a most
valuable tool in modern deep learning due to the size of recent architectures, in particu-
lar in domains such as Computer Vision (CV) and Natural Language Processing (NLP).
Specifically, in such situations, the model considered must perform several tasks. In order
for the transfer to be relevant, it is usually assumed that the distribution of tasks share
multiple factors that can be captured by the model and increase the model performance

CHAPTER 3. TRANSFER LEARNING & RELATED WORKS 37

on a task T2 after having been trained on a dataset from T1. As an example, a model
trained on a dataset containing a large quantity of images, such as the commonly used
ImageNet, is likely to develop pattern detectors that would be useful in another dataset.
Practically, it the low-level convolutional kernels learned by a CNN are often reused as-is,
only changing the latest model layers to fit the new task label space. This process is
depicted in Figure 3.1.

FIG. 3.1. Transfer Learning principle.

Formally, following works from (93), we define a domain D as a two-element tuple con-
sisting of a feature space X and a marginal probability P (X) where X ∈X . A task can
also be defined as a two-element tuple: the label space Y and a conditional probability
distribution P (Y |X) that can be learned from the dataset. Given these conventions, and
with DS ,DT and TS ,TT , a source domain, a target domain and their respective tasks, it
is possible to define Transfer Learning as the act of learning the conditional probability in
the target domain P (YT |XT) with the insights gained from the source domain DS . Fre-
quently, in practice, the target domain contains a significantly smaller number of labelled
examples, thus giving its full importance to the initial training on the source domain. In
this context, there are various scenarios foreseeable in Transfer Learning:

1. XS 6= XT : The feature spaces are different. In CV, this could for instance corre-
spond to a source domain with RGB images and a target domain with grayscale
data.

2. P (XS) 6= P (XT): Difference in marginal probability distributions. This is one of
the most common configuration where a pretrained model on a considerable dataset
is retrained on a much smaller one.

3. YS 6= YT : Different label space. Closely linked with item 4

4. P (YS |XS) 6= P (YT |XT). This case is also very frequent. One particular instance
would be to reused a model trained on a classification task to do depth estimation.

38 3.3. COMMON CASES OF TRANSFER LEARNING

Architecture Name Year Error Rate Parameters (M)
AlexNet (63) 2012 16.4 60
VGG(128) 2014 7.3 138

GoogLeNet(136) 2015 6.7 4
Inception-V3 (134) 2015 3.5 23.6
Inception-V4 (133) 2016 4.01 35

Inception-ResNet (133) 2016 3.52 55.8
ResNet (48) 2016 3.6 25.6

ResNeXt (146) 2017 4.4 68.1

TABLE 3.1. Recent CNN architectures, performances on the ImageNet classification task
and number of parameters (millions).

The following sections focus on modern usage of Transfer Learning and relevant work in
this area. It begins by considering the most common cases, in Computer Vision (CV) and
Natural Language Processing (NLP), that heavily benefits from this technique, due to the
very important size of the models involved in these tasks. It then focuses on applications
of this concept in control tasks. Specifically, this second part explores applications of
this concept in Reinforcement Learning (RL), from the various process set up to transfer
skills between tasks, to strategies for transfer from simulated environments to real phys-
ical robots. Finally, we also present a short overview on how unsupervised settings and
knowledge representation can be useful to reach the transfer objective.

3.3 Common cases of Transfer Learning

As mentioned in the above section, neural network architectures have been investigated
for more than 40 years, but it was the impressive accuracy improvements demonstrated
during the 2012 ImageNet competition that boosted this approach popularity. Specif-
ically, AlexNet (63), the winning architecture was based on Convolutional Neural Net-
works (CNN) (66), a partially-connected layer relying on convolution filters. Convolution
filters, also known as kernels, offer several advantages over fully-connected architectures
such as the possibility to capture spatial dependencies, a reduction to the overall number
of parameters as well as the ability to learn image processing filters that would have to be
otherwise manually-engineered such as edge or corner detection.
CNN are consequently appealing for Computer Vision (CV) tasks and have been applied
and repurposed in an important quantity of tasks and architectures, regularly improving
accuracy records. Table 3.1 (61) displays a short recap of the most recent and notable
architectures in this domain. As can be seen, the decreasing error rate on the ImageNet
classification task is often correlated with a considerable number of weights to train.
Although impressive by their size, the CV models presented in Table 3.1 appear thin and
lightweight compared to recent NLP architectures. Indeed, the Attention mechanism in-
troduced in (139) has led the NLP community to a new type of architecture, called the
Transformer (139), that replaced the recurrent aspect of neural networks with attention

CHAPTER 3. TRANSFER LEARNING & RELATED WORKS 39

Architecture Name Dataset size (GB) Parameters(M) GLUE score
GPT (104) 5 117 72.8
GPT-2 (105) 40 1542 80.1
BERT (21) 18 340 81.9
XLM (16) 18 665 82.8

RoBERTa (73) 18 665 88.5
ELECTRA (13) 116 340 88.6
XLNet(147) 116 340 90.5

TABLE 3.2. Recent NLP architectures characteristics: Number of parameters (millions),
dataset training size and evaluation score on the GLUE benchmark.

layers. Their superior efficiency, computation-wise, ensured a wide adoption of this ap-
proach and a AlexNet moment for NLP. Since then, models have similarly grown in size
and in capabilities, as presented in Table 3.2.
Due to the important capacity of these neural networks, training these models meets
various challenges:

• Training requires considerable computational resources, hardly available on common
hardware (training sessions can last up to several days on clusters of GPUs)

• Similarly, usage of these models is resources-greedy, making them unfit for real-time
on most common devices

• The large model capacity makes overfitting highly likely, which requires consequently
massive datasets with a substantial diversity

To face these issues, the community responded with various approaches. These can im-
ply architectural modifications to reduce the number of parameters, such as those that
support the MobileNet (52; 115) architecture. Formally, it uses a dedicated CNN, known
as depthwise separable convolutions, which enabled this model to reach a 70.6% accuracy
on ImageNet task with 4.2M parameters in its initial version. Comparatively, GoogLeNet
(136) and VGG16 (128) that were then the best models present an accuracy score of 69.8%
and 71.5% and hold 6.8M and 138M parameters, respectively. These techniques present
substantial improvements in terms of usability for CNN and can be combined to greater
efficiency. An additional way to reduce the costs of training large CNN models is to rely on
Transfer Learning. Transfer Learning takes advantages of pre-trained models to repurpose
most of the filters for another different task.
According to the characteristics of modern architectures, Transfer Learning, also some-
times referred to as fine-tuning, is widely used in CV and NLP. This section presents
notable settings for this process and explains the main supporting mechanics in both task
domains. This understanding will thus provides the tools to better recognize the challenges
associated with the transfer of knowledge between models.

40 3.4. COMPUTER VISION

3.4 Computer Vision

Classification

In CV, Transfer Learning has been initially considered for classification tasks. Indeed,
models (that traditionally include VGG (128), ResNet (48), SqueezeNet (55), DenseNet
(54), Inception (133), GoogLeNet (136), ShuffleNet (151), MobileNet (52; 115), ResNeXt
(146), Wide ResNet (150)) trained on a reliable dataset, such as Imagenet (more than 107

images for 1000 classes), have learned useful features in their convolutional layers. The
term useful feature can refer to a given layer activation on the forward network pass or
directly the weights of the convolution filter. In practice, these can recall manually-crafted
edge or pattern detectors. Figure 3.2 shows an example of such filters. Specifically, these
filters extracted from the convolutional blocks of a VGG 16 model pretrained on ImageNet
show that the deeper the convolutional block, the more complex the filters.

FIG. 3.2. CNN filters detect different features based on their depth location in the model.

To leverage these learned features and transfer them (fine-tune the model) to another
classification task, the most direct and straightforward way is to replace the last network
fully-connected layers by another adequately shaped fully-connected layer. In this con-
figuration, it is common to refer to the pretrained model as a feature extractor. The
rearranged model is then trained on the new task without modifying the convolutional
layers (the feature extractor is said frozen. During the transfer, the frozen convolutional
layers can be progressively incorporated back into the trainable parameters if required by
the performance. This process, used in (24; 106; 148) can be seen in Figure 3.3

CHAPTER 3. TRANSFER LEARNING & RELATED WORKS 41

FIG. 3.3. CNN fine-tuning/Transfer Learning process.

Detection

Although fine-tuning/Transfer Learning is the most directly applied to classification tasks
due to the fact that the initial model, sometimes refered to as backbone, was trained
on such tasks, it is possible to repurpose the filters of a CNN to a wider spectrum of
applications. Among these, it is usual to reuse a pre-trained CNN model to perform
detection. R-CNN (37) and its subsequent versions Fast R-CNN (36) and Faster R-
CNN (110) rely on a VGG backbone to propose regions of interest and associate them to
the detected object class. Similarly, You Only Look Once (YOLO) (107; 108; 109) uses
DarkNet-53 weights (although it is compatible with several backbones architecture) and
is able to predict simultaneously bounding boxes and object classes. Figure 3.4 proposes
a schematic view of this backbone integration along with the result of a forward pass in a
detection architecture.

42 3.4. COMPUTER VISION

FIG. 3.4. Left: Detection model based on a pretrained backbone (37).

Segmentation

Image segmentation is a crucial topic in CV due to its prevalence in key areas such as
scene understanding, autonomous driving or medical image analysis. Image segmentation
nevertheless raises several challenges such as dense predictions. Indeed, as opposed to
classification tasks or even detection for which models output a vector with a relatively
restrained dimensionality, image segmentation techniques are expected to return image-
shaped tensors, see Figure 3.5.

FIG. 3.5. Segmentation results (30).

Various approaches are proposed to meet this demanding expectations, among which:

• Fully Convolutional Networks(FCN) (124): FCN use only convolutional layers, thus
allowing images of arbitrary size. Architecturally, a deconvolutional network follows
a pretrained backbone (such as VGG16) and the last layer outputs class prediction
for every pixel in the image

• Encoder-Decoder Based Models (112): These architectures also rely on a backbone,
but are organized in a U or V shape that uses skip connections to reduce the loss of
information between layers and increase image consistency.

CHAPTER 3. TRANSFER LEARNING & RELATED WORKS 43

Figure 3.6 shows various architecture models. As can be seen, both construction rely on
a pretrained backbone and differ mostly in the way they connect this educated part with
the new filters designed to complete the segmentation task.

FIG. 3.6. Segmentation models. Up: Fully-Connected Networks (FCN) (124). Down:
U-Nets (112).

As was demonstrated in this part, Transfer Learning is largely applied in deep learning-
based CV. This process is heavily supported by the fact that training a consequent model
on a large dataset results in the generation of useful detectors within the convolutional
layers. Indeed, as these architectures present a strong dimensional bottleneck, the infor-
mation is mostly located outside of the fully connected layer. The convolutional layers
can then be transferred and repurposed for a wide range of tasks as was shown in recent
works. Let us now consider the application of Transfer Learning in NLP.

3.5 Natural Language Processing

Transfer Learning is a particularly common technique in the field of NLP. FromWord2Vec
to current language models, Transfer Learning has been correlated with state of the art
in NLP in a vast range of tasks. This section focuses on Sequential Transfer Learning, a
process similar to those described above in Section 3.4, where the target task is considered
after the initial model is ready.

44 3.5. NATURAL LANGUAGE PROCESSING

Word representation

As neural networks are only able to process vectors, the first step in a training process
is consequently to convert the text corpuses into elements understandable by the model.
It is for instance possible to create a vector representation of each unique word in the
corpus. As such, Word2Vec groups the vector of similar words in the representation
space. This model is trained through an objective function that expect the model to
assign probabilities to the context (n words before and after) of a target word. This
training approach is called Skip-Gram (80). The resulting representation, called word
embedding, presents useful properties that go beyond the clustering of similar things and
ideas. Indeed, the geometry in the representation space shows that the distance between
the words Rome and Italy is similar to the distance between Beijing and China, see Figure
3.7.

FIG. 3.7. PCA representation of words (79).

It is consequently easy to understand how these learned representations can be useful for
a language model that could rely on the word embedding for a text-related task.

Language Models

The increasing popularity of the Attention mechanism (139) in neural-network has given
an important traction to the Transformer architecture, which represents now the go-
to method for text-related tasks. In particular, BERT and all its subsequent variants
(RoBERT (73), DistillBERT (137) showed state-of-the-art performances on GLUE, SQuAD
v1.1 among other tasks. Language Models (LM) are trained on immense corpuses on a
simple objective: next word prediction based on all of the previous words within some text

CHAPTER 3. TRANSFER LEARNING & RELATED WORKS 45

(53; 105). Additional tasks can be simultaneously considered such as classifying whether
two sequences are located next to each other in the text ((21; 65; 77)).
This initial training phase, usually referred to as pre-training, aims at endowing the model
with an understanding of a given language. Consequently, language models are by essence
designed to be used in a Transfer Learning setting as a feature extractor. To do so, it
is usual to apply the same strategy than in the CNN case. Specifically, remove the last
fully-connected layer and add one or more linear layers on top of the pre-trained model,
see Figure 3.8.

FIG. 3.8. Language Model based Transfer Learning.

3.6 Transfer Learning in control tasks

The previous section demonstrated the ubiquitous presence of Transfer Learning in CV
and NLP settings. A common denominator of these domains is that all the associated
sub-tasks share a single support (pixels in the case of CV and embedded words for NLP),
thus yielding a straightforward way to reuse previously learned pattern detectors and
feature extractors. Additionally, the dimensional bottleneck of common architectures in
these domains naturally acts as a knowledge segmentation frontier. Such mechanisms do
not have direct counterparts in the very diverse control environments and thus call for
alternative strategies and paradigms when considering transfer in these configurations.

3.6.1 Deep learning based control

In modern data-based approaches, control tasks such as controlling a robot in a manip-
ulation setting is usually adressed with RL techniques, rather than supervised learning.

46 3.6. TRANSFER LEARNING IN CONTROL TASKS

Since the demonstration that it is possible for a RL agent to learn a human-level con-
troller using only raw state observations (82), Deep Reinforcement Learning (DRL) has
been increasingly popular. Recent algorithmic advances, such as Proximal Policy Opti-
mization (PPO) (122) or Soft-Actor Critic (SAC) (44) have enabled the application of
RL principle to complex environments, with non-linear dynamics and continuous action
space, in simulation as well as in real-world (12; 20; 96; 132) conditions. For instance, the
works described in (99) demonstrate that RL is a suitable way to control high-dimensional
morphologies to accomplish accurate locomotion tasks, such as having a simulated T-Rex
shaped character that dribbles a ball with its foot toward a moving target. These impres-
sive results are nevertheless particularly expensive in terms of samples collections, limiting
the direct application of such methods to real-world settings. Efforts are however deployed
to tackle this issue. As such, in (44) the authors present the SAC algorithm, an off-policy
RL agent, and prove that not only this approach is very efficient for the usual pool of
simulated tasks, but also suitable for a physical task using for instance a Minotaur robot.
The agent is trained from scratch, without simulations nor demonstrations, to maximize
its forward velocity. This challenging task, although brilliantly managed by the agent, is
nonetheless hardly reproducible for more complex tasks. Indeed, samples collections in
the Minotaur setting are relatively unexpansive and fast, while it is likely that tasks of
enhanced sophistication may require more costly samples. Consequently, the challenges
yielded by this situation invoke one of the main transfer justification for control tasks:
transferring knowledge acquired in simulation to real-world settings.

3.6.2 From simulation to real world

As hinted above, despite its recent achievements, DRL is notoriously sample inefficient
(7; 29; 41; 71; 81; 88; 95; 101). On-policy algorithms in particular require millions of inter-
actions with an environment to learn an acceptable policy. While training in simulation
offers notable advantages, such as parallelizable policies, inexpensive samples collections,
respect of safety concerns for operators as well as for the agent’s body, simulated settings
seldom offer a reliable copy of physical devices, which results in brittle and inefficient
policies if directly deployed to a real-world setting, as the target domain differs from the
training configuration. A possible option to mitigate these difficulties is to modify contin-
uously the simulated environment to lessen the agent sensitivity to environmental changes
and focus on the important features of the current task. In (97; 102), a robot is trained to
push a puck to a goal position. To enhance the agent generalization capacity, the authors
introduce the concept of dynamic randomization that modifies a physical property of the
world at each new episode, such as friction and damping of the puck or the mass of one of
the links of the robot’s body, to develop an agent able to adapt to the unknown real world
settings. In (91), a robotic Shadow hand is tasked with solving a Rubik’s Cube. In this
case, the domain randomization technique is enhanced to deal with the additional image-
based observations. Specifically, the agent trains in variants of the initial environment,
where each variant has, in supplement to the alternative dynamic settings, different render

CHAPTER 3. TRANSFER LEARNING & RELATED WORKS 47

properties. Using a wide distribution of texture, light and ambient occlusion parameters
is a crucial component to ensure that the agent will be able to transfer its behaviour from
simulation to the real-world.

3.6.3 Transfer between tasks

3.6.3.1 Reward-Based Transfer

The significant time required to train a DRL agent on a complex task has encouraged
researchers to design strategies likely to increase the agent usability and avoid the exag-
gerated expenditure of computational resources on a single simulated task. While a part
of these efforts was directed towards transfer to real-world configurations, several works
set out to create agents which learned representations can be reused in another context.
The works described in (3) fit in this context, as the authors demonstrate how policies
trained in a self-play setting can display subtle behavior and that it becomes possible to
observe emergent strategic behavior. Once trained, the agents are repurposed for another
task. For instance, a humanoid agent that learned motor skills for a sumo task is then
placed in a new environment where it must resist random wind forces and keep its bal-
ance. From a computational point of view, the neural networks used by the agent are
not modified by the transfer and only the reward function will progressively affect the
observed behaviour. Similarly, (2) conducts analogous experiments but in a multi-agent
setting, namely a teamed hide-and-seek. This environment is genuinely complex as it
features immovable walls as well as interactable objects that can be used by the hiding
agents to create seekers-safe areas. After being trained on the original task, some agents
are repurposed for alternative objectives such as simple construction tasks (which consist
in putting blocks in predefined places). In the experiments described in (3), the transfer
proves effective as the pretrained agent requires only a short amount of time to learn effec-
tive behaviour in its new environment. However, the additional tasks in (2) display a more
nuanced result: the pretrained agent’s performance and learning speed barely exceeds a
baseline agent trained from scratch, thus demonstrating that transfer must be carefully
planned beforehand to be beneficial.

3.6.3.2 Curriculum Based Transfer

The strategy presented above recalls the one used in curriculum learning environments.
In curriculum learning (28), the idea is to progressively increase the difficulty of an envi-
ronment. Starting in a simplified version of the task allows to easily design a reward that
efficiently guide the agent towards the desired conduct. This approach has been employed
in numerous recent works (15; 91; 111; 142). In (57), the authors establish that this strat-
egy, which can be conceived as the transfer of previously acquired skills from one agent
to a future version of itself, has numerous advantages. It simultaneously improves the
generalization of the agent, prevents overfitting to a single and repetitive scenario (which
can result in poor agent performance if the environment is slightly modified afterwards)

48 3.6. TRANSFER LEARNING IN CONTROL TASKS

and, in particular, allows the agent to reach a better performance level with less data,
thus enhancing its efficiency.

3.6.3.3 Intrinsically motivated Transfer

Besides modifying the reward function or using a progressive curriculum to ensure agents
adapt to new but related tasks, there exist alternative approaches to broaden the agent’s
strategies and indirectly set up the transfer of skills between tasks, thanks to this enlarged
paradigm. One way to reach this goal is to prevent the agent being trained to focus on
a single strategy to try and solve the task. In this view, multiple works building on the
identified connection between RL and the information theory (87; 119; 153), rely on an
additional objective function that involves the maximization of the action distribution
entropy to ensure the agent learns various skills (43; 44; 122). When the agent’s policies
is able to display multiple competences, it is generally able to generalize better to new
environments. Beside entropy-based incentives, other methods have been proposed to
maximize environment exploration by the agent. (51; 83) use mutual information between
states and actions to intrinsically motivate the agent, a concept that recalls the curiosity-
based learning (4; 74; 117; 118). For instance, in (94), the curiosity is formulated as an error
related to the agent’s ability to predict the consequences of its actions in a high-dimensional
observation space. The results of this formalisation suggest that curiosity provides a more
efficient progression in an environment with sparse rewards, a better exploration that forces
the agent to acquire new competences which in turn can be translated into generalization to
unseen scenarios where the agent can reuse previously obtained knowledge and experience
to progress faster. A similar technique is implemented in (10) that furthermore tackles the
noisy-tv problem, a common issue when trying to predict observations in high-dimensional
spaces, by expressing the curiosity error as the distance between the prediction of the next
observation by the agent and the prediction of an other randomly initialized and fixed
neural network (92).
The works presented in (31) take a substitute path, remarkable due to the absence of
reward provided by the environment, a configuration commonly explored in the literature
(72; 90). In this framework, an entropy-maximization objective function incites the agent
to generate various trajectories for an additional goal description vector. Trajectories
related to different goals must be as diverse as possible to minimize the entropy loss. In
this case as well, the authors are able to demonstrate that this approach results in the
unsupervised emergence of diverse skills. In addition, the skills gained during the thorough
exploration of the environment give birth to transferable competences to slightly different
tasks.

3.6.3.4 Meta-Learning

Meta-Learning for RL recalls the language models in NLP as it is in essence designed to
be the basic understanding to a span of tasks. Specifically, this field develops techniques
that directly optimize the adaptability of an agent. Although initially used for few shots

CHAPTER 3. TRANSFER LEARNING & RELATED WORKS 49

classifications in supervised learning settings (116), there exist several notable attempts
to apply these concepts to RL (25; 58; 141). Techniques for Meta-RL can be broadly
classified in those classes:

• Memory-Augmented models: One of the first approaches developed consists in aug-
menting neural networks with memory in the form of LSTM (Long Short Term
Memory), a type Recurrent Neural Network (25)

• Meta Learning algorithms: The works relying on this strategy set out to find ways
to optimize simultaneously the model on a variety of tasks

• Distributions of environments: The agent is exposed to a multitude of environments
to enhance its capacity to generalize.

An innovative example of Meta-Learning Algorithm is the MAML (Model-Agnostic Meta-
Learning) algorithm, introduced in (32). The concept of MALM is that the optimization
process via gradient descent should move the model in the parameters space to a saddle
point so that task-specific fine-tuning is fast and efficient. A similar process is presented
in (89), where the model is optimized by repeatedly sampling a task, training for multiple
steps on it and updating the model parameters. This method is further improved in the
CAML (Context Agnostic Meta Learning) algorithm (154) that decomposes the model
into context parameters, intrinsic to a given task, and task-agnostic ones that are shared
parameters. Doing so provides a wider distribution of tasks as the input and output
dimensions are managed by the context parameters. Nevertheless, in practice, the task
distributions considered in these settings are usually very narrow (149). For instance, a
common evaluation of Meta-RL algorithms involves changing the maximal joint velocities
of a serial robot on a manipulation task, while another one consists in choosing different
running directions for simulated legged robots (32). These results are appealing from
a theoretical point of view, but currently lack applicability as they are unlikely to be
sufficient to enable robots to behave realistically in human environments. Nevertheless, the
paradigm that motivates the creation of a central controller that can be quickly adapted to
different environments is highly interesting and is the main pillar of transfer in hierarchical
settings

3.6.3.5 Transfer in Hierarchical Settings

Generally, transfer in hierarchical settings implies jointly learning a set of skills and a
meta-controller, introduced as Options formulation in (131). This formulation assumes
that the Options are given, but this concept has been actively explored by the research
community since then. Consequently, it is now usual to learn these options as well as the
policy that selects them (1). Some works propose a decomposition of the considered task
into subgoals (33; 35; 49; 140). Other techniques break the task between low-level and
high-level control, as in (98) where the authors partition the locomotion components and
use the higher-level controller to provide goals to the lower-level controller. In this method,

50 3.7. KNOWLEDGE REPRESENTATION IN TRANSFER LEARNING

both controllers are learned simultaneously and only rely on model-free modelling, that is
without knowledge of the equations of motion, nor character kinematics. An interesting
aspect of this method is that the hierarchical structure allows interchangeability between
components, thus increasing the usability of the agent.

3.7 Knowledge representation in Transfer Learning

Attempts to transfer knowledge are also represented in the unsupervised learning paradigm.
In fact, the relationship between unsupervised learning and Transfer Learning might even
appear more natural as one of the main objectives in this paradigm is to be able to
train models whose optimization leads to a clear understanding of how data were gener-
ated. Indeed, when the model captures efficiently the data structure, it is in particular
able to provide relevant representations for subsequent usages, which proves highly useful
in neural-network based controllers (68; 69). As such, the works presented in (42) in-
troduce the World Model approach where the authors leverage a three-part sequentially
trained model that was able to overcome the previous state-of-the-art on the challenging
CarRacing-V0 Gym environment (9). Most of this performance relies on the first module
of this model: the encoding part of an AutoEncoder architecture trained on a reconstruc-
tion objective, using the raw pixels from the environment. The small dimensionality of the
encoder output forces the whole network to learn meaningful state representations (that is,
focus on the input most salient features) that proves usable for downstream tasks. As the
model is trained in a sequential manner, it is possible to imagine that this module could be
paired to another controller to solve a different task, thus illustrating the transfer. There
exist numerous examples of AutoEncoder architectures being successfully applied to create
meaningful representation of data. Using Variational AutoEncoder (11; 62) (VAE) is also
frequent as the additional objective function in these architecture enables a better control
over the encoder latent representations (14; 27; 46; 76; 144). These techniques can enable
transfer beyond the usual agent-agent paradigm. In particular, the method developed in
(75) takes advantage of this property to project complex multi-DoF expert, potentially
humans, trajectories for a given task in a small latent space. The VAE properties ensuring
that the representation is liable and consistent, the authors of this work demonstrate that
it can be used in an assistive robotics setup to ease the control of multiple DoF robots for
subsequent users, requiring only one or two DoF. The GAN framework also presents spe-
cific appeals for the transfer of skills. Since the introduction of Neural Style Transfer (34),
a model that transfers the painting style of a given artist to another picture, efforts were
invested to establish the capabilities of transfer in the GAN paradigm. One of the pioneer
approach, the CycleGAN (152), demonstrates unpaired image to image translation, that
is, translate an image from domain A to domain B, was a feasible task that yielded highly
qualitative results, see Figure 3.9. Using a similar principle, the AVID (Automated Visual
Instruction-following with Demonstration) method (129) replaces the human operator in
the videos of a task execution by a given robot. Then, the authors demonstrate that it

CHAPTER 3. TRANSFER LEARNING & RELATED WORKS 51

is possible to quickly train a model-based RL policy that manages the robot transitions
between translated states.

FIG. 3.9. CycleGAN training method.

3.8 Conclusion on Transfer Learning

The above section introduced the most common and popular approaches of Transfer Learn-
ing and fine-tuning in recent deep learning works. Supervised settings offer a rather
straightforward framework to apply these techniques and transfer the embedded knowl-
edge representation from a model trained on a given task to another objective. Due to the
model architecture and dimensionality bottleneck. Realizing a similar process for RL in
control tasks is less direct. Indeed, as can be seen from the recent trends, the community,
fully aware of the computational inefficiency of current algorithms is actively researching
ways to fully take advantage of the representations learned by a trained agent. Notable
approaches to reach this goal include exposing the agent to a wide variety of environments,
maximizing its ability to explore, using meta-learning algorithms or a hierarchical organi-
sation of skills. All of these paradigms present undeniable advantages and strong appeal.
Nevertheless, each one also focus on a single agent with a fixed morphology. However,
there exist numerous real-world cases that would rather benefit from transferring knowl-
edge from one entity to a distinct one. Consequently, the methods proposed in this work
are designed to tackle this seldom considered transfer situation.

52 3.8. CONCLUSION ON TRANSFER LEARNING

Chapter 4
Task-Centered Transfer

Contents
4.1 Universal Notice Network . 54

4.1.1 Principle . 54
4.1.2 The UNN workflow . 55
4.1.3 The UNN Pipeline . 56
4.1.4 Base Abstracted Modelling . 57
4.1.5 Building and using UNN modules 58

4.2 Experiments . 59
4.2.1 Vanilla transfer . 60
4.2.2 Learning setup . 61
4.2.3 Controlled Robots . 62
4.2.4 Base Manipulation: Reacher . 63
4.2.5 A lonely manipulation: Tennis 64
4.2.6 Biped walking . 67
4.2.7 Cooperative Manipulation UNN: Cooperative Move Plank . . . 71
4.2.8 Cooperative BAM Manipulation: Dual Move Plank 73

4.3 Conclusion on TAsk-Centered methods 77

53

54 4.1. UNIVERSAL NOTICE NETWORK

4.1 Universal Notice Network

This section focuses on the TAsk-Centered approach for transfer learning, one contribution
of this thesis. It goes over the proposed Universal Notice Network framework in depth and
explains how this technique is relevant with current state-of-the-art. Later, it is provided
various application scenarios allowing us to demonstrate the UNN adaptability.

4.1.1 Principle

The Universal Notice Network (UNN) is a TAsk-Centered transfer learning technique.
The main motivation of this family of methods is to tackle the fact that backpropaga-
tion optimization, unless specifically constrained, tends to result in entangled knowledge
representations, as schematized in Figure 4.1a. Indeed, as explained in (11), unless a spe-
cific loss function is dedicated to disentangling knowledge, neural networks final weights
composition will be heavily influenced by initial weight distribution and examples used
for backpropagation. This issue can be partially mitigated when the networks have a big
enough capacity and present dimensional bottlenecks. Specifically, as detailed in Section
3.3, this can be easily observed in usual CNN architectures, such as (128; 135; 146) used
for classification tasks. In these configurations, works have shown that the main feature
representations are essentially located within the convolutional layers, the last linear layer
being only used as a translator to the resulting prediction. As a result, it is conceivable
to remove the last fully connected layers without losing general information. Similarly,
in recent NLP models, specific modules are dedicated to word embeddings, for instance,
and can be detached and passed to other models in a straightforward manner as a feature
extractor model. In most RL configurations, the architectures considered are shallow and
do not present any dimensional bottleneck, hence leading, if no particular precautions
are taken, to entangled knowledge representations. Furthermore, due to the environment
stochasticity, the action sampling and randomized weight initialization, it is difficult to
predict the parameters trajectory in their space during the training session. While this
entangled representation does not prevent the agent from learning, it however makes it
difficult to determine which part of the network is responsible for a given behaviour. As
shown in Section 4.2.1, this rules out the vanilla transfer learning approach that consists
in replacing the latest layer to fit the new problem dimension.
Consequently, the UNN is a framework that implements the idea of knowledge segmenta-
tion between the agent and the task. The main UNN principle is derived from the idea
that any agent can achieve a task by following the right set of instructions, assuming that
the agent is able to move adequately.
To better understand the UNN philosophy, let us consider the following analogy: a con-
sumer acquires a furniture in a store and upon receiving it, expresses the desire to assemble
the object. As expected, the product is delivered with a notice that expresses the steps
needed to successfully setup the product. To be usable by the customer, the notice needs
to be generic enough to avoid direct references to elements that the client does not possess

CHAPTER 4. TASK-CENTERED TRANSFER 55

(a) Straightforward training setting. (b) UNN setting.

FIG. 4.1. Knowledge location comparison.

or requires movements that he could not be able to do, for instance requiring too much
strength or flexibility, as shown in Figure 1.1
In this view, if an efficient task model is generated by the agent, it then becomes possible
to transfer this task model to another differently structured agent and allow it to perform
the considered task. The challenge in this process lies in the preservation of the task
model parameters from the agent morphology influence, ideally reaching a segmentation
as displayed in Figure 4.1b. The more perceptible the influence is, either directly from
gradient updates or from the agent behaviour, the more likely it is that the task model
be corrupted, hindering its transfer efficiency, thus requiring a fine-tuning step. On the
other hand, a well-preserved task model increases the chances for immediate plug-and-play
behaviour, sometimes allowing zero-shot transfer (transfer without retraining phase).

4.1.2 The UNN workflow

In this paradigm and in order to either construct the UNN or simply plug it in an already
existing pipeline, it is crucial that the agent already possesses a way to comply with the
UNN instructions. Specifically, this implies that the agent must be able to move in a
coherent and relevant way. To satisfy this last constraint, the agent is pre-trained on
a primitive task. The primitive task constitutes a highly important step and must be
designed to allow the more thorough exploration of the observation and action spaces the
agent is likely to encounter when paired with the UNN. The objective of this phase is to
enable the agent to acquire the basic motor skills that are relevant to the tasks it may
be expected to fulfill. As explained later in Section 4.2.6, this step heavily influences the
UNN generation and can ease the learning process. The UNN is then trained using this
basic motor skill module. In this phase, the optimization process focuses on the UNN
module, leaving the motor skill part unaffected by gradients. This first stage is displayed
in Figure 4.2.
Once trained, the UNN module can be transferred to an agent structurally different from
the one used to create it and consequently enable this new agent to perform the task with
minimal to no prior interaction with it. In Figure 4.3, stage I corresponds to the initial
choice of task and agent. The computation pipeline is created in stage II by pairing the

56 4.1. UNIVERSAL NOTICE NETWORK

FIG. 4.2. The original UNN Pipeline staged training first creates a primitive agent con-
troller (in blue box) for a chosen agent configuration. The UNN for the task relies on the
generated primitive motor skills to learn a successful policy (in light red box).

trained task UNN and the base module of the performing agent (this agent is different
from the one that initially constructed the UNN). This makes possible the achievement
for this task by the new agent as shown in stage III. The next paragraph describes the
computational pipeline set up, while the rest of this section provides details on the modules
creation.

FIG. 4.3. The successive steps for deploying the transferred UNN to a new configuration.

4.1.3 The UNN Pipeline

In practice, the UNN pipeline is a model composed of three sub-modules, mr
i ,m

T
u ,m

r
o, as

shown in Figure 4.4. The first and the last parts of this model mr
i ,m

r
o, respectively the

input (green) and the output (red) modules, are specific to the robot r, while the center
model mT

u , the UNN (blue), is designed to be robot-agnostic and specific to the task
T . Specifically, the state vector that is observed at each timestep, can be split into two
parts si,r, sT , respectively holding data intrinsic to the considered robot and task-related
information, independent from the agent. The agent specific state si,r is used by its input
module to compute a state agent representation:

si
′,r = mr

i (si,r) (4.1)

CHAPTER 4. TASK-CENTERED TRANSFER 57

The UNN (i.e. the task module), conditioned by the task observation vector sT , uses the
processed agent representation vector to compute a vector that can be seen as a high-level
instruction:

oout = mT
u (sT , si

′,r) (4.2)

Finally, the effective robot action is then recovered by concatenating the initial intrinsic
vector si,r with oout and feeding it to the output base, that is:

ar = mr
o(oout, si,r) (4.3)

FIG. 4.4. The UNN Pipeline is composed of three stages: the input and output bases (in
green and red) are specific to the robot, while the UNN (blue) is task-related.

In the cases discussed below, the UNN and the output module are neural networks, but
in practice, there is no theoretical restriction on the computational model used, as long as
the vector returned by the modules has the expected dimensionality. From a functional
point of view however, to ensure that the UNN is compatible with transfer, it is necessary
to design the vector si,r that is passed between the UNN and the output module in a way
that ensures the Markov property (Section 2.5.1) is satisfied: it must encompass enough
information for selecting the next action without needing to consider additional previous
steps. The same logic is applied to the vector passed between the input module and the
UNN.

4.1.4 Base Abstracted Modelling

Ultimately, for any UNN/agent couple, the goal is, to find the module functionsmr
i ,m

T
u ,m

r
o,

that produce the movement M generated by actions ar provided by the pipeline for solv-
ing a task T and that must ensure the set of constraints gT to perform the task and the
set of constraints gr to ensure the physical limits of the robot, such as:

find mr
i ,m

T
u ,m

r
o

such as gτ (M) ≤ 0
gr(M) ≤ 0

With: M = f(ar) = f(mr
o(mT

u (sT ,mr
i (si,r)), si,r))

(4.4)

However, due to the notable RL tendency to fall into local minima, the UNN is likely to
discover a successful strategy for solving the task that depends on its body configuration

58 4.1. UNIVERSAL NOTICE NETWORK

(for instance, blocking an object between two articulations). In these deceptive cases, the
constraint related to physical limits in Equation 4.4 may no longer be respected. While
this is not an issue for the current agent, it is detrimental for the efficiency of a future
transfer to an agent with a different structure. To ensure that the UNN constraints are
not entangled with the agent ones, the Base Abstracted Modelling (BAM) is introduced
(85). This approach relies on an environment modification that assimilates the robot to its
effectors, thus creating a virtual robot, as shown in Figure 4.5. On the formulation side,
we set the base models mr

i ,m
r
o as identity functions and provide directly the UNN output

to the command. These two modifications release most of the constraints that would have
been distilled by the pre-trained base and prevent the UNN from learning a configuration-
specific strategy, resulting in the creation of an UNN closer to a model-agnostic setting.

FIG. 4.5. The BAM version of the environment prevents specific behaviour from leaking
in the task model, leading the UNN closer to a bias-free logic.

4.1.5 Building and using UNN modules

The motivation behind the UNN approach is to ease and enhance the efficiency of skills
transfer between agents of different configurations. We provide here a possible workflow
description relying on the UNN, and shown in Figure 4.6.
Let us imagine that a set of robots with different configurations and a set of tasks achievable
by these robots are available. Now, consider the case where a user wants a robot r to
perform a given task T . Given the training segmentation between the control model and
the task requirements, the UNN model is agent-agnostic, meaning any compatible robot
could have been used to create it. Hence, once the UNN module exists, it can be shared
with agents presenting other morphologies. It opens the possibility for a user to pair any
robot up with its module with a UNN relevant to the current task and carry on with the
realization (green path in Figure 4.6). If no robot modules are available, it is possible to
generate them, using a primitive task: this is the robot module creation (black path in
Figure 4.6). Alternatively, a robot module can be created using a given task and its paired
pretrained UNN (red path).
If the robot modules are available, the next step is to assess whether a trained UNN
module is available for this specific task. If not, the user should create it using one out of

CHAPTER 4. TASK-CENTERED TRANSFER 59

FIG. 4.6. The UNN workflow: Various solutions for creating and using modules and
UNNs. Dashed violet paths are to pair the robot with its module. Dashed blue paths
are to pair the task with its UNN. Black and red paths are to create new robot modules.
Orange and blue paths are to create new task module (UNN).

two ways: relying on its trained robot modules to train the UNN (orange path) or using
Identity modules such as the BAM framework (blue path), explained in Section 4.1.4.

4.2 Experiments

In this part, we focus on the experiments realized to validate this approach. Firstly, we
demonstrate that vanilla transfer, in the sense of CNN models, is not a reliable technique
when considering RL agents, even in very close conditions. Motivated by these results,
a serie of experiments relevant to the UNN are presented. The initial primitive task,
used to enable the agents to acquire desired motor skills is introduced as well as the
agents considered for these manipulations. Afterwards, the UNN pipeline is applied to
a wide spectrum of situations, ranging from simple manipulation to more complex co-
manipulation and collaborative tasks. For each configuration, the UNN performances,
both in learning and transfer, are compared with a state of the art algorithm and its
vanilla transfer as a baseline. Finally, an alternative usage for the UNN is introduced.
Specifically, this last approach evaluates the possibility of recovering a motor skill through
the trained UNN module. Additional results covering mobile manipulator configurations
are available in the Annexe A.

60 4.2. EXPERIMENTS

4.2.1 Vanilla transfer

In order to motivate further the TAsk-Centered approach, we design a toy experiment to
underline the liability of vanilla transfer in RL framework. In this view, we consider two
exactly similar agents that are trained on a unique task. Given that this experiment aims
at demonstrating that unconstrained backpropagation does not structure knowledge in
common RL architectures, the next step is to evaluate how vanilla transfer would affect
the two trained agents. Specifically, two additional configurations are created by replacing
the hidden layers of an agent in the other one, as shown in Figure 4.7. The performances
of these two are then measured on the same task.

FIG. 4.7. Exchanging model layers between similar agents.

On the realisation side, the task selected for this experiment is BipedalWalker-v3, a
common benchmark for RL. In this environment, the agent controls a biped and can apply
torques to its joints. The environment provides observations to the agent in the form of a
24-dimensionnal vector that describes the agent joints states and the reading from several
raycasting. Upon observation, the agent returns an action vector of 4 components, that
act as joints speeds. The goal is to prevent the biped from falling, which results in a -100
reward, while bringing the agent towards the end of the path, granting a +300 reward.
In order to ensure the agent has a responsible control, small negative reward proportional
to the torque magnitude are given at each time step. BipedalWalker-v3 belongs to the
Gym suite control tasks and even though this environment is among the most complex of
this suite, decent policies can easily be created by a recent RL algorithm such as PPO or
TD3. In this case, the policies considered are neural networks featuring one hidden layer
of 64 units. Figure 4.8 displays the mean reward evolution along training. As can be seen
in this Figure 4.8, the mean reward quickly hovers around 200 points, while a baseline
random agent usually gets cumulative rewards that do not exceed -90 (9).
It is then possible to apply the vanilla transfer between these two agents, for all eight
possible configurations. Figure 4.9 displays the evaluation performances of all settings.
As can be observed, both genuine configurations (in blue and gray) exhibit a wide dis-
tributions of results, and even though these policies have inevitable failed runs, they are
also able to reach scores above the 200 points threshold. This contrasts strongly with all
recomposed policies, for which none of the runs exceeds the -50 points threshold. In this
case, although the Bipedal Walker presents a considerable challenge, it would have been

CHAPTER 4. TASK-CENTERED TRANSFER 61

FIG. 4.8. Mean reward evolution on BipedalWalker-v3 environment.

reasonable to expect that at least a fraction of the performance would have been trans-
ferred, given the fact that both agents reach high scores and share the same morphology.
Consequently, it appears that vanilla transfer is not efficient in the RL framework and
that a more efficient approach would be a valuable contribution.

4.2.2 Learning setup

As explained, the UNN method segments the task knowledge from the agent control
parameters. While the control part can be defined through various methods (for instance,
through analytical formulations), depending on the user needs, we focus here on the least
robust cases where this part is learned through a Reinforcement Learning process. We
present various experiments, detailing the UNN capabilities in manipulation tasks, co-
manipulation (both in regular and BAM framework) and a cooperative walking task.
Specifically, we show that it is possible to repurpose a robotic arm for various tasks and that
the knowledge gained using this configuration can be used with very little to no retraining
by other agents configurations. Our agents are trained using Proximal Policy Optimization
(PPO) (122). As for the network architectures, both the UNN policy and the output robot
module network have two hidden layers with respectively 128 and 64 units, with TanH
activation function. Our reference baseline, the vanilla PPO policy has three hidden
layers of 128 units, again with TanH non-linearity. Given that all our robots have a serial
structure, we propose to affect a Forward Kinematic analytical model to the input robot
module to compute si′,r, the processed input state, such that si′,r = mr

i (si,r) = FK(si,r).
To evaluate transfer efficiency, both regarding learning and final performances, we consider
four configurations:

62 4.2. EXPERIMENTS

FIG. 4.9. Comparison of all configurations. Genuine configurations are able to reach high
scores while all recomposed one fail to exceed a very low threshold.

• PPO: A baseline vanilla PPO agent is trained from scratch

• PPO Transfer with fine-tuning: A new agent is initialized with the previously
learned weights from the vanilla agent. In this case, the hidden weights are fixed
during training and the optimization process affects only the input and output layer
weights.

• UNN: The UNN is trained from scratch while being paired with a trained robot
module or in its BAM version

• UNN Transfer: The previously learned UNN is transmitted to another robot,
using its own trained robot modules. When the training percentage in the various
table results exceeds 0%, it means that the bases are fine-tuned for this percentage
of the initial training time. Specifically, the output base weights are fixed during
retraining and only the UNN module will be updated by training.

4.2.3 Controlled Robots

The experiments presented in this chapter aim at demonstrating the UNN method adapt-
ability by setting up transfer of tasks between several robots and thus show that this ap-
proach is able to create a module encompassing knowledge independently from the agent
accomplishing the task, in order to later have the possibility to transfer this knowledge
module to an agent with a different configuration.
In this view, Figure 4.10 shows the robots used to embody this transfer, along with their
Degrees of Freedom (DoF) (drawn as colored arrows). Some architectures are inspired

CHAPTER 4. TASK-CENTERED TRANSFER 63

FIG. 4.10. From left to right: Generic-3 robot, Berkeley Blue, Kuka-LWR, Leg Type 1,
Leg Type 2.

from real-world robots, such as the Kuka-LWR (5 DoF) or Berkeley Blue (5 DoF). We
also introduce the Generic-3 robot, a 3 joints with 2 DoF for each joint configuration, the
Generic-2 robot, which exhibits a similar structure with only two joints and an architecture
declined into two variants (Leg Type 1, 3 DoF, and Leg Type 2, 4 DoF) that was used in
the Biped environment.

4.2.4 Base Manipulation: Reacher

The reaching task is presented in Figure 4.11 and consists in setting the position of the end-
effector to a desired position. This is a fundamental and particular piece in our framework,
since most of the experiments will require the agent to have mastered this skill. That task
is considered as the primitive task introduced in Figure 4.6. However, while seemingly
very basic, an agent trained with a reward depending solely on the distance between its
effector and the target very rarely yields a policy with plausible/desirable behaviours.
Most of the time, that kind of reward function ends up into a policy with unexpected
behaviours at best and unstable at worse (Figure 4.11, right-most robot). Hence, to avoid
this drawback of reinforcement learning, we take advantages of various insights from (100)
and we propose the following MDP for learning:

• sT ∈ R7: Vector from the end-effector to the target and target orientation (as
quaternion), expressed in world frame

• Reward function Rt: Inversely proportional to the distance between current agent
configuration qa (Figure 4.11, left-most robot) and a configuration given by a state-
of-the-art method qr, here (130) (Figure 4.11, central robot). Thus:

Rt = −(1− c)× α× ||qa − qr||+ c× β (4.5)

64 4.2. EXPERIMENTS

where c is a Boolean value that is set to 1 when the distance between qa and qr

is below a user set threshold. In these cases, the agent receives a small postive
reward β. Otherwise, the reward is inversely proportional to the distance between
the agent configuration and the target configuration, with α a scalar used for reward
normalization. The qr configuration is the main leverage used to induce bias within
output module. Indeed, in this specific task, the UNN is transparent, acting as the
identity function. Thus, given that training focuses on the output module, then by
defining wisely the qr configurations in this task, it is possible to generate output
modules that, for instance, can conditionally behave in a way that recalls inverse
kinematic models constrained through pole targets. This feature is particularly
useful and its usages are more thoroughly detailed in Section 4.2.6.

FIG. 4.11. Reacher Task.

Reaching results are presented in Figure 4.12, that displays the filled area between the
worst performance and the best along training for the six agent configurations over 3
different initial seeds. In this figure, it is possible to observe that even though the initial
agents performance displays a wide variance, their overall evaluation with respect to the
environment is improving along training and reaches levels above zero, implying that the
agents are able to quickly position their effector close to the target and follow it during
the episode while satisfying the configuration constraints.

4.2.5 A lonely manipulation: Tennis

This task consists in a self-play in a tennis-like setting, see Figure 4.13. A paddle effector
is considered as the end-effector of a robotic arm and the goal is to maximize the number
of times the ball bounces against the wall and the episode ends up whenever the ball drops
below a preset height threshold. Thus, the MDP has the following components:

• Task-related state sT ∈ R6: ball linear position and velocity, expressed in world
frame

CHAPTER 4. TASK-CENTERED TRANSFER 65

FIG. 4.12. Mean reward along training on the primitive reacher task.

• Reward function:

Rt =

1 if contact

0 else
(4.6)

For each episode, the reward is incremented for each bounce, until the ball drops or
if the time limit is reached.

FIG. 4.13. Tennis Task.

Figure 4.14 displays the performance curves during the training and transfer phases. In
this case, the original PPO policy and the UNN are trained for 1 million timesteps con-
trolling the Kuka robot. It clearly appears that the UNN policy (dark blue) is superior
by an important margin to the vanilla PPO policy, both in terms of learning speed and
final performance. We detail various mechanisms fueling this phenomenon further. Once
training is over for those two policies, their trained models are transferred to a new agent

66 4.2. EXPERIMENTS

0 200000 400000 600000 800000 1000000

Steps

0

2

4

6

8

10

C
u
m

u
la

ti
v
e
 r

e
w

a
rd

10.00 %

PPO KUKA

PPO Transfer Berkeley

UNN KUKA

UNN Transfer Berkeley

Tennis: From KUKA to Blue

FIG. 4.14. Learning performances in the Tennis environment. PPO and UNN are per-
formed using Kuka robot, transfer to Berkeley Blue robot.

with a different body configuration, specifically the Berkeley Blue robot. Practically, for
the UNN case, the trained UNN for the tennis task is inserted in the pipeline of another
agent with its trained bases and for the vanilla case, it is the hidden layers that are trans-
ferred. The learning curves for the new policies with transferred core are drawn in orange
and light blue, respectively for the PPO transfer and UNN transfer. Several points are
worth noticing: first, the UNN transfer case immediately starts with a higher mean reward
than the policies trained from scratch. In this specific case, the initial UNN transfer mean
reward is even higher than the final mean reward of the vanilla PPO policy. Then, the
progress rate for the transferred policy is much steeper than the original policy and only
10% of the initial training time are needed to recover a similar final mean reward.

Config Training Performances
(in bounces)

Baseline Blue 100 % 19.01
Original Kuka 100% 18.74

UNN
Transfer to Berkeley Blue 0% 11.88
Transfer to Berkeley Blue 10% 17.56
Transfer to Generic 3 15% 18.12
Baseline Blue 100% 7.54
Original Kuka 100% 7.89

PPO
Transfer to Berkeley Blue 0% 0.86
Transfer to Berkeley Blue 100% 6.81
Transfer to Generic 3 100% 7.57

TABLE 4.1. Tennis Summary.

Once training is over, we evaluate the final policy performance by averaging the number
of bounces against the wall for 100 episodes. These results are detailed in Table 4.1.

CHAPTER 4. TASK-CENTERED TRANSFER 67

This table and the subsequent tables in this chapter all share the same organisation. The
first column gives the training setting, whether the policy considered is the original or a
transferred one. The second column, entitled configuration, details which robotic arm or
dual-arm was used for this simulation. The third column precises the percentage of total
training steps used for the performances of this policy, listed in the last column. In this
case, these results confirm the performances predicted by the learning curves, as well as
the transfer efficiency. In particular, we see that after training for 1 million timesteps
(100%), the UNN policy is able to bounce the ball over twice as much as the vanilla PPO
policy. Also, we see that with no retraining, the UNN controlling the Berkeley Blue robot
outperforms both the original PPO with the Kuka as well as the transferred PPO to the
Berkeley Blue robot. In Table 4.1, a transfer toward the generic case has also been added,
further emphasizing the domination of the UNN on this task.
The above results are prone to raise several questions about the reasons why UNN agents
outperform vanilla PPO policies. The visual observation of each agent performance as well
as the training context of its module reveal important qualitative facts. In this case, the
UNN output module is a network trained on a reacher task, using a reward function that
encourages the agent to propose a solution that respects certain constraints, as described
in 4.2.4. Hence, even with randomly initialized UNN module weights, the agent initially
returns joints configurations that are close to the ones needed to be able to easily bounce
the ball back towards the wall. It is a good starting point and, through the restrictions
it brings, helps the UNN policy find solutions in the current MDP. On the contrary, the
vanilla PPO policy has no particular reason, when initialized, to propose those expected
configurations and freely explores its action space. Thus, the policy may potentially receive
its first positive rewards while being in a non-optimal position, see Figure 4.15, that will
then see its probability increased due to the RL-optimization process. This is further
exacerbated when the reward function is sparse and requires an important amount of
tweaking to ensure the vanilla PPO policy receives its first rewards in a configuration that
would allow it to keep improving.
Through the scope of the experiments led in this environment, it appears that the UNN
methodology can offer non-negligible advantages in a transfer setting, as it was designed to
do. Furthermore, it also provides leverage in the initial learning process as the embedding
of soft constraints in its output module can ease the learning process of the UNN policy,
which can ultimately lead to higher quality transfers. This second feature recalls the CV
and NLP pretraining step and it is further explored in the next environment: the Biped
Walking.

4.2.6 Biped walking

To broaden the range of applications using the UNN method, we introduce the walking
biped task. In this environment, we want a biped robot, composed of a pelvis and two
legs, to walk across a platform, see Figure 4.17. We assimilate this application to the
centralized control of two reacher robots and, similarly to the co-manipulation task in

68 4.2. EXPERIMENTS

FIG. 4.15. Undesirable configurations that ultimately return positive rewards are likely
to be considered as valuable states by the agent.

Section 4.2.8, the pipeline consists in a single UNN setting target positions for each leg,
as shown in Figure 4.16.

FIG. 4.16. Dual UNN Architecture.

The MDP for the walk UNN described below requires a slightly more complex reward
function:

• sT ∈ R11: Pelvis linear position in a frame located at the center of masses (CoM),
pelvis velocity and angular velocity in world frame, pelvis height from the ground,
pelvis lateral offset from the middle of the platform.

• The reward Rt is composed of various terms, that is: Rt = Rf +Rl +Rh, with:

– the pelvis speed along the forward axis: Rf = max(Vf , 0) where Vf is the pelvis
speed along the forward axis,

– the lateral offset between the pelvis and the forward axis, to encourage the
agent to walk in a straight line: Rl = exp(−|Pl|) where Pl is the lateral pelvis
position regarding the forward axis,

CHAPTER 4. TASK-CENTERED TRANSFER 69

– the vertical offset between the pelvis and the target height (initial pelvis height,
in practice), to prevent the agent from jumping:

Rh = exp(−|Pv − Pv,0|)

where Pv, Pv,0 are respectively the vertical pelvis position and the target height
position.

FIG. 4.17. Biped walk task.

Analyzing the curves from the Biped runs, in Figure 4.18, seems to yield partial contradic-
tions to the precedent conclusions. Firstly, the vanilla PPO policy mean reward evolution
along training clearly exceeds the UNN mean reward. And, while the transferred PPO
policy does not clearly benefit from the transfer, apart from a steadier evolution, its mean
reward grows also faster and reaches higher levels than the UNN mean reward. Even
though the transfer in the UNN case yields an important initial advantage for the new
policy, the final mean reward stays way below both vanilla PPO approaches. At test
time, we compare the agent performances by measuring the average distance (expressed
in meters) covered by the considered agent over 100 episodes, see Table 4.2. In this case,
interestingly enough, the UNN agent and its transferred version outperform both PPO
versions.
In this specific environment, the output module pretraining influence is even more pro-
nounced. Indeed, in this case, the output module was trained again on a reaching task,
but this time, we enforce through the reward function a bias for a knee back semi-folded
leg configuration, as shown in Figure 4.19. Hence, when paired with the UNN, the module
interprets the actions ordered by the UNN through this particular bias, which leads to a
very different gait evolution between the UNN policy and the vanilla PPO policy which
freely accesses to all its action space. As a result, the trained vanilla PPO policy exhibits a

70 4.2. EXPERIMENTS

0 250000 500000 750000 1000000 1250000 1500000 1750000 2000000
Steps

0

50

100

150

200

250

300

350

400

Cu
m

ul
at

iv
e

re
wa

rd

50.00 %

Biped Stand-Up
PPO
PPO Transfer
UNN
UNN Transfer

FIG. 4.18. Learning performances in Biped Walk environment. PPO and UNN are per-
formed using 2 legs of Type1, transfer to robot composed of Leg Type1 and Leg Type
2.

Config Training Performances
(in meters)

Baseline Leg Type 1/2 100% 41.88
Original Leg Type 1/1 100% 49.74

UNN
Transfer to Leg Type 1/2 0% 21.02
Transfer to Leg Type 1/2 30% 44.55
Baseline Leg Type 1/2 100% 32.91
Original Leg Type 1/1 100% 29.63

PPO
Transfer to Leg Type 1/2 0% 2.90
Transfer to Leg Type 1/2 100% 31.67

TABLE 4.2. Biped Summary.

non-symmetrical gait, in which one leg is always forward, while the other leg stays behind,
see Figure 4.20a. This moving position allows the vanilla PPO policy to gather at least
two reward terms out of three, namely the offset reward Rl and the height reward Rh,
thus explaining the higher PPO score in Figure 4.18. However, as shown in Table 4.2,
this approach does not optimize for the walking distance, which would require a dedicated
ponderation of the reward terms.

Indeed, this policy is able to move slowly forward by giving quick impulses to its joints, in
a stutter-like manner. On the contrary, the trained UNN policy is much more symmetrical
and alternates between small jumps and walk to move forward, see Figure 4.20b, resulting
in a larger distance covered, see Table 4.2.

CHAPTER 4. TASK-CENTERED TRANSFER 71

FIG. 4.19. Left: Free configurations. Right: Enforced semi-folded configurations.

(a) Straightforward training setting. (b) UNN setting.

FIG. 4.20. UNN pretraining can nudge the policy towards a more human-like gait.

4.2.7 Cooperative Manipulation UNN: Cooperative Move Plank

The cooperative Move Plank environment tackles a task requiring coordination to move
a large object, beyond the capabilities of a single robot. In practice, this environment
features two robotic arms and a large plank to be moved from its support to another
location (see Figure 4.21). Two target points are defined on the plank for each end-effector.
The UNN uses the process described in Figure 4.16. Formally, we have:

• Task-related state sT ∈ R16 × B2: plank linear position in each arm end-effector
frame, plank linear position expressed in goal frame, plank orientation and angular
velocity, expressed in world frame and two Booleans ci, the contact value between
effector i and the plank.

72 4.2. EXPERIMENTS

• Reward:

Rt =


−α× (D1 +D2) if

∑2
i=1 ci = 0

0 if
∑2
i=1 ci = 1

β
Dt

∑2
i=1 ci = 2

(4.7)

with α, β two positive scalars used for reward normalization given the simulation
scale, Di the distance between the effector i and its target point. Finally, Dt is the
distance between the plank and the goal position.

• Action space: In this case, the vanilla and UNN output for each agent is enhanced
with an offset vector for the global position of the flying mobile base. Thus, for the
UNN case, the action space is as follows: aT ∈ R(3+3)×2.

FIG. 4.21. Cooperative Move Plank Task.

Figure 4.22 displays the mean reward evolution along training for the original G3-G3 con-
figuration as well as the G3-G2 transferred configuration. For this environment, despite
a slower initial progression, the vanilla PPO agent is able to reach slightly higher mean
episode reward than the UNN-based agent. The transfer phase however proves unsuccess-
ful for the non-UNN process, as the new PPO agent, although able to move towards the
target point, completely fails to lift the object. In contrast, the transfer UNN-based agent
starts with a mean episode reward superior to all other models and requires only 30% of
the initial training time to master the task as the original UNN agent, with respect to the
mean reward per episode.
Once the agents and their transfer counterparts are trained, we enter the testing phase.
To evaluate the performances of the various configurations, we define the best agent as the
one capable of reaching to the plank and keeping it in the proximity of the goal position for
the longest time. Again, we average this metric expressed in timesteps over 100 episodes
with a time limit of 2000 timesteps. The results in Table 4.3 were created from these
tests, and although the vanilla methodology is competitive in the initial training phase,

CHAPTER 4. TASK-CENTERED TRANSFER 73

0 250000 500000 750000 1000000 1250000 1500000 1750000 2000000

Steps

150

100

50

0

50

100

150

C
u
m

u
la

ti
v
e
 r

e
w

a
rd

30.00 %

Cooperative Raise Plank

PPO G3-G3

PPO Transfer G3-G2

UNN G3-G3

UNN Transfer G3-G2

FIG. 4.22. Cooperative Move Plank Task results.

TABLE 4.3. Cooperative Move Plank.

Config Training Performances
(in timesteps)

Cooperative Raise Plank
Baseline Generic 3 - Generic 2 100 % 510.54
Original Generic 3 - Generic 3 100% 552.68

UNN
Transfer to Generic 3-Generic 2 0% 111.20
Transfer to Generic 3-Generic 2 30% 547.88
Baseline Generic 3 - Generic 2 100 % 573.10
Original Generic 3-Generic 3 100% 589.96

PPO
Transfer to Generic 3-Generic 2 0% 3.57
Transfer to Generic 3-Generic 2 100% 8.08

the UNN clearly confirms its relevance from a transfer perspective.

4.2.8 Cooperative BAM Manipulation: Dual Move Plank

A variant of the previous environment (Cooperative Move Plank) is the Dual-Arm setting,
see Figure 4.23. While similar in concept, it presents the following differences: both arms
belong to a single body and each arm is equipped with a suction pad. Consequently, we
enhance the state sT with a contact flag for each suction pad and revert to the initial
action definition without the global offset for each agent.
In the Dual-Arm Raise Plank task, we compare the vanilla PPO approach with both
the classic UNN and the BAM version. In this configuration, the BAM policy controls
the heuristic version of a two-armed manipulator, as depicted on the right-hand side
in Figure 4.24, while the classic UNN and the vanilla PPO polices are trained in an
environment with two Kuka arms and transferred to two Berkeley Blue Robots. Learning
progresses of the BAM, the classic UNN, vanilla PPO and their transferred counterparts

74 4.2. EXPERIMENTS

FIG. 4.23. Dual-Arm Move Plank Task.

are shown in Figure 4.25.

FIG. 4.24. Dual-Arm Move Plank Task.

Regarding first the classic UNN and the vanilla PPO, we observe that similarly to the
Tennis environment, those curves indicate that even though the UNN policy starts with a
slightly inferior mean reward than the vanilla PPO policy, the UNN policy improvement is
faster and achieves a much higher mean reward. In particular, neither vanilla PPO policy
nor its transferred version to a dual Berkeley Blue robot setup are able to succeed in
this task. In contrast, the transferred version of the UNN, again controlling two Berkeley
Blue robots, even though starting with a low mean reward level, quickly recovers the final
performance level. While yielding a non-negligible improvement compared to the vanilla
approach, the UNN method in this environment cannot match the efficiency of the BAM
framework. Indeed, as can be seen in Figure 4.25, the BAM agent mean reward evolution
presents a steeper evolution and is able to achieve two times the classic UNN mean reward,

CHAPTER 4. TASK-CENTERED TRANSFER 75

0 250000 500000 750000 1000000 1250000 1500000 1750000 2000000

Steps

40

20

0

20

40

C
u
m

u
la

ti
v
e
 r

e
w

a
rd

15.00 %

Dual-Arm Raise Plank: From HCL to Blue

PPO

PPO Transfer

BAM

UNN
UNN Transfer

BAM Transfer

FIG. 4.25. Learning performances in Dual-Arm Raise Plank environment for PPO and
UNN policies using two Kuka arms and then transferred to two Berkeley Blue robots.

thus also surpassing the vanilla approach. Moreover, as for transfer efficiency, it can be
seen that the transferred agent immediately starts with a reward level comparable to
the one achieved by the BAM policy after 2 millions timesteps, effectively showing the
transfer efficiency. In this case, this indicates that the transferred policy didn’t even need
retraining.
As for previous environments, final efficiency is evaluated in dedicated test conditions.
Specifically, in this phase, a counter is incremented for each timestep if the plank is in the
proximity of a target position.
Table 4.4 confirms the results shown in Figure 4.25. As a matter of fact, the results
obtained by the two UNN configurations, both classic and BAM, are clearly superior to
the ones the vanilla policy is able to achieve. In this specific case, the BAM policy doesn’t
even need retraining and the transferred policy achieves a better test score than every
other configuration, with the exception of the original BAM policy. The UNN policy also
outperforms the vanilla PPO policy, even though transfer is not as efficient as in the BAM
case.
The Dual-Arm Raise Plank environment presents various features that are prone to lead
a vanilla agent to failure and thus provides interesting insights to understand better the
BAM framework advantages. In particular, the succession of objectives is rarely trivial to
master in reinforcement learning. This is further exacerbated by the number of degrees of
freedom in the controlled robot. Using the UNN method abstracts the tasks and lets the
agent focus solely on where to place and move its effectors. As for the biped case, it is
possible to pretrain the modules in order to include a certain degree of bias and help the
UNN policy with these initial conditions. Nevertheless, there are two main points that
distinguish this task from the biped task. In particular:

• In the Biped Walking task:

76 4.2. EXPERIMENTS

TABLE 4.4. Dual Arm Raise Plank Summary.

Config. Training Performances
(in timesteps)

Original BAM 100% 1557.05

BAM
Transfer to B.Blue-B.Blue 0% 1545.65
Transfer to B.Blue-B.Blue 15% 1547.02
Transfer to Kuka-B.Blue 0% 1451.03
Original Kuka-Kuka 100% 987.11

UNN
Transfer to B.Blue-B.Blue 0% 4.41
Transfer to B.Blue-B.Blue 15% 926.66
Transfer to Kuka-B.Blue 15% 904.31

PPO Kuka-Kuka 100% 139.40

PPO
Transfer to B.Blue-B.Blue 0% 8.45
Transfer to B.Blue-B.Blue 100% 152.54
Transfer to Kuka-B.Blue 100% 147.78

– the qualitative appeal of the walk cycle depends on the leg configuration and
not only on foot placement,

– and from a modelling point of view, it is unclear how to design a BAM version
of the task.

• While the Cooperative Raise Plank task as designed:

– isn’t affected by the arms configuration, as long as there is no self-collision,

– but does require non-negligible coordination regarding the effectors control.
Thus, unless special care is dedicated to the module training, it is likely that it
might hurt the UNN policy learning performances.

– Finally, the modelling process and constraints setup for BAM training are par-
ticularly straightforward.

These points indicate that creating a BAM version of the environment is a valuable alter-
native. As seen in Figure 4.25 and Table 4.4, the BAM version of the UNN behaves in a
more desirable way than its counterparts, thus offering a robot-agnostic model of the task
to various robots. Then, if the modules of a particular robot are sufficiently precise, it is
possible to succeed in the task with no retraining at all and still yields higher performances
than other policies.
Obviously, it is theoretically possible to design a reward function that would lead a vanilla
PPO policy to walk in a predictable manner or reach and manipulate a plank with a high
accuracy. However, this is a very complex task that requires a considerable amount of
feedback, tweaking and state representation engineering in order to find the ponderation
that would, in the biped case, allow the policy to walk fast while not degrading the other
important components too much, namely the steering and the height control. In the
manipulation task, the sequential nature of the environment would also call for careful
and thorough fine-tuning of the reward and simulations to ensure that the policy finds a

CHAPTER 4. TASK-CENTERED TRANSFER 77

reliable solution. Using the UNN method enables to greatly simplify this design process by
embedding in the robot limbs a bias, that acts similarly as soft constraints. Alternatively,
setting up a BAM alternative when the conditions concur to it, is highly useful to help
the policy find a solution in highly complex and non-linear environments.

4.3 Conclusion on TAsk-Centered methods

In this section, we presented a broad range of applications for the proposed Universal No-
tice Network (UNN) approach, a method that disassociates the agent control logic from
the task it is supposed to accomplish. To motivate our approach, we began by demonstrat-
ing that vanilla transfer in RL setting is detrimental to the agent by exchanging layers
between two similar agents both trained on a unique task. This experiment enlightened
the fact that uncontrolled backpropagation does not structure knowledge and thus makes
it difficult to forsee which model part can be shared or withdrawn without hindering per-
formances. Consequently, the UNN approach has been applied to various tasks. For each
detailed environment, we compared our technique with a classical state-of-the-art algo-
rithm and we demonstrated the benefits and advantages of our method, both in terms
of learning speed and final performance and then tackle the issue of transfer learning.
Through various examples, we show that our method enables a more efficient transfer
than current methods, allowing an agent to perform as well as the original policy with
little to no retraining, hinting toward an important training time reduction. Additionally,
the experiments set up allowed us to detect that the classic UNN architecture may convey
a bias from the modules pre-training which can in various situations be used as an ad-
vantage. For configurations in which the bias can be detrimental or simply undesired, we
also proposed an experimental framework, the Base Abstracted Modelling, for overcoming
such biases. Despite its numerous advantages, the UNN method is in practice hindered
by the feature that constitutes its main appeal. Indeed, the initial segmentation process
relies, in its current form, on the hand-crafted features that constitute the interface be-
tween the task model and the control parameters (the output base). As a result, this
forces each agent to adopt similar conventions to use the pretrained task model. While
this does not necessarily harm performance, it heavily limits the method flexibility and
range of application and although there are no theoretical constraints in building another
vector interface, it has proved difficult so far to formalize the definition of such a vector.
Additionally, these constraints enforce the sequential aspect of the UNN training. While
this feature enables a simple form of knowledge segmentation, it is also the most likely
conveyor of base biases. As a result, an alternative path worth exploring would feature
a joint knowledge construction by multiple agents with different morphologies, ultimately
yielding a consensus notice that would not necessarily rest on hand-crafted vectors. In
the next section, we will introduced TEacher-Centered techniques that circumvent this
limitation.

78 4.3. CONCLUSION ON TASK-CENTERED METHODS

Publications

• Universal Notice Network: Transferable Knowledge Among Agents - In-
ternational Conference on Control, Decision and Information Technologies (CoDIT)
2019 - Paris, France

• BAM! Base Abstracted Modeling with Universal Notice Network: Fast
Skill Transfer Between Mobile Manipulators - International Conference on
Control, Decision and Information Technologies (CoDIT) 2020 - Prague, Czech Re-
public

• Universal Notice Networks: Transferring learned skills through a broad
panel of applications - Submitted to: IEEE Transactions on Systems, Man and
Cybernetics: Systems

Additional Material

• https://drive.google.com/drive/folders/1rhwldaISnmpmG8bksTudQnhKvgnOGy83?
usp=sharing

https://drive.google.com/drive/folders/1rhwldaISnmpmG8bksTudQnhKvgnOGy83?usp=sharing
https://drive.google.com/drive/folders/1rhwldaISnmpmG8bksTudQnhKvgnOGy83?usp=sharing

Chapter 5
Teacher-Centered Transfer

Contents
5.1 CoachGAN . 80

5.1.1 From Task to Teacher . 80
5.1.2 The CoachGAN method . 80
5.1.3 WGAN-GP for a suitable learning signal 83
5.1.4 Task and Intermediate State Variables 84
5.1.5 Training the Expert . 86
5.1.6 CoachGAN Results . 87

5.1.6.1 Effector Position ISV 87
5.1.6.2 Approximated Kinematics ISV 89
5.1.6.3 Ball Rebound Speed ISV 89
5.1.6.4 Analysis . 90

5.1.7 Conclusion on CoachGAN . 92
5.2 Task-Specific Loss . 92

5.2.1 The TSL Principle . 93
5.2.2 Method . 94
5.2.3 Transfer . 95
5.2.4 Experimental setup . 97

5.2.4.1 Tasks and Agents . 97
5.2.4.2 Models . 99

5.2.5 Results . 99
5.2.5.1 Circle to Circle Contour Displacement 99
5.2.5.2 Tennis task . 100
5.2.5.3 Autonomous TSL . 103
5.2.5.4 Training Time & Assistive aspects 105

5.2.6 Conclusion on Task-Specific Loss 105
5.3 Conclusion on TEacher-Centered methods 106

79

80 5.1. COACHGAN

In this chapter, we present two transfer learning approaches based on TEacher-Centered
concepts. Indeed, as opposed to Task-Centered approaches that rely on the creation of
an instance of knowledge that can be passed between agents of different morphologies,
TEacher-Centered methods are designed to provide a way of distilling the knowledge of
a teacher agent within students that are potentially differently structured. Building on
this concept, these techniques are first thoroughly explained and their relevance is then
assessed on a custom environment.

5.1 CoachGAN

5.1.1 From Task to Teacher

The previous chapter introducing the UNN underlines numerous times the critical im-
portance of the interface between the UNN module and the agent’s inherent bases. Due
to the restrictions brought by this bottleneck, it becomes conceivably more complex to
adapt a pre-trained UNN to an agent that would not present the elements fitting within
the interface, thus limiting the universality of this method, as shown in Figure 5.1. In an
effort to overcome this potentially hindering issue, projecting the UNN module output in
an intermediate latent space appears as an interesting candidate. This idea would be able
to provide values corresponding to measurements instead of direct orders.
Let us consider the experimental environment Dual-Arm Manipulation, introduced in
the previous chapter: in this case, instead of returning translation vectors and relative
effector positions for a full episode and using the reward function to backup and evaluate
the actions, the UNN could provide a desired state measure of the manipulated object
that should then be matched by the agent arms, as displayed in Figure 5.2. In this view,
the state measure could be very diverse, as long as it can be related to the agents actions
through a differentiable function, to ensure that backpropagation is possible.

5.1.2 The CoachGAN method

When assisting to a sports game, even non-expert individuals are able to detect particularly
efficient players. After watching enough, observers are usually able to provide a high-level
description of an ideal performer and additionally may be capable to distinguish an expert’s
action from a novice’s. The CoachGAN method is a loose transposition of this situtation
in the GAN framework where the external observer is a discriminator and players are
generators.
Building on the concept of expert/teacher/student, where a teacher can use observations
made during the expert class to guide its students although he was not the initial trans-
fer target, CoachGAN relies on a two-step adversarial process to train a student agent
by using expert knowledge via a common teacher critic. Specifically, the main idea is to
repurpose a GAN discriminator (the teacher) trained on a set of expert trajectories to
provide an error signal for a student trying to accomplish the same task. As the very

CHAPTER 5. TEACHER-CENTERED TRANSFER 81

FIG. 5.1. In its current formulation, the UNN framework is likely to find limitations for
cases where the UNN output instruction is not directly applicable to the transfer target.

essence of this work is to focus on differently shaped entities, it is crucial that the student
and the teacher can share a common understanding for the student to use the discrimi-
nator evaluation to backpropagate accordingly its error. Consequently, this method also
introduces ISV (Intermediate State Variables), an innovative yet simple way to translate
the discriminator’s value into a learning signal.

As opposed to most GANs applications where the generator is the only desired model and
where the discriminator is generally discarded, the CoachGAN method uses the discrim-
inator to permit the transfer to the student. The main concept of this approach is to
define an ISV that can be evaluated by the (teacher) discriminator, based on representa-
tions learned on the expert trajectories, and to which the student can relate. It will then
be possible to backpropagate the student error within its model and optimize it based
on the teacher discriminator evaluation. The ISV is critical to the CoachGAN approach.
Indeed, as the expert and the student have different morphologies, it is not straightforward
how to directly compare their states/actions. The ISV role is to bridge the gap between
the two agents by being the representation of a common, user-defined, intermediate state.

It would have been possible to guide the student by using the distance between the student
and the expert’s ISV as a loss value. However, while theoretically viable, this option is
practically more complex to set up due to the discriminator pre-convergence. Specifically,

82 5.1. COACHGAN

FIG. 5.2. It is possible to extend the UNN approach by implementing a less rigid interface
between the task model and the agent.

FIG. 5.3. An educated enough external observer is able to provide a feedback on the
actions performed, which can be used, to some extend, to improve performance. In this
stylized example, the discriminator evaluates the fighter ability through the heavy bag
movement.

in adversarial frameworks, the discriminator often trains faster than the generator, which,
in extreme cases, can even prevent the generator from learning as all its samples are re-
jected by the discriminator. This constitutes an important drawback in most use cases and
may requires extensive hyperparameter tuning. For this reason, it is more straightforward
to rely on the teacher discriminator to train the student generator.

The first stage aims at training the teacher discriminator to create a relevant task critic.
Using Equation 2.45, the objective becomes:

min
GT

max
DT

ExISV∼PT [log(DT (xISV))]+

Ex̃ISV∼Pg [log(1−DT (x̃ISV))]
(5.1)

where GT , DT are respectively the fake expert generator and teacher discriminator, xISV ∼

CHAPTER 5. TEACHER-CENTERED TRANSFER 83

FIG. 5.4. The CoachGAN principle. The green frame depicts the teacher discriminator
training process, that is then used for training the student generator (orange frame).

PT represents ISV vectors from the expert dataset and x̃ISV = GT (z) are synthetic ISV
vectors from the fake expert generator, which sole purpose is to train the teacher discrim-
inator. Once trained on the expert trajectories, the discriminator, when presented with
an ISV, will return a scalar value ranging from 0 to 1, indicating how likely it is that this
sample was generated by the expert.
Then, for the transfer, a new generator relevant to the student control dimensionality is
created and paired with the teacher discriminator. In this configuration, the student loss
is:

LS = ||DT (RISV(GS(z)))− 1||2 (5.2)

Equation 5.2 states that the student generator aims at maximizing the discriminator eval-
uation given to a synthetic ISV-translated student generator solution. Practically, for a
given input z, the student generator solution GS(z) is passed to the differentiable oper-
ator RISV that computes a discriminator-understandable ISV vector. Given that every
function in this chain is differentiable, it is consequently possible to backpropagate the
discriminator evaluation within the student’s parameters for an optimization step. Figure
5.4 shows a schematic view of the method.

5.1.3 WGAN-GP for a suitable learning signal

As introduced in Section 2.5.3, training in the adversarial framework is notoriously dif-
ficult due to the multiple failure modes (discriminator pre-convergence, generator mode
collapse). However, since the initial GAN formulation (40), multiple alternative loss func-
tions and architectures have been proposed to mitigate some of the issues mentioned
above. In the CoachGAN case, as the teacher discriminator is expected to be used for the
downstream transfer, it is necessary that the discriminator sample evaluation provides a
suitable signal, learning-wise. Taking into account these various constraints, the WGAN-
GP (Watterstein GAN with Gradient Penalty (114)) appeared as a natural architecture
candidate. Indeed, the WGAN-GP design, beyond making the generator training easier,

84 5.1. COACHGAN

also formulates the discriminator evaluation in a way that enables it to be repurposed
for downstream tasks. More specifically, as a task-related vector must be passed to the
networks to provide relevant information on the current state of the world, the CoachGAN
method implements a Conditional WGAN-GP, yielding the following formulation for the
discriminator:

LD = Ex̃∼Pg [D(c, x̃)]− Ex∼Pr [D(c, x)] + λPg (5.3)

where c is the task related vector, which corresponds to external information that will be
required for any agent, such as the ball speed and position, λ is the gradient penalty weight
and Pg the gradient penalty that acts as a regularization parameter for the discriminator:

Pg = Ex̂∼Px̂ [(||∇x̂D(c, x̂)|| − 1)2] (5.4)

where x̂ is a vector interpolated between x and x̃ with an interpolation factor sampled
uniformly between 0 and 1. The generator optimization relies on the following scheme:

LG = −Ez∼LD(G(z, c), c) (5.5)

where z is a random vector sampled from the generator latent space L .

5.1.4 Task and Intermediate State Variables

To demonstrate the usefulness of the CoachGAN approach, a 2D version of the UNN
Tennis environment was created. This environment features the playing agent, a serial
manipulator equipped with a bat, and a ball thrown with an initial velocity, as shown in
Figure 5.6 (left box). The agent’s goal is to position its effector in order to intercept the
ball. As mentioned above, the CoachGAN approach relies on intermediate state variables
for allowing the teacher discriminator evaluation to guide the student. One of the main
strength of this approach is that these intermediate state variables can be very diverse as
long as the student can relate to them through a differentiable model. To illustrate this
method capabilities, three configurations for this approach are provided:
Actual Kinematics: In this first configuration, the intermediate state variable is the
effector position. Specifically, for a given ball configuration, the teacher discriminator is
trained to distinguish between suitable effector positions (that is, likely under a task expert
policy) and synthetic position from the fake expert generator. The student generator
will output the target joint angles. To evaluate the student generator proposition, a
differentiable forward kinematics (FK) model is used to translate the joint angles to the
effector position that can thus be assessed by the discriminator, as shown in Figure 5.5.
The FK model used in this configuration has no trainable parameters and is only used to
keep track of the gradients.
Approximated Kinematics: This second composition still relies on the effector posi-
tion, but this time the FK model is replaced by a neural network trained on the student

CHAPTER 5. TEACHER-CENTERED TRANSFER 85

FIG. 5.5. Student Generator (in orange) optimization in experimentsActual Kinematics
and Approximated Kinematics. Discriminator evaluation passes through the RISV
module before reaching the generator.

configuration to compute the effector position given joint angles, also shown in Figure 5.5.
Ball Rebound Speed: The effector position is a very convenient variable when consid-
ering serial manipulators. However, it may be less relevant in cases where agents exhibit
a very different structure or in other types of tasks as well. Thus, to illustrate the Coach-
GAN method applicability, this third configuration demonstrates that it is possible to
transfer task knowledge through measurements not directly accessible. Specifically, this
case proposes to train the student using the ball velocity. This configuration requires an
additional ball speed predictor model, trained to predict ball speed at the next step, given
the ball configuration and the effector position, as displayed in Figure 5.6.

FIG. 5.6. Training predictor to forsee next step ball speed.

FIG. 5.7. Training discriminator based on predictor outputs.

Training the discriminator consequently requires an additional step, during which effector

86 5.1. COACHGAN

positions, both real and synthetic, are first passed through the predictor. This way,
the teacher discriminator learns to classify suitable ball speeds, based on the predictor
predictions, see Figure 5.7.

Once the teacher discriminator is trained, it is used to train the student generator. As
done precedently, the student generator proposes angles resulting in an effector position,
computed either with an analytical or approximated model, which is then used by the
predictor to compute the ball speed at next step. The discriminator evaluation of this
vector is finally used to optimize the student generator’s weights, see Figure 5.8

FIG. 5.8. Student generator (in orange) training setup for experiment Ball Rebound.
Discriminator evaluation goes through the predictor and RISV before modifying generator
parameters.

5.1.5 Training the Expert

In the experiments presented below, a task expert is required. This expert agent is a
4-DoF serial manipulator, trained using PPO. Consequently, a MDP version of the Ten-
nis environment is defined and encourages the agent to maximize the following reward
function:

rtennis = α+ o× (β + γ ∗ exp(−d)) (5.6)

where α is a small constant that incites the agent to keep the ball over a height threshold
for as long as possible. o is the binary contact flag: 1 when a contact between the ball and
the wall is detected, and going back to 0 at the next step. β and γ are constant values
used to weight the relative importance of accuracy when touching the wall. Finally, d
is the vertical offset between the ball and the target on the wall. This reward function
incites the agent to hit to ball towards various locations which broadens the ball impact
distribution, thus improving the agent versatility and ultimately providing a more diverse
trajectory dataset.

CHAPTER 5. TEACHER-CENTERED TRANSFER 87

5.1.6 CoachGAN Results

5.1.6.1 Effector Position ISV

Once the expert agent is ready, it is used to generate the training dataset. For the two
first configurations, that is Actual Kinematics and Approximated Kinematics, the
proposed ISV is the effector position. As such, each line of the gathered dataset features
the initial ball conditions (position and speed) and the expert effector position recorded
when contact is detected.

FIG. 5.9. Adversarial losses along training.

The adversarial pair (teacher discriminator and fake expert generator) is then trained on
this trajectory dataset. Figure 5.9 shows the adversarial losses along training based on
Equations 5.3 and 5.5. These alternating curves are usual in adversarial framework and
represent one model improving in spite of the other. It is however possible to see that the
process eventually reaches an equilibrium. As a visual In the upper right corner are dis-
played fake expert generator ISV solutions in the task space for various ball configurations,
showing that the real expert behaviour was indeed approached.
Figure 5.10 displays the normalized discriminator evaluation of ISV (effector positions in
this case), for a given ball configuration. As can be observed, the discriminator presents
a clear preference for ISV along a line following the expected ball path. Furthermore, the
discriminator places its highest confidence (strong yellow color) in an area located in the
close vicinity of the dataset ground truth (the expert effector position, drawn in green),
showing that it has indeed learned from the expert behaviour.
Once trained, the discriminator can be repurposed for training the transfer target, which
is the student generator. In this configuration, the task knowledge is transferred towards
a 5-DoF serial manipulator. As such, the generator output vector is interpreted as the
target joint angles for the student. The effector angle is manually set to π

4 degrees. Then,

88 5.1. COACHGAN

FIG. 5.10. Normalized discriminator evaluation of ISV (effector positions) in the task
space for two given starting ball configurations. Higher values (yellow) are favored.

(a) Actual FK. (b) Approximated model.

FIG. 5.11. Sampled solutions for actual and approximated ISV in green. Baseline from
untrained generator in white.

it is necessary to translate the student generator output into the expected intermediate
variables, that is the effector position, with the help of the unparametrized model. Figure
5.11a shows, in green, various ISV solutions given by the student generator, after training.
The best solution, with respect to the discriminator, is also fully displayed. As a baseline,
solutions from an untrained student are also displayed in white. As can be seen, the
trained solution distribution is more compact and centered in the area most valuated by
the teacher discriminator, as opposed to the untrained distribution. This demonstrates
that it is possible to guide a generator with a discriminator through intermediate variables.
Furthermore, it is possible to notice that the trained generator solution results in a student
effector close to the original expert solution (light blue).

CHAPTER 5. TEACHER-CENTERED TRANSFER 89

(a) Configuration A. (b) Configuration B.

FIG. 5.12. Task-space evaluation by the discriminator based on predictor results.

5.1.6.2 Approximated Kinematics ISV

Focus is now set on the Approximated Kinematics configuration. In this case, an
approximation model is trained to predict the student effector position given the agent
joint angles. Using the same teacher discriminator model as in the Actual Kinematics
stage, the student generator is trained similarly, replacing this time the agent analytical
kinematic model by the trained one. Similar to the previous case, Figure 5.11b shows
trained generator solutions and their baseline. As can be observed, the new generator
solution distribution is also compact and adequately follows the discriminator preferences,
demonstrating the reliability of the approximated model. While the approximated model
is simple, this approach demonstrates that the CoachGAN is not limited to analytically
defined models and can be used for cases where no robot kinematic model is available and
must then be learned.

5.1.6.3 Ball Rebound Speed ISV

Finally, let us consider the last configuration where, instead of relying on the effector
position, the discriminator uses the Ball Rebound Speed to distinguish between ex-
pert trajectories and synthetic/not suitable ones. Figure 5.12 displays the discriminator
evaluation of effector positions based on the predictor outputs as introduced in Section
5.1.4. Due to the fact that the teacher discriminator training involves the predictor, the
trained discriminator preferences do not overlap the distributions observed in Figure 5.10.
However, they still strongly favor positions located closely to the expert ground truth.
The student generator is then trained accordingly to the process depicted in Figure 5.8.

90 5.1. COACHGAN

FIG. 5.13. 2D representation of the solution distribution. Successful solutions are either
overlapping expert position or in the ball path.

5.1.6.4 Analysis

The performances of these models are displayed in Figure 5.13 where, for a given ball
configuration, each model samples 2048 solutions. Sampling several predictions from the
model enables us to conduct an analysis and evaluate, for instance through the width of
the proposed distribution of solutions, the variance of the model. Indeed, it is possible to
notice that the blue and orange distributions, corresponding respectively to the analytical
model and the approximated kinematics model, are very close, showing the approximated
model reliability for transferring the discriminator evaluation. Moreover, these distribu-
tions overlap the expert effector position. The green distribution, representing solutions
from the generator trained with the predictor pipeline is slightly broader than the two
other distributions, as well as being located closer to the ball. As training for this model
relied on another dataset, it consequently generated a differently inclined discriminator,
leading in turn to a closer player student. Still, it appears that these distributions are di-
rectly located in the ball speed direction, thus enhancing the agent chances of intercepting
the ball. Furthermore, it is possible to explain the width of the distributions by the fact
that only the effector position is registered on contact and that the model is not directly
aware of the bat length. Nonetheless, as shows Figure 5.14, all generators provide educated

CHAPTER 5. TEACHER-CENTERED TRANSFER 91

FIG. 5.14. Interception performance and training time.

solutions. To establish these results, 500 ball trajectories are recorded, and, for every case,
each student samples one joint angles solution given the initial ball configuration. Then,
a check for collision is run along the ball path allowing in fine to obtain the interception
score of each model (dark blue bar in Figure 5.14).

Now, let us consider the robots involved in the transfer experiments detailed above. While
it might appear that these agents are kinematically close, it is important to note that the
ISV vectors could have been generated by any robot having an end effector. Indeed, the
student generator never has access to the expert geometry, thus broadening the spectrum
of transfer.

Lastly, training these models requires negligible time and computation resources. Indeed,
while the initial expert training requires 4 hours, the most time-consuming configuration,
featuring additional dataset and predictor, needs less than 12% of total training time (26.51
minutes). Student training in itself can be completed in less than ten minutes. And, as
was shown in the Actual Kinematics case, a discriminator can be reused, thus further
reducing the time needed for transfer. Although tempting, increasing training time is
not likely to yield considerable improvement. Instead, based on the teacher discriminator
result analysis, a more promising approach for higher quality students would be to focus
on creating a more qualitative teacher that would progressively reduce the area deemed
suitable. In this view, for the Ball Speed configuration, an improved and more reliable
predictor model would surely result in an improved student performance. Nevertheless,
these results clearly illustrate that the CoachGAN method does allow fast transfer of task
knowledge between differently shaped entities.

92 5.2. TASK-SPECIFIC LOSS

5.1.7 Conclusion on CoachGAN

In this section, a new step-by-step methodology for systematic and fast transfer of knowl-
edge from one entity to a differently structured one has been proposed. Relying on an
adversarial framework, the CoachGAN technique was evaluated using various intermediate
state variables (ISV) and shows that it is possible to transfer task knowledge to a student
agent without interaction of this agent with the task. As explained in the experiment
results, this method allows to train students within minutes, while most RL tasks require
several hours of training. Thus, the applications of CoachGAN are numerous, especially
given the increasing availability of approximation models. In its current form, this method
does however present some limitations. Specifically, as can be seen in the experiments,
the student generator outputs correspond to final target states (for instance, the expected
configuration for touching the ball). This output definition can in some cases be detri-
mental to the application spectrum, particularly in cases where unexpected events must
be handled.
This limitation stems directly from the learning process. Indeed, as the learning loss is
established based on the ISV, the discriminator learns to evaluate states. As the student
generator is trained using the discriminator, predicting intermediate state conditioned on
current state makes training more difficult.
Taking into account this limitation, various alternative ways could offer a way out. A
straightforward approach would be to adapt the generator to output several intermediate
key states and sum the teacher discriminator evaluations of these states to compute the
error. Although appealing, this formulation could introduce stabilization issues related
to the number of intermediate steps and the distance between them. Another paradigm
would be to find a way to evaluate the results of a student action with respect to the action
taken by the teacher for a similar environment configuration. The next section introduces
the Task-Specific Loss (TSL), another TEacher-Centered method that relies partly on this
second approach to propose a reactive agent formulation.

5.2 Task-Specific Loss

As seen in the previous section, the CoachGAN methods provides a way to transfer knowl-
edge from a given expert to a morphologically distinct student. However, this technique
relies on an architecture that prevents its usage in an interactive way. Specifically, its
current form is geared toward the generation of intermediary states that must then be
reached using other state-of-the-art methods.
The Task-Specific Loss (TSL) approach, introduced in this chapter, aims at tackling this
issue by linking the student loss to its ISV variation.
Building on works described in (75) that introduced a Variational Auto-Encoder (VAE)
architecture suited for assistive control, the Task-Specific Loss (TSL) approach introduces
an extension that improves on CoachGAN interactive limitations as well as enabling the
low-cost transfer of latent-spaces between differently shaped agents for the initial assistive

CHAPTER 5. TEACHER-CENTERED TRANSFER 93

control method. To do so, the TSL relies on the following main idea: ideally, the closer
the initial ISV state, the smaller the ISV variation between the student and the teacher
should be after respective action, as shown in Figure 5.15
Assistive robotics currently have multiple applications, such as exoskeletton usage or, in a
more domestic and common environment, assisting disabled people in their everyday lives.
While the architecture proposed by the authors of (75) strongly ease the process of con-
trolling dextrous robots, the TSL methodology brings an innovative way to transfer these
control policies to morphogically distincts robots, thus futher easing the user experience
in case switching robots is required.

FIG. 5.15. The TSL defines an Intermediate State Variable (ISV) of interest that is
responsible for sending relevant error signal to the student. In this picture, the ISV is
represented by the painting. Body position having no influence on this value, the green
configuration yields a low error, while the red setting returns a strong error value.

5.2.1 The TSL Principle

The TSL technique belongs to the TEacher-Centered approaches and, as in the CoachGAN
process, relies on an expert dataset to transfer knowledge to the student. To do so,
this instance of TEacher-Centered techniques, inspired by (75), relies on a Variational
AutoEncoder to encode the expert strategy in a latent space that can later be sampled
from. In the TSL framework, the efficiency of a transfer is evaluated with respect to the
similarity of the variation between its ISV states and the teacher’s between two timesteps.
Conceptually, the TSL is supported by the belief that a trained student, placed in a given
configuration, should produce an action that would lead it into a state similar to the
state of the expert if it was placed in the same configuration. To reach this result, the

94 5.2. TASK-SPECIFIC LOSS

transfer loss function focuses on the ISV variation between two steps, see Figure 5.16. The
evaluation of the loss function during transfer is nevertheless more thoroughly described
in Section 5.2.3

FIG. 5.16. TSL penalizes the student when its movement does not preserve the estimated
metric at the previous timestep.

5.2.2 Method

Similarly to CoachGAN, the TSL is a two-step process. However, it relies on another type
of generative models: Variational AutoEncoders, introduced in Section 2.6.2. Instead of
relying on a discriminator to distinguish between expert-generated ISV and unlikely expert
states, the TSL method leverages the encoding space that is inherent to the autoencoders
class of models.
Specifically, the first step of this method is to train the VAE to be able to reconstruct the
expert action, given its current state. This forces the VAE to create a latent representation
of the expert trajectories, which in turn allows to bypass manually-crafted features as in the
UNN framework. To fit into this new framework constraints, the usual VAE architecture
has to be modified. Concretely, instead of aiming at reconstructing directly the input,
the model here aims at only reconstructing the expert action. Thus, the reconstruction
objective from the Equation 2.50 of common VAEs becomes:

Lr = E[||a− ã||] where ã = D(z, s) (5.7)

where the E operator represents the average over a batch of examples, a is the expert

CHAPTER 5. TEACHER-CENTERED TRANSFER 95

FIG. 5.17. User-assisted VAE architecture during training phase.

FIG. 5.18. User-assisted VAE architecture during usage/testing phase.

action and â the decoder D reconstructed version.
Conceptually, it is possible to see this setup as a way to embed the expert’s policy within
the code z. Then, it allows the decoder, conditioned by the current agent state s, to
adequately reconstruct the expert input action a, even though the action dimensionality
is higher than the code size, see Figure 5.17. An additional difference of the TSL framework
with the previously introduced CoachGAN approach lies in the testing setup. Indeed, as
the process described above results in an embedding of the expert policy, it is consequently
possible to judiciously select actions from the resulting low-dimensional latent space to
control the student in the same way that the teacher was controlled. In the assistive
scope in which this method was developed, the action selection process can for instance be
assigned to a human operator, as shown in Figure 5.18. Concretely, the action selection
process returns a low-dimensional code z, which, once decoded by the agent, enables the
control of the higher DoF robot.

5.2.3 Transfer

From the expert dataset, an intuitive agent (the teacher) has been created, it is represented
by the decoder DT shown in Figure 5.19. The goal is now to create a decoder DS for a
student agent with a body configuration that is distinct from that of the teacher agent,
see Figure 5.19. The main motivation here is to leverage the previously trained model and
thus avoid recreating a dataset of expert trajectories for the student agent. Indeed, there
are numerous examples of systems where generating several instances of datasets could be
costly, difficult or even plainly impossible, for instance demonstrations of human experts
on a physical system. However, here lies the main obstacle to the transfer. Indeed, as the

96 5.2. TASK-SPECIFIC LOSS

two agents do not share the same body structure, it is unclear how to force the student to
mimic the teacher. The Task-Specific Loss (TSL) offers a conceptual answer to this issue
by introducing a differentiable task-relative metric as the loss function. Its goal is to
induce a similar state variation, given a task-specific metric, for the student
as for the teacher.

FIG. 5.19. Distillation process from the teacher to the student agent via TSL.

The TSL approach shares features with both Reinforcement Learning (RL) and Supervised
Learning (SL), but also clearly distinguishes itself from these two approaches. Specifically,
the process takes place in a Markov Decision Process (MDP), similarly to RL, but does
not rely on a reward function in the classical way. Indeed, the reward signal from RL
is usually delivered from an external process, thus forcing the agent’s optimization to
act on the action probability distribution, not on the action directly. Also, RL relies on
exploration to discover suitable policies, while the TSL student agent can directly learn
from the teacher. The RL exploration process is prone to lead to very low sample efficiency,
whereas the TSL importantly improves this aspect, as demonstrated in Section 5.2.5.4.
The TSL method also differs from Supervised Learning (SL) methods, because although
it uses a loss function that recalls classical regression methods, it is not necessary to build
a dataset which would defeat the purpose of the transfer from the teacher agent.
The main idea of the TSL approach is to enforce a similar state variation between both
agents. This state variation is the result of the action, which is the decoder’s output
and is consequently differentiable. As a result, if the state modification function can be
written in a differentiable fashion, it is then possible to compute directly how accurate
was the student’s action with respect to the teacher’s. This, in turn, allows to compute
an error related to the result of this action and apply the backpropagation directly to
the student’s weight matrices. Specifically, given a starting position for the teacher and
the student agents, we first compute the value d0, corresponding to the initial distance
based on the current TSL metric, a task-defined state similarity measure. Next, a random
code vector is sampled from a Gaussian distribution centered on the origin and with a
standard deviation of one, in order to respect the teacher’s code distribution induced by
the KL constraint. This code z is used by both agents, along with their current state to
produce an action. We then use this action to increment the state of both agents. From
here, it is possible to compute the next metric value d1, which finally leads to the TSL
loss: LTSL = |d0 − d1|. As both distances were obtained using differentiable functions, it
is possible to directly determine the gradients, based on how close the student action was
from the teacher one and optimize the student parameters accordingly.
However, it is paramount that the student mimics the teacher only when their initial states

CHAPTER 5. TEACHER-CENTERED TRANSFER 97

are deemed close enough, task-metric-wise. Hence, before backpropagating the loss, each
element is weighted accordingly to the initial distance between the agents. Formally, we
use the following weighting strategy:

wi = exp(−d0,i × αtask) (5.8)

That is, the importance of each batch element i is exponentially proportional to its initial
distance d0,i, where αtask is a regularization factor used to take into account the scale of
each environment. Finally, the loss is computed as the mean of each example error and
we have:

LTSL = E
i∈[0...n]

[LTLS,i] = E
i∈[0...n]

[|d1,i − d0,i| × wi] (5.9)

This process is depicted in Figure 5.16.

5.2.4 Experimental setup

As introduced in Section 5.2.2, the TSL architecture is particularly well suited to enable
assistive control of robots, due to the embedding of expert policies in low-dimensional
latent spaces. Thus, this section introduces two experimental assistive control tasks, used
to validate the proposed approach. Each of them uses two specific serial manipulators
controlled by a human user through the code z. The setup and goal of each task are now
detailed.

5.2.4.1 Tasks and Agents

Circle to circle contour displacement. Inspired from (75), the TSL principle is first
evaluated on a rather simple task. In this environment, the objective is to move the end
effector of a serial manipulator agent between and along two quarter circles of different
radii. Once the expert is trained, its latent space will be transferred to another serial
manipulator with a different structure. To train the teacher, we first create an expert
dataset, that consists of sequences of states (joints angles) and actions (joints speed),
using an inverse kinematics based approach, see Figure 5.17. Following the works of (75),
a 2 dimensional latent space for the code z will be used to embed the expert policy.
Regarding the transfer, the task metric is defined as the distance between the teacher
and the student end-effectors. Specifically, a custom batch forward kinematic module
computes the end-effector position based on joints angles and segment lengths. That is,
for each batch element:

dcircle,i = dEuc(F (lt, qi,t), F (ls, qi,s)) (5.10)

where dEuc is a module that computes the Euclidean distance between two points, F is
the differentiable forward kinematics module, lt is the teacher segments length, qi,t the
teacher joint angles at time i and we use respectively ls and qi,s for the student and the

98 5.2. TASK-SPECIFIC LOSS

weights wi are computed using Equation 5.8. Then, for a whole batch of examples, we
have:

Lcircle = E
i∈[0...n]

[wi × |dcircle,i − dcircle,i+1|] (5.11)

Initially learned by a 5 rotoid joints robot (5R), this task knowledge is then distilled within
a 4R agent, which total length equate that of the 5R, through the TSL Lcircle using this
Euclidean distance between end-effectors as a metric, see Figure 5.20.

FIG. 5.20. Various teaching cases and their corresponding losses and importance weight.
The teacher’s joints are drawn in blue, while green is used for the student.

Tennis Task. In this second environment, designed to evaluate our method in a more
complex setting, the goal is to bounce a ball against a vertical wall as many times as
possible. Despite the conceptual similarities, it is distinct from the one used in Section 5.1.4
where the objective was mainly to intercept the ball, while this environment emphasizes
the goal of maximizing bounces. The task is initially performed by the teacher, a 4R serial
manipulator, the last segment serving as a bat to bounce the ball. The expert dataset is
generated by a custom RL-agent trained on this task with an additional signal to specify
the ideal impact location and a 1D latent space is used for this task. The tennis skill
is then transferred to two students: a 5R and a 3R agent, with a total length equal to
the 4R’s. This time, the TSL relies on three terms: the Euclidean distance between end-
effectors positions, similarly to the previous environment and referred to as Lcircle, the

CHAPTER 5. TEACHER-CENTERED TRANSFER 99

difference in the orientation of the bats and the difference between the magnitude of the
actions (joints speeds):

Ltennis = Lcircle + Lori + E
i∈[0...n]

[||Ai,t −Ai,s||] (5.12)

where Lori is the equivalent of Lcircle for the bat orientation differences, when Ai,t and
Ai,s are respectively the teacher and student actions at time i.

5.2.4.2 Models

The VAE model for the teacher agent is composed of an encoder and a decoder. The
encoder part is composed of one 64 units hidden layer, followed by a split leading to the
mean and standard deviation heads having also 64 units each. These two layers allow
generating a code of smaller dimension that is then sent to the decoder. This latter
model is a feedforward architecture with two hidden layers with 64 units each. Both
the encoder and the decoder use Tanh non-linearities. We initialize both networks using
Xavier initialization (145). For the transfer case, we remove the encoding part and train
only the decoder using the TSL as explained in 5.2.3 and shown in Figure 5.19.

5.2.5 Results

5.2.5.1 Circle to Circle Contour Displacement

The teacher model has been trained using mini-batches of 4096 examples, an Adam op-
timizer with a learning rate of 5 × 10−3 and a weight decay value of 10−3. Figure 5.21
shows the loss evolution of the training set for the teacher agent and the distribution of
the latent representation z of a randomly sampled batch of 4096 examples.
The use of a VAE instead of a vanilla auto-encoder has been motivated by the idea that the
VAE will create a smooth distribution of the latent representation, instead of having sparse
clusters. It is here clearly validated, as can be seen in Figure 5.21: in both directions, the
z distribution appears to be dense, without obvious holes or clusters. Furthermore, VAEs
are known for their disentangling capacities, as explained in Section 2.6.2. As the expert
dataset is composed of trajectories between and along two circles of different radii, we are
thus able to generate a 2D controller whose main axes respectively translate into radial
and axial movements.
Once the teacher is ready, it becomes possible to create a student agent that mimics the
teacher behaviour on the task. For this specific task, we use the TSL described in Equation
5.11 that penalizes the student when the variation of its states, TSL metric-wise, differs
from the teacher states variation. For similar starting states of the teacher and student
agents and given the exact same sequence of user commands {z0, z1, ..., zt}, the agents
ending states should also be similar, TSL metric-wise.
The main plot in Figure 5.22 shows the resulting distance between both effectors after
10 successive actions, for a given z and a starting position in which both effectors are

100 5.2. TASK-SPECIFIC LOSS

FIG. 5.21. Reconstruction loss along training epochs and 2D code distribution on the test
set for the circle task.

located at the same place. It is possible to see the most movements result in a distance
inferior to 1% of the total body length, an error that is completely acceptable for the tasks
considered. In the worst cases, with no user adaptation, the difference is still less than 3%
of the total body length, underlining the transfer efficiency.
Additionally, using the experimental conditions described for the distance distribution,
we plot in Figure 5.22 a small subset of configurations, for a clearer understanding of
the movement. In these cases, the student and teacher end-effectors end up in a close
configuration, as enforced by the TSL, even though there was no closed-loop correction
coming from the user. Even though the student has not been taught on a dedicated dataset,
it has still been able to generate movements similar to the teacher’s, demonstrating the
transfer efficiency.

5.2.5.2 Tennis task

The Tennis task was also used as a benchmark and testing environment for the TSL.
Indeed, its complexity as well as the fact that it involves physics, external perceptions and
world interactions makes it appealing for evaluating the TSL.
The objective is to create an assistive agent to facilitate the control of a serial manipulator
playing a game of tennis and allow the user to rely on a single latent variable to get the
agent to bounce the ball. This environment is more challenging than the circle to circle
displacement because it implies a higher reactivity from the agent. Furthermore, writing
an analytical model to solve this task proves to be challenging. The first step consists in
creating an expert player through RL. To fulfill this step, we used PPO once more. We
recall here the main components of this environment where the teacher is a 4-DoF agent:

CHAPTER 5. TEACHER-CENTERED TRANSFER 101

FIG. 5.22. Distribution of the distance between effectors for 1000 samples after 10 succes-
sive actions using the same user input z.

• The state s ∈ R9 = [srobot, sball, Pwall] where:

– srobot ∈ R4 holds information about the robot’s joints angles

– sball ∈ R4 describes the relative ball position and its current speed

– Pwall ∈ R is the vertical target position on the wall used to enhance the distri-
bution of impacts and ultimately have more control over the expert trajectories
dataset

• The action a ∈ R4: angular speed for each joint

• The reward rtennis = α+ c× (β + γ ∗ exp(−d)) where:

– α is a small constant that incites the agent to keep the ball over a height
threshold for as long as possible

– c is the contact flag. Its value ranges from 0 to 1 when a contact between the
ball and the wall is detected, and goes back to 0 at the next step

– β and γ are constant values used to weight the relative importance of accuracy
when touching the wall.

– d is the vertical offset between the ball and the target on the wall

After 105 episodes of training, amounting to 4 hours, the 4R agent is effectively able to
play and can center its shots around the expected target. Figure 5.23 shows the evolution

102 5.2. TASK-SPECIFIC LOSS

of the mean reward through training on the right, and the impact distribution of 100 shots
per target for 6 different targets on the left. As we can see, the agent manages to direct the
ball around the target and most of the shots land in the vicinity of the expected impact
point.

FIG. 5.23. Mean Cumulative Reward Evolution and ball impact distribution for 100 shots
per target point.

Once the expert is available, the process is similar to the Circle task. To train the
teacher agent, a balanced (with respect to the impact points) expert trajectories dataset
is generated. The teacher VAE model optimizes its parameters to be able to recover the
action, while encoding the inputs in a normally-distributed latent representation. In this
specific case, the KL loss weight is halved to ensure a better reconstruction. Figure 5.24
shows the evolution of the reconstruction loss for the training along the epochs, as well as
the distribution of the latent encodings for a batch of 2048 examples. Eventually, using
the TSL defined by Equation 5.12, the task knowledge is distilled within two students: a
5R and a 3R robot.
In this configuration, we assess the controllability and efficiency of the trained student
by relying on 4 human players. In our setting, each human player plays five games with
each robot in the Tennis environment. For each game, we record the number of bounces
against the wall. The objective is to maximize the number of bounces. The results of this
evaluation are displayed in Figure 5.25. As a baseline, we add a plot for the expert, as
well as a randomly initialized student agent, for both the 5R and the 3R, controlled by
the best human player P0. Although a certain variability can be observed between the
players, relative to their personal ability, each of them is able to reach much higher scores

CHAPTER 5. TEACHER-CENTERED TRANSFER 103

FIG. 5.24. Tennis Teacher training metrics and code distribution of a randomly sampled
batch of 2048 examples.

than the random baseline, with both students and the teacher. After switching assistive
agents, from teacher to students, most players are able to conserve their average score,
except P0 which average score decreases of approximately 15%. However, even these lesser
scores are still considerably beyond the random baseline.
This illustrates clearly that transfer through the TSL is effective. Additionally, the four
players even decrease the variance of their score when using the student agent, underlining
the robustness of the process. However, as it is difficult to assess these performances from
sheer numerical values, a link to a video of our results is provided at the end of this
chapter.

5.2.5.3 Autonomous TSL

Although the TSL assistive aspect is an interesting feature, particularly suited to numer-
ous configurations in which it is desirable to rely on an external operator to provide the
control signal and supervise the ongoing operation, there exist setups in which the agent
autonomy is an even more desirable facet. This raises interrogations about the meaning
of this autonomy. Indeed, in the context of a task such as the circle-to-circle displace-
ment, the agent obviously requires an external incentive to move to a given point, thus
reducing the interest of an unsupervised agent in the TSL framework. However, the Ten-
nis environment yields a more exciting perspective, TSL-wise. In fact, in this task, an
autonomous agent could maintain the system in a controlled state, specifically bouncing
the ball along an unchanged trajectory, when a user-controlled robot could produce more

104 5.2. TASK-SPECIFIC LOSS

FIG. 5.25. Comparison of assistive performances of several players using both teacher and
student agent with baseline.

diverse movements, as schematized in Figure 5.26.

FIG. 5.26. Comparison of TSL-based controlled for autonomous agent and user-controlled
agent in a relevant environment.

As was shown in the previous experiments, and particularly in the circle-to-circle dis-
placement, the user input magnitude influences the output action magnitude. As such,
due to the current specificities of the TSL formulation, endowing an agent with the au-
tonomous characteristics, in a stabilization sense as defined above, can be done by ensuring
the user signal magnitude is null. In practice, this means that a vector of zeros z0 is con-
catenated with the state s and fed in the student decoder. That is:

aAuto = D(z0, s) (5.13)

where z0 ∈ Rdim(z).
To evaluate the student agent ability to stabilize the ball without user direct supervision

CHAPTER 5. TEACHER-CENTERED TRANSFER 105

and control, the impact position distribution and the action magnitude are recorded along
several episodes and are displayed in Figure 5.27. As can be observed, every run shown in
this figure exhibits globally the same partition: at the beginning of the episode, the agent
outputs aggressive actions to catch the ball and orient its velocity in a way that it finds
fitting. Once in this configuration, the agent succeeds in maintaining the ball for a while
with a sequence of actions of lower magnitude. Finally, a third phase can be detected
when the agent misses the ball and resumes to a more aggressive control to catch it back.
Meanwhile, the histogram representing the distribution of impacts for each episode shows
that the agent is able to hit the ball so that most rebounds are located in a restricted
area, thus underlining the stabilizing feature of the autonomous TSL.

5.2.5.4 Training Time & Assistive aspects

One of the principal motivation for transfer learning is to decrease the time needed to
produce a functional model. The TSL approach clearly fits within this framework, as
the effective transfer process is quite short on a regular i7 CPU with 64 Gb of RAM. In
the Circle case, as the expert dataset relies on an inverse kinematics approach, the time
needed for generating expert trajectories is negligible. As a result, a user could consider
the fact to create an expert with the student structure as well. However, as the teacher
training time using the expert data is close to 15 minutes, the TSL approach nevertheless
yields a 66% time reduction in this environment as the transfer only requires 5 minutes.
While it may appear of limited interest given the overall duration of the process, this
simple environment allowed us to illustrate the TSL capabilities. The transfer significance
is more strongly emphasized within the Tennis environment. In this configuration, the
RL agent interacts during 4 hours with the environment before yielding a suitable expert
policy, to which additional 15 minutes are necessary to train the teacher agent. In this
case, the transfer using the TSL approach can be done in 5 minutes, that is only 7% of the
time initially needed for the teacher, and yet results in functionning assistive controllers as
demonstrated by our results. This clearly establishes the transfer value and shows that the
more the expert dataset generation is costly, the more interesting the transfer of control
policies is.
From a qualitative standpoint, this approach yields an important ease-of-use enhancement,
particularly in the case of the Tennis task. Indeed, it would be highly challenging and
non-intuitive to design and use a controller to manually pilot each rotoid joint of the tennis
agent. The assistive method, empowered by the TSL method, allows users to easily reach
a considerable number of bounces by letting the user focus on a global plan, instead of
managing the low-level inputs.

5.2.6 Conclusion on Task-Specific Loss

In this section, it is proposed a new step by step methodology allowing to systematically
transfer knowledge of task between two different structural agents. The introduced concept

106 5.3. CONCLUSION ON TEACHER-CENTERED METHODS

of Task-Specific Loss (TSL) was evaluated over various tasks, within the background of
assistive robotics. As can be seen in the results, this method offers considerable time
saving compared to state-of-the-art RL methods and can distill the task knowledge of a
teacher agent within a structurally different student agent within minutes, as opposed to
several hours of training for more complex task. Furthermore, our experiments, especially
the Tennis task, demonstrate that the transferred knowledge is robust and that various
users are able to generate stable performances on a task involving physics, planning and
consistency. Additionally, this TSL formulation enables in some cases an autonomous
usage, in a stabilization sense. Although improvable, these results were obtained without
dedicated architecture or agent modification or fine-tuning. The TSL application scenarios
are numerous: in assistive robotics, as it can be considered to allow disabled people to
seamlessly fit their new robotic platform to behave similarly to their previous one. In
other robotic domains as well, since learning-based transfer techniques for control tasks
are not particularly developed.

5.3 Conclusion on TEacher-Centered methods

This chapter has presented two new approaches for transfer learning. These techniques
can be considered as TEacher-Centered because, as opposed to the UNN method, they
do not aim at embedding the task knowledge in a separate module but instead directly
distill the expert behaviour within the new agent control module. Methods belonging
to this family are appealing because they do not fix a particular interface between the
agents and are thus more flexible. This flexibility enables more sophisticated losses and
less restrictions over the operating agents. Furthermore, unsupervised training is usually
more reliable than RL, making the transfer more robust. The main limitation of these
approaches in their current form is a likely accuracy loss. Indeed, the very definition of
VAE implies smooth Gaussian-like latent space, which makes it hard to have very precise
values, a well known issue in literature. Similarly, the discriminator in the CoachGAN
setting learns a probability distribution and a too sharp frontier makes it difficult for the
generator to learn. However, these issues nevertheless allowed the transfer to occur for
the presented tasks and can be mitigated by putting more care in the loss definition or
dataset

Publications

• CoachGAN: Fast Adversarial Transfer Learning between differently shaped
entities - International Conference on Informatics in Control, Automation and
Robotics (ICINCO) 2020 - Paris, France

• Task-Specific Loss: A TEacher-Centered Approach to Transfer Learning
- Submitted to: Lecture Notes in Electrical Engineering - Springer

CHAPTER 5. TEACHER-CENTERED TRANSFER 107

Additional Material

• https://drive.google.com/drive/folders/1EZ0vSB5vzCOAbtHOPLlpOl8Megd0gm14?
usp=sharing

https://drive.google.com/drive/folders/1EZ0vSB5vzCOAbtHOPLlpOl8Megd0gm14?usp=sharing
https://drive.google.com/drive/folders/1EZ0vSB5vzCOAbtHOPLlpOl8Megd0gm14?usp=sharing

108 5.3. CONCLUSION ON TEACHER-CENTERED METHODS

0
5

10
15

20
25

30
0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

Rebounds: 20
Action M

agnitude
Im

pacts distribution

0
5

10
15

20
25

30

0.0

0.2

0.4

0.6

0.8

1.0

1.2

Rebounds: 21

0
5

10
15

20
25

30
0.0

0.5

1.0

1.5

2.0

Rebounds: 20

0
5

10
15

20
25

30
0.0

0.2

0.4

0.6

0.8

1.0

1.2

Rebounds: 22

0
5

10
15

20
25

30
0.0

0.2

0.4

0.6

0.8

1.0

1.2
Rebounds: 15

0
5

10
15

20
25

30

0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

Rebounds: 27

0
5

10
15

20
25

30
0.0

0.2

0.4

0.6

0.8

1.0

1.2

Rebounds: 9

0
5

10
15

20
25

30
0.0

0.5

1.0

1.5

2.0

Rebounds: 16

0
5

10
15

20
25

30
0.0

0.2

0.4

0.6

0.8

1.0

1.2
Rebounds: 23

Im
pact distribution and Action M

agnitude along episode

FIG
.5.27.

Im
pact

distribution
and

action
m
agnitude

ofan
autonom

ous
student

along
severalepisodes.

Chapter 6
General Conclusion & Prospects

109

110

General Conclusion

As it appears reasonable to expect robots to endorse an ever more important role in the
future human civilization, it is necessary to envision the constraints and modalities for
managing a fleet of robots. Currently, several non-negligible and systemic issues stand in
the way of the large-scale deployment of robots. In particular, the known sample ineffi-
ciency of learning-based approaches, in particular for on-policy Reinforcement Learning
frameworks, and the lack of structured transfer-learning strategies for these agents are
representative of these issues. Consequently, at the beginning of this thesis, we asked
whether the transfer of task-specific knowledge between two entities was possible, despite
their potential morphological differences. We considered how transfer is applied in hu-
man societies and were able to propose a classification of techniques: TAsk-Centered and
TEacher-Centered transfer.

TAsk-Centered transfer techniques

TAsk-Centered techniques (Section 4.1) are inspired from a current common situation
where a specialized piece of knowledge is embedded in a support without direct connections
between the entity who generated the knowledge and the one receiving it. A clear human
analogy could be learning skills from a video online. This method requires nevertheless a
shared interface to successfully link the piece of knowledge with the entities: for instance,
it is unrealistic to consider learning to juggle with four balls if only two are available.
From a practical point of view, this method was implemented in a Reinforcement RL
pipeline. Having highlighted the fact that vanilla architectures and training procedures
lack a clear knowledge structure, as opposed to bigger models with defined dimensionality
bottlenecks, we proposed a staged training method that decouples the control policy of a
given agent from the dedicated task skills. The numerous experiments setup to evaluate
this idea provided various insights: first, the control policy pre-training yields, on its own,
several improvements over naive initialization as it is possible to embed relevant movement
strategies in the agent in a way that enables it to better tackles downstream tasks. As
explained above, RL tends to produce agents with shaky, unstable behaviour and the
introduction of additional reward terms designed to ensure smoother actions are liable to
destabilize the policy altogether, consequently making these empirical results valuable.
Then, as demonstrated in the transfer between various agents (Section 4.2), the knowledge
support module, called the Universal Notice Network (UNN), does supply the trans-
fer target with appropriate information on the task. Agents with a different kinematic
structure and no previous training on the specific task are able to reach performances
close to those of the agent that generated the knowledge, in only a fraction of the initial
number of iterations to fine-tune their behaviours.
As mentioned, the UNN method depends on a shared interface defined at the beginning
of the initial training process. This interface consequently creates ties between all new
agents receiving the module and the initial agent, which will prevent agents kinematically

CHAPTER 6. GENERAL CONCLUSION & PROSPECTS 111

unable to attach to this system to use the task knowledge.

TEacher-Centered Transfer Techniques

The TEacher-Centered family of techniques is the result of efforts directed towards the
abstraction of the UNN interface. Indeed, instead of providing a restrictive state vector to
which all subsequent agents must conform, TEacher-Centered approaches are based on the
idea that, in order to increase its usability, the task logic should rely on a kinematically-
independent metric to evaluate actions. Conceptually, in a glass-of-water-fetching task,
while the UNN would provide the position and orientation of both effectors holding the
glass (thus making the task logic inaccessible to robots with a single effector), TEacher-
Centered methods would provide a target glass state and let the agent manage its kine-
matic configuration to reach such a state. To reach this objective, both TEacher-Centered
procedures rely on a fundamental feature: the Intermediate State Variable. This vector,
obtained through a differential computation, links the teacher agent with the student and
enables the latter to optimize its behaviour to match the teacher’s. The Intermediate
State Variable can be seen as a more flexible and customizable Universal Notice Network
interface.
The Intermediate State Variable (ISV) is central in the two TEacher-Centered tech-
niques proposed. The first one, CoachGAN (Section 5.1.2), uses the Generative Adver-
sarial Framework to create a discriminative model able to detect whether a given state is
likely under the expert policy it has been trained on. Using the ISV permits to translate
the student states, potentially with a kinematic structure different from the expert, into
expert states, consequently enabling the discriminative teacher to provide an evaluation of
the movement. As the ISV computation is differentiable, it is suitable for optimizing the
student agent. In the experiments setup to evaluate the CoachGAN technique, multiple
ISVs are used and we demonstrate that both analytical functions as well as approximations
with neural networks are usable, thus largely widening the applicability of this method
(Section 5.1.6).
The second approach, called the Task-Specific Loss (Section 5.2), addresses some of
the CoachGAN limitations, such as the fact the latter procedure was constrained to states
prediction. This alternative formulation, based on a Variational AutoEncoder architecture,
provides a framework that compares the result of student and teacher actions in an ISV
defined metric and penalizes the student agent when the result of its action results in
a larger distance between its new ISV state and the teacher ISV. This procedure has
been evaluated on several environments and, despite the simplicity of these environments,
demonstrates that task knowledge can indeed be transferred through the differentiable
ISV function. In addition, this approach enables the assistive control of an agent (Section
5.2.5).
These developments, in spite of the encouraging results obtained, are not complete and
present undeniable limitations. First, most environments in the TEacher-Centered meth-
ods are not particularly complex and include assumptions that may fail if deployed in a

112

less permissive system. While theoretically compatible with more sophisticated worlds,
TEacher-Centered methods are yet to be evaluated in practical cases. Then, in both fam-
ilies of approaches, very few physical constraints are taken into account for the robots.
This aspect is slightly less problematic in the case of TEacher-Centered methods, Coach-
GAN in particular, as it only requires looking for solutions in another area of the state
space. However, this can constitute a serious obstacle in the UNN configuration as some
states may not be reachable for another robot. Finally, an issue concerning more closely
TEacher-Centered methods is the absence of clear re-training strategy. Indeed, while the
TAsk-Centered UNN was based on RL, which can in principle overcome the initial teacher
by enabling backpropagation to affect all the modules, TEacher-Centered procedures are
tied to the expert performance and even in the perspective of a hardly attainable perfect
transfer, current formulation simply does not conceive a way for the performance to exceed
and go beyond the teacher.

Prospect

TEacher-Centered and TAsk-Centered methods convergence

The decoupling between task and policy, implemented in TAsk-Centered methods, presents
various advantages, in particular in the transfer from simulation to reality. As a matter
of fact, training a policy in a simulated environment and releasing it in the physical
world is not likely to result in successes, partly because of state distribution disparities.
Consequently, it is conceivable to protect the task logic, learned in simulation, from those
unexpected states by using approximators that could translate these outlying states in the
state space area in which the policy was initially trained. Furthermore, the output module
could be trained solely in the real world to take into account the real robot properties.
Doing so, in a primitive task as explained in this manuscript, is both safer and faster than
training the entire agent on a more complex task from scratch.
Furthermore, a slight paradigm change could nonetheless open new multiple and exciting
perspectives for future works based on the two main ideas developed in this manuscript.
For instance, the BAM approach that was designed to prevent several issues related with
interface compatibities between agents, presents, due to the model simplicity, an almost
trivial training procedure. This technique can consequently easily generate experts in a
given environment but needs to ensure continuity between the downstream sophisticated
agents and the relatively constraints-free BAM agent, which is the TAsk-Centered method
weakness. This setup present multiple opportunities for implementing TEacher-Centered
methods where instead of managing complex interfaces and normalization parameters
between morphological distinct agents, an ISV metric could be used to distill the BAM
expert knowledge within the student. Given the BAM expert simplicity, it would even
be conceivable to include analytical approaches when relevant, thus vastly extending the
scope of this method.

CHAPTER 6. GENERAL CONCLUSION & PROSPECTS 113

Merging TEacher-Centered and TAsk-Centered methods with external
works

There are advantages in merging these transfer strategies with other recent works. Calling
in external methods, it could be, for instance, convenient to define a UNN formulation in
the scope of Graph Neural Networks. This way, each agent joint/part would be considered
as a node graph, training could then be targeted towards a single joint and then passed
to every other segment, thus extending the method flexibility.
Other procedures using graphs could be foreseen as well. For instance, the UNN could
be formulated as a GAN framework and trained to generate images based on the current
agent and world state. These images could be considered as mazes that would then be
solved by a search algorithm, such as A?. A loss function would take into account whether
the agent was able to reach its goal and penalize the UNN for inaccurate or unpractical
graphs, in an adversarial fashion. Doing so, again using ISV, would provide reusability of
the UNN to different agents.
By stepping back and having a look at the current research landscape, recent works in
Off-Policy Reinforcement Learning have highlighted goals and practical difficulties that
share multiple features with the works described in this PhD manuscript. More precisely,
considerable efforts are invested in this field toward the creation of a framework in which
an agent can efficiently reuse experiences and trajectories generated by various policies to
predict an accurate value function and ultimately train a successful policy. As opposed to
on-policy approaches that systematically require fresh samples, these techniques present
the advantage of theoretically reducing the number of interactions needed between the
agent and the environment.
As explained, this setup conceptually mirrors the ones developed in the contributions of
this thesis, as it expects to reuse the knowledge of other agents, experts as well as sub-
optimal policies (embodied in the same agent in the case of off-policy RL) and devise
through the trajectories present in the dataset a value function or an action value function
that is then used to guide and fit the policy.
In this view, instead of attempting to supplant these efforts to enable off-policy agents to
learn from other agents experiences, an interesting way would be to position the Teacher-
Centered insights and techniques at a future convergence point. Specifically, TEC ap-
proaches would allow a given agent to be trained on data generated by another policy
embedded in an agent with a different structure. The implementation of this process
relies mainly on ISV and can be envisioned in one of two ways:

• Transform states from the expert trajectories into the new agent states using ISV.
Learn the new agent state value function from these ISV-translated states and fit
the policy as in usual off-policy frameworks.

• Learn a relevant value function on the expert trajectories first. For the new agent,
for a given state, each action taken will result in a new state that can be translated
using ISV, and evaluated by the original expert value function.

114

While ultimately pursuing the same goal, the selection between these two options will
likely take into account the reliability and sensibility of the methods used to compute the
value function and the ISV. For instance, an overfitted value function, displaying extreme
sensibility to the initial dataset may fail with given states coming from a loose ISV. In
this case, translating the expert dataset using ISV might be more relevant. As explained
above, despite the existence of several technical points to answer to and design choices to
infer, we are convinced that this modification to the Teacher Centered framework could
provide an additional flexibility to the method and ultimately enhace its applicability.

Bibliography

[1] Bacon, P., Harb, J., and Precup, D. The option-critic architecture. Association for
Advancement of Articifial Intelligence (AAAI) (Feb 2016).

[2] Baker, B., Kanitscheider, I., Markov, T., Wu, Y., Powell, G., McGrew, B.,
and Mordatch, I. Emergent Tool Use From Multi-Agent Autocurricula. International
Conference on Learning Representations (ICLR) (Nov 2020).

[3] Bansal, T., Pachocki, J., Sidor, S., Sutskever, I., and Mordatch, I. Emergent
complexity via multi-agent competition. International Conference on Learning Representa-
tions (ICLR) (2018).

[4] Bellemare, M. G., Srinivasan, S., Ostrovski, G., Schaul, T., Saxton, D., and
Munos, R. Unifying count-based exploration and intrinsic motivation. Advances in Neural
Information Processing Systems (2016).

[5] Bellman, R. E. Dynamic Programming. Dover Publications, Incorporated, 2003.

[6] Berkeley, G. Three Dialogues Between Hylas and Philonous. G. James, 1713.

[7] Berkenkamp, F., and Schoell, Angela, P. Safe and robust learning control with
gaussian processes. European Control Conference (EEC) (July 2015).

[8] Bishop, C. M. Pattern Recognition and Machine Learning (Information Science and Statis-
tics). Springer-Verlag, Berlin, Heidelberg, 2006.

[9] Brockman, G., Cheung, V., Pettersson, L., Schneider, J., Schulman, J., Tang,
J., and Zaremba, W. OpenAI Gym. CoRR abs/1606.01540 (2016).

[10] Burda, Y., Edwards, H., Storkey, A. J., and Klimov, O. Exploration by random
network distillation. International Conference On Representation Learning (ICRL) (2018).

[11] Burgess, C. P., Higgins, I., Pal, A., Matthey, L., Watters, N., Desjardins, G.,
and Lerchner, A. Understanding disentangling in β-VAE. International Conference on
Representation Learning (ICLR) (Apr. 2018).

[12] Chebotar, Y., Hausman, K., Zhang, M., Sukhatme, G. S., Schaal, S., and Levine,
S. Combining model-based and model-free updates for trajectory-centric reinforcement learn-
ing. International Conference on Machine Learning (ICML) (2017).

115

116 BIBLIOGRAPHY

[13] Clark, K., Luong, M.-T., Le, Q. V., and Manning, C. D. ELECTRA: Pre-training
text encoders as discriminators rather than generators. In International Conference on Learn-
ing Representations (ICLR) (2020).

[14] Co-Reyes, J. D., Liu, Y., Gupta, A., Eysenbach, B., Abbeel, P., and Levine, S.
Self-consistent trajectory autoencoder: Hierarchical reinforcement learning with trajectory
embeddings. International Control on Machine Learning (ICML) (2018).

[15] Cobbe, K., Klimov, O., Hesse, C., Kim, T., and Schulman, J. Quantifying general-
ization in reinforcement learning. Proceedings of Machine Learning Research (MLR) (2018).

[16] Conneau, A., and Lample, G. Cross-lingual language model pretraining. In Advances in
Neural Information Processing Systems 32: Annual Conference on Neural Information Pro-
cessing Systems 2019, NeurIPS 2019, 8-14 December 2019, Vancouver, BC, Canada (2019),
pp. 7057–7067.

[17] Cooper, S. B., and Leeuwen, J. v. Alan Turing: His Work and Impact, 1st ed. Elsevier
Science, San Diego, CA, USA, 2013.

[18] Copeland, B. J. Artificial intelligence. Encyclopædia Britannica, Mar 2020.

[19] Cybenko, G. Approximation by superpositions of a sigmoidal function. Mathematics of
Control, Signals, and Systems (MCSS) 2, 4 (Dec. 1989), 303–314.

[20] Deisenroth, M. P., and Rasmussen, C. E. Pilco: A model-based and data-efficient
approach to policy search. In Proceedings of the 28th International Conference on Interna-
tional Conference on Machine Learning (Madison, WI, USA, 2011), ICML’11, Omnipress,
p. 465–472.

[21] Devlin, J., Chang, M.-W., Lee, K., and Toutanova, K. BERT: Pre-training of deep
bidirectional transformers for language understanding. In Proceedings of the 2019 Conference
of the North American Chapter of the Association for Computational Linguistics: Human
Language Technologies, Volume 1 (Long and Short Papers) (Minneapolis, Minnesota, June
2019), Association for Computational Linguistics, pp. 4171–4186.

[22] Diehl, M., Bock, H. G., Diedam, H., and Wieber, P.-B. Fast direct multiple shooting
algorithms for optimal robot control. In Fast Motions in Biomechanics and Robotics, M. Diehl
and K. Mombaur, Eds., vol. 340 of Lecture Notes in Control and Information Sciences.
Springer Berlin / Heidelberg, 2006, pp. 65–93.

[23] Domingos, P. The Master Algorithm: How the Quest for the Ultimate Learning Machine
Will Remake Our World. Basic Books, Inc., USA, 2018.

[24] Donahue, J., Jia, Y., Vinyals, O., Hoffman, J., Zhang, N., Tzeng, E., and Dar-
rell, T. Decaf: A deep convolutional activation feature for generic visual recognition.
Proceedings of Machine Learning Research (MLR) (2014).

[25] Duan, Y., Schulman, J., Chen, X., Bartlett, P. L., Sutskever, I., and Abbeel, P.
RL2: Fast reinforcement learning via slow reinforcement learning. International Conference
on Representation Learning (ICRL) (2017).

BIBLIOGRAPHY 117

[26] Ecoffet, A., Huizinga, J., Lehman, J., Stanley, K. O., and Clune, J. Go-explore:
a new approach for hard-exploration problems. CoRR abs/1901.10995 (2019).

[27] Edwards, A. D., Sahni, H., Schroecker, Y., and Jr., C. L. I. Imitating latent policies
from observation. Proceedings of Machine Learning Research (MLR) (2019).

[28] Elman, J. L. Learning and development in neural networks: The importance of starting
small. Cognition 48 (1993).

[29] Englert, P., and Toussaint, M. Combined optimization and reinforcement learning for
manipulation skills. Robotics: Science and Systems (2016), 137–154.

[30] Everingham, M., Van Gool, L., Williams, C. K. I., Winn, J., and Zisserman, A.
The PASCAL Visual Object Classes Challenge 2012 (VOC2012).

[31] Eysenbach, B., Gupta, A., Ibarz, J., and Levine, S. Diversity is all you need: Learn-
ing skills without a reward function. International Conference on Representation Learning
(ICRL) (2019).

[32] Finn, C., Abbeel, P., and Levine, S. Model-agnostic meta-learning for fast adaptation
of deep networks. International Conference on Machine Learning (ICML) (2017).

[33] Frans, K., Ho, J., Chen, X., Abbeel, P., and Schulman, J. Meta-learning shared
hierarchies. International Conference On Representative Learning (ICRL) (October 2017).

[34] Gatys, L. A., Ecker, A. S., and Bethge, M. Image Style Transfer Using Convolutional
Neural Networks. Computer Vision and Pattern Recognition (CVPR) (Aug. 2016).

[35] Ghazanfari, B., Afghah, F., and Taylor, M. E. Sequential association rule mining for
autonomously extracting hierarchical task structures in reinforcement learning. IEEE Access
8 (2020), 11782–11799.

[36] Girshick, R. Fast R-CNN. In Proceedings of the 2015 IEEE International Conference on
Computer Vision (ICCV) (USA, 2015), IEEE Computer Society, p. 1440–1448.

[37] Girshick, R. B., Donahue, J., Darrell, T., and Malik, J. Rich feature hierarchies
for accurate object detection and semantic segmentation. Computer Vision and Pattern
Recognition (CVPR) (2014).

[38] Goecks, V. G., Gremillion, G. M., Lawhern, V. J., Valasek, J., and Waytowich,
N. R. Integrating behavior cloning and reinforcement learning for improved performance
in sparse reward environments. International Conference on Autonomous Agents and Multi-
Agent Systems (AAMAS) (2020).

[39] Goodfellow, I., Bengio, Y., and Courville, A. Deep Learning. MIT Press, 2016.
http://www.deeplearningbook.org.

[40] Goodfellow, I. J., Pouget-Abadie, J., Mirza, M., Xu, B., Warde-Farley, D.,
Ozair, S., Courville, A., and Bengio, Y. Generative adversarial nets. International
Conference on Neural Information Processing Systems (NeurIPS) (2014).

http://www.deeplearningbook.org

118 BIBLIOGRAPHY

[41] Gu, S., Lillicrap, T., Sutskever, I., and Levine, S. Continuous deep-q learning with
model-based acceleration. International Conference on Machine Learning (ICML) (March
2016).

[42] Ha, D., and Schmidhuber, J. Recurrent world models facilitate policy evolution. In
Advances in Neural Information Processing Systems 31, S. Bengio, H. Wallach, H. Larochelle,
K. Grauman, N. Cesa-Bianchi, and R. Garnett, Eds. Curran Associates, Inc., 2018, pp. 2450–
2462.

[43] Haarnoja, T., Tang, H., Abbeel, P., and Levine, S. Reinforcement learning with
deep energy-based policies. International Conference on Machine Learning (ICML) (2017).

[44] Haarnoja, T., Zhou, A., Abbeel, P., and Levine, S. Soft Actor-Critic: Off-Policy
Maximum Entropy Deep Reinforcement Learning with a Stochastic Actor. International
Conference on Machine Learning (ICML) (2018).

[45] Hassoun, M. H. Fundamentals of Artificial Neural Networks, 1st ed. MIT Press, Cambridge,
MA, USA, 1995.

[46] Hausman, K., Springenberg, J. T., Wang, Z., Heess, N., and Riedmiller, M.
Learning an embedding space for transferable robot skills. In International Conference on
Learning Representations (2018).

[47] Haykin, S. Neural Networks: A Comprehensive Foundation. Prentice Hall, 1999.

[48] He, K., Zhang, X., Ren, S., and Sun, J. Deep residual learning for image recognition.
Computer Vision and Pattern Recognition (CVPR) (2015).

[49] Heess, N., Wayne, G., Tassa, Y., Lillicrap, T. P., Riedmiller, M. A., and Silver,
D. Learning and transfer of modulated locomotor controllers. CoRR abs/1610.05182 (2016).

[50] Ho, J., and Ermon, S. Generative adversarial imitation learning. International Conference
on Neural Information Processing Systems (NeurIPS) (2016).

[51] Houthooft, R., Chen, X., Duan, Y., Schulman, J., Turck, F. D., and Abbeel,
P. Curiosity-driven exploration in deep reinforcement learning via bayesian neural networks.
CoRR abs/1605.09674 (2016).

[52] Howard, A. G., Zhu, M., Chen, B., Kalenichenko, D., Wang, W., Weyand, T.,
Andreetto, M., and Adam, H. Mobilenets: Efficient convolutional neural networks for
mobile vision applications. CoRR abs/1704.04861 (2017).

[53] Howard, J., and Ruder, S. Universal Language Model Fine-tuning for Text Classification.
Association for Computational Linguistics (ACL) (2018).

[54] Huang, G., Liu, Z., and Weinberger, K. Q. Densely connected convolutional networks.
Computer Vision and Pattern Recognition (CVPR) (2017).

[55] Iandola, F. N., Moskewicz, M. W., Ashraf, K., Han, S., Dally, W. J., and
Keutzer, K. Squeezenet: Alexnet-level accuracy with 50x fewer parameters and <1mb
model size. International Conference on Representation Learning (ICRL) (2017).

BIBLIOGRAPHY 119

[56] Juliani, A., et al. Unity: A general platform for intelligent agents. CoRR abs/1809.02627
(2018).

[57] Justesen, N., Torrado, R. R., Bontrager, P., Khalifa, A., Togelius, J., and
Risi, S. Procedural level generation improves generality of deep reinforcement learning.
Association for Advancement of Articifial Intelligence (AAAI) (2018).

[58] Kaiser, L., Gomez, A. N., Shazeer, N., Vaswani, A., Parmar, N., Jones, L., and
Uskoreit, J. One model to learn them all. arXiv:170605137v1 (June 2017).

[59] Kalawoun, R., Lengagne, S., Bouchon, F., and Mezouar, Y. Bsplines properties
with interval analysis for constraint satisfaction problem: Application in robotics. In 15th
International Conference on Intelligent Autonomous Systems IAS-15 (june 2018).

[60] Kalawoun, R., Lengagne, S., and Mezouar, Y. Optimal robot base placements for
coverage tasks. In 14th IEEE International Conference on Automation Science and Engi-
neering (CASE 2018) (August 20-24 2018).

[61] Khan, A., Sohail, A., Zahoora, U., and Qureshi, A. S. A survey of the recent
architectures of deep convolutional neural networks. Artificial Intelligence Review 53 (2020).

[62] Kingma, D. P., and Welling, M. Auto-encoding variational bayes. In 2nd International
Conference on Learning Representations, ICLR Banff, AB, Canada, April 14-16, Conference
Track Proceedings (2014).

[63] Krizhevsky, A., Sutskever, I., and Hinton, G. E. Imagenet classification with deep
convolutional neural networks. In Proceedings of the 25th International Conference on Neural
Information Processing Systems - Volume 1 (Red Hook, NY, USA, 2012), NIPS’12, Curran
Associates Inc., p. 1097–1105.

[64] Kullback, S., and Leibler, R. A. On information and sufficiency. Ann. Math. Statist.
22, 1 (03 1951), 79–86.

[65] Lan, Z., Chen, M., Goodman, S., Gimpel, K., Sharma, P., and Soricut, R. Al-
bert: A lite bert for self-supervised learning of language representations. In International
Conference on Learning Representations (2020).

[66] Lecun, Y., Bottou, L., Bengio, Y., and Haffner, P. Gradient-based learning applied
to document recognition. In Proceedings of the IEEE (1998), pp. 2278–2324.

[67] Lengagne, S., Vaillant, J., Kheddar, A., and Yoshida, E. Generation of whole-body
optimal dynamic multi-contact motions. International Journal of Robotics Research (Apr
2013), 17.

[68] Lesort, T., Díaz-Rodríguez, N., Goudou, J.-F., and Filliat, D. State Representa-
tion Learning for Control: An Overview. Neural Networks 108 (Dec. 2018), 379–392.

[69] Lesort, T., Seurin, M., Li, X., Rodríguez, N. D., and Filliat, D. Unsupervised state
representation learning with robotic priors: a robustness benchmark. CoRR abs/1709.05185
(2017).

[70] Levine, S. Lecture notes in CS 294-112: Deep reinforcement learning, 2016.

120 BIBLIOGRAPHY

[71] Lilicrap, T., Hunt, J., Pritzel, A., Hess, N., Erez, T., Silver, D., Tassa, Y.,
and Wiestra, D. Continuous control with deep reinforcement learning. International
Conference on Representation Learning (ICRL) (February 2016).

[72] Little, D. Y., and Sommer, F. T. Learning in embodied action-perception loops through
exploration. CoRR abs/1112.1125 (2011).

[73] Liu, Y., Ott, M., Goyal, N., Du, J., Joshi, M., Chen, D., Levy, O., Lewis, M.,
Zettlemoyer, L., and Stoyanov, V. Roberta: A robustly optimized BERT pretraining
approach. CoRR abs/1907.11692 (2019).

[74] Lopes, M., Lang, T., Toussaint, M., and yves Oudeyer, P. Exploration in model-
based reinforcement learning by empirically estimating learning progress. In Advances in
Neural Information Processing Systems 25, F. Pereira, C. J. C. Burges, L. Bottou, and K. Q.
Weinberger, Eds. Curran Associates, Inc., 2012, pp. 206–214.

[75] Losey, D. P., Srinivasan, K., Mandlekar, A., Garg, A., and Sadigh, D. Controlling
Assistive Robots with Learned Latent Actions. arXiv e-prints (Sep 2019), arXiv:1909.09674.

[76] Lynch, C., Khansari, M., Xiao, T., Kumar, V., Tompson, J., Levine, S., and
Sermanet, P. Learning latent plans from play. CoRR abs/1903.01973 (2019).

[77] Martin, L., Muller, B., Ortiz Suárez, P. J., Dupont, Y., Romary, L., Ville-
monte de La Clergerie, É., Seddah, D., and Sagot, B. CamemBERT: a Tasty
French Language Model. Web site: https://camembert-model.fr, Oct. 2019.

[78] Metz, L., Poole, B., Pfau, D., and Sohl-Dickstein, J. Unrolled generative adversarial
networks. CoRR abs/1611.02163 (2016).

[79] Mikolov, T., Sutskever, I., Chen, K., Corrado, G., and Dean, J. Distributed
representations of words and phrases and their compositionality. In Proceedings of the 26th
International Conference on Neural Information Processing Systems - Volume 2 (Red Hook,
NY, USA, 2013), NIPS’13, Curran Associates Inc., p. 3111–3119.

[80] Mikolov, T., Sutskever, I., Chen, K., Corrado, G. S., and Dean, J. Distributed
representations of words and phrases and their compositionality. In Advances in Neural
Information Processing Systems 26, C. J. C. Burges, L. Bottou, M. Welling, Z. Ghahramani,
and K. Q. Weinberger, Eds. Curran Associates, Inc., 2013, pp. 3111–3119.

[81] Mnih, V., Kavukcuoglu, K., Silver, D., Graves, A., Antonoglou, I., Wierstra,
D., and Riedmiller, M. A. Playing Atari with Deep Reinforcement Learning. CoRR
abs/1312.5602 (2013).

[82] Mnih, V., Kavukcuoglu, K., Silver, D., Rusu, A. A., Veness, J., Bellemare,
M. G., Graves, A., Riedmiller, M., Fidjeland, A. K., Ostrovski, G., Petersen,
S., Beattie, C., Sadik, A., Antonoglou, I., King, H., Kumaran, D., Wierstra,
D., Legg, S., and Hassabis, D. Human-level control through deep reinforcement learning.
Nature 518, 7540 (Feb. 2015), 529–533.

[83] Mohamed, S., and Jimenez Rezende, D. Variational information maximisation for in-
trinsically motivated reinforcement learning. Advances in Neural Information Processing
Systems (09 2015), 2772–2782.

BIBLIOGRAPHY 121

[84] Mounsif, M., Lengagne, S., Thuilot, B., and Adouane, L. Universal Notice Network:
Transferable Knowledge Among Agents. 6th 2019 International Conference on Control,
Decision and Information Technologies (IEEE-CoDIT) (Apr. 2019).

[85] Mounsif, M., Lengagne, S., Thuilot, B., and Adouane, L. BAM! Base Abstracted
Modeling with Universal Notice Network:Fast Skill Transfer Between Mobile Manipula-
tors. 7th 2020 International Conference on Control, Decision and Information Technologies
(IEEE-CoDIT) (July 2020).

[86] Mounsif, M., Lengagne, S., Thuilot, B., and Adouane, L. CoachGAN: Fast Adver-
sarial Transfer Learning between Differently Shaped Entities. 17th International Conference
on Informatics in Control, Automation and Robotics (ICINCO) (2020).

[87] Nachum, O., Norouzi, M., Xu, K., and Schuurmans, D. Bridging the gap between
value and policy based reinforcement learning. International Conference on Neural Informa-
tion Processing Systems (NeurIPS) (2017).

[88] Nagabandi, A., Kahn, G., Fearing, Ronald, S., and Levine, S. Neural network dy-
namics for model-based deep reinforcement learning with model-free fine-tuning. University
of California Berkeley Report (August 2017).

[89] Nichol, A., Achiam, J., and Schulman, J. On first-order meta-learning algorithms.
International Conference on Representation Learning (ICRL) (2019).

[90] Oh, J., Guo, X., Lee, H., Lewis, R. L., and Singh, S. P. Action-conditional video pre-
diction using deep networks in atari games. International Conference on Neural Information
Processing Systems (NeurIPS) (2015).

[91] OpenAI, Akkaya, I., Andrychowicz, M., Chociej, M., Litwin, M., McGrew,
B., Petron, A., Paino, A., Plappert, M., Powell, G., Ribas, R., Schneider,
J., Tezak, N., Tworek, J., Welinder, P., Weng, L., Yuan, Q., Zaremba, W.,
and Zhang, L. Solving Rubik’s Cube with a Robot Hand. arXiv e-prints (Oct 2019),
arXiv:1910.07113.

[92] Osband, I., Aslanides, J., and Cassirer, A. Randomized prior functions for deep
reinforcement learning. International Conference on Neural Information Processing Systems
(NeurIPS) (2018).

[93] Pan, S. J., and Yang, Q. A survey on transfer learning. IEEE Transactions on Knowledge
and Data Engineering 22, 10 (2010), 1345–1359.

[94] Pathak, D., Agrawal, P., Efros, A. A., and Darrell, T. Curiosity-driven exploration
by self-supervised prediction. International Conference on Machine Learning (ICML) (2017).

[95] Paul, C., Zain, S., Igor, M., Jonas, S., Trevor, B., Joshua, T., Pieter, A., and
Wojciech, Z. Transfer from simulation to real world through learning deep inverse dynamics
model. OpenAI - University of California - Berkeley (October 2016).

[96] Peng, B., Li, X., Gao, J., Liu, J., and Wong, K.-F. Deep Dyna-Q: Integrating planning
for task-completion dialogue policy learning. In Proceedings of the 56th Annual Meeting of the
Association for Computational Linguistics (Volume 1: Long Papers) (Melbourne, Australia,
July 2018), Association for Computational Linguistics, pp. 2182–2192.

122 BIBLIOGRAPHY

[97] Peng, X. B., Andrychowicz, M., Zaremba, W., and Abbeel, P. Sim-to-real transfer
of robotic control with dynamics randomization. International Conference on Robotic and
Automation (ICRA) (2018).

[98] Peng, X. B., Berseth, G., Yin, K., and van de Panne, M. Deeploco: Dynamic loco-
motion skills using hierarchical deep reinforcement learning. ACM Transactions on Graphics
(Proc. SIGGRAPH 2017) 36, 4 (2017).

[99] Peng, X. B., Chang, M., Zhang, G., Abbeel, P., and Levine, S. Mcp: Learn-
ing composable hierarchical control with multiplicative compositional policies. In Advances
in Neural Information Processing Systems 32, H. Wallach, H. Larochelle, A. Beygelzimer,
F. d'Alché-Buc, E. Fox, and R. Garnett, Eds. Curran Associates, Inc., 2019, pp. 3681–3692.

[100] Peng, X. B., Kanazawa, A., Malik, J., Abbeel, P., and Levine, S. SFV: reinforce-
ment learning of physical skills from videos. ACM Trans. Graph. 37, 6 (Dec. 2018).

[101] Peng, X. B., Kumar, A., Zhang, G., and Levine, S. Advantage-weighted regression:
Simple and scalable off-policy reinforcement learning. CoRR abs/1910.00177 (2019).

[102] Pinto, L., Andrychowicz, M., Welinder, P., Zaremba, W., and Abbeel, P.
Asymmetric actor critic for image-based robot learning. In Robotics: Science and Systems
XIV, Carnegie Mellon University, Pittsburgh, Pennsylvania, USA, June 26-30, 2018 (2018),
H. Kress-Gazit, S. S. Srinivasa, T. Howard, and N. Atanasov, Eds.

[103] Plappert, M., Houthooft, R., Dhariwal, P., Sidor, S., Chen, R. Y., Chen, X.,
Asfour, T., Abbeel, P., and Andrychowicz, M. Parameter space noise for exploration.
International Conference on Learning Representation (ICLR) (2018).

[104] Radford, A. Improving language understanding by generative pre-training. OpenAI Report
(2018).

[105] Radford, A., Wu, J., Child, R., Luan, D., Amodei, D., and Sutskever, I. Language
models are unsupervised multitask learners. OpenAI Report (2019).

[106] Razavian, A. S., Azizpour, H., Sullivan, J., and Carlsson, S. CNN features off-
the-shelf: an astounding baseline for recognition. Computer Vision and Pattern Recognition
(CVPR) (2014).

[107] Redmon, J., Divvala, S., Girshick, R., and Farhadi, A. You only look once: Unified,
real-time object detection, 2016.

[108] Redmon, J., and Farhadi, A. YOLO9000: better, faster, stronger. Computer Vision and
Pattern Recognition (CVPR) (2017).

[109] Redmon, J., and Farhadi, A. Yolov3: An incremental improvement. CoRR
abs/1804.02767 (2018).

[110] Ren, S., He, K., Girshick, R., and Sun, J. Faster r-cnn: Towards real-time object
detection with region proposal networks. In Advances in Neural Information Processing
Systems 28, C. Cortes, N. D. Lawrence, D. D. Lee, M. Sugiyama, and R. Garnett, Eds.
Curran Associates, Inc., 2015, pp. 91–99.

BIBLIOGRAPHY 123

[111] Riedmiller, M. A., Hafner, R., Lampe, T., Neunert, M., Degrave, J., de Wiele,
T. V., Mnih, V., Heess, N., and Springenberg, J. T. Learning by playing - solving
sparse reward tasks from scratch. International Conference on Learning Representation
(ICLR)International Conference on Machine Learning (ICML) (2018).

[112] Ronneberger, O., P.Fischer, and Brox, T. U-net: Convolutional networks for biomed-
ical image segmentation. In Medical Image Computing and Computer-Assisted Intervention
(MICCAI) (2015), vol. 9351 of LNCS, Springer, pp. 234–241. (available on arXiv:1505.04597
[cs.CV]).

[113] Russell, S., and Norvig, P. Artificial Intelligence: A Modern Approach, 3rd ed. Prentice
Hall Press, USA, 2009.

[114] Salimans, T., Goodfellow, I., Zaremba, W., Cheung, V., Radford, A., and Chen,
X. Improved techniques for training gans. In Proceedings of the 30th International Conference
on Neural Information Processing Systems (Red Hook, NY, USA, 2016), NIPS’16, Curran
Associates Inc., p. 2234–2242.

[115] Sandler, M., Howard, A. G., Zhu, M., Zhmoginov, A., and Chen, L. Inverted resid-
uals and linear bottlenecks: Mobile networks for classification, detection and segmentation.
Computer Vision and Pattern Recognition (CVPR) (2018).

[116] Schmidhuber, J. Evolutionary Principles in Self-Referential Learning. PhD thesis, Tech-
nische Universitat München, 1987.

[117] Schmidhuber, J. A possibility for implementing curiosity and boredom in model-building
neural controllers. Proceedings of the First International Conference on Simulation of Adap-
tive Behavior on From Animals to Animats (1991).

[118] Schmidhuber, J. Formal theory of creativity, fun, and intrinsic motivation (1990–2010).
IEEE Transactions on Autonomous Mental Development 2, 3 (2010), 230–247.

[119] Schulman, J., Abbeel, P., and Chen, X. Equivalence between policy gradients and soft
q-learning. CoRR abs/1704.06440 (2017).

[120] Schulman, J., Moritz, P., Levine, S., Jordan, M., and Abbeel, P. Trust region
policy optimization. International Conference on Machine Learning (ICML) (April 2015).

[121] Schulman, J., Moritz, P., Levine, S., Jordan, M., and Abbeel, P. High-dimensional
continuous control using generalized advantage estimation. International Conference on
Learning Representation (September 2016).

[122] Schulman, J., Wolski, F., Dhariwal, P., Radford, A., and Klimov, O. Proximal
policy optimization algorithms. CoRR abs/1707.06347 (2017).

[123] Schwab, K. The Fourth Industrial Revolution. Crown Publishing Group, 2017.

[124] Shelhamer, E., Long, J., and Darrell, T. Fully convolutional networks for semantic
segmentation. IEEE Trans. Pattern Anal. Mach. Intell. 39, 4 (Apr. 2017), 640–651.

[125] Silver, D. Lecture notes in reinforcement learning: Policy gradient methods, December
2015.

124 BIBLIOGRAPHY

[126] Silver, D., Huang, A., Maddison, C., Guez, A., Sifre, L., van den Driessche, G.,
Schrittiwiser, J., Antonoglu, I., Panneershelvam, V., Lanctot, M., Dieleman,
S., Grewe, D., Nham, J., Kalchbrenner, N., Sustkever, I., Lillicrap, T., Leach,
M., Kavukcuoglu, K., Graepel, T., and Hassabis, D. Mastering the game of go with
deep neural networks and tree search. The Journal of Nature (October 2015).

[127] Silver, D., Simonyan, K., Antonoglu, I., Huang, A., Guez, A., Hubert, T.,
Baker, L., Lai, M., Adrian, B., Chen, Y., Sifre, L., van den Driessche, G.,
Graepel, T., and Hassabis, D. Mastering the game of go without human knowledge.
The Journal of Nature (April 2017).

[128] Simonyan, K., and Zisserman, A. Very deep convolutional networks for large-scale image
recognition. In International Conference on Learning Representations (2015).

[129] Smith, L., Dhawan, N., Zhang, M., Abbeel, P., and Levine, S. AVID: Learning
Multi-Stage Tasks via Pixel-Level Translation of Human Videos. International Conference
on Robotics Science and Systems (RSS) (2020).

[130] Starke, S., et al. Evolutionary multi-objective inverse kinematics on highly articulated
and humanoid robot. 2017 IEEE/RSJ International Conference on Intelligent Robots and
Systems (2017).

[131] Sutton, R., and Bardo, A. G. Reinforcement Learning: An Introduction - 3rd Edition.
MIT Press, 2017.

[132] Sutton, R. S. Dyna, an integrated architecture for learning, planning, and reacting.
SIGART Bull. 2, 4 (July 1991), 160–163.

[133] Szegedy, C., Ioffe, S., Vanhoucke, V., and Alemi, A. A. Inception-v4, inception-
resnet and the impact of residual connections on learning. In Proceedings of the Thirty-First
AAAI Conference on Artificial Intelligence (2017), AAAI’17, AAAI Press, p. 4278–4284.

[134] Szegedy, C., Vanhoucke, V., Ioffe, S., Shlens, J., and Wojna, Z. Rethinking
the inception architecture for computer vision. Computer Vision and Pattern Recognition
(CVPR) (2016).

[135] Szegedy, C., Vanhoucke, V., Ioffe, S., Shlens, J., and Wojna, Z. Rethinking
the inception architecture for computer vision. Computer Vision and Pattern Recognition
(CVPR) (2016).

[136] Szegedy, C., Wei Liu, Yangqing Jia, Sermanet, P., Reed, S., Anguelov, D.,
Erhan, D., Vanhoucke, V., and Rabinovich, A. Going deeper with convolutions. In
2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (June 2015),
pp. 1–9.

[137] Tang, R., Lu, Y., Liu, L., Mou, L., Vechtomova, O., and Lin, J. Distilling task-
specific knowledge from BERT into simple neural networks. CoRR abs/1903.12136 (2019).

[138] Turing, A. M. Computing machinery and intelligence. Mind 59, 236 (1950), 433–460.

BIBLIOGRAPHY 125

[139] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A. N.,
Kaiser, u., and Polosukhin, I. Attention is all you need. In Proceedings of the 31st
International Conference on Neural Information Processing Systems (Red Hook, NY, USA,
2017), NIPS’17, Curran Associates Inc., p. 6000–6010.

[140] Vezhnevets, A. S., Osindero, S., Schaul, T., Heess, N., Jaderberg, M., Silver,
D., and Kavukcuoglu, K. Feudal networks for hierarchical reinforcement learning. In-
ternational Conference on Machine Learning (ICML) (2017).

[141] Wang, J. X., Kurth-Nelson, Z., Tirumala, D., Soyer, H., Leibo, J. Z., Munos,
R., Blundell, C., Kumaran, D., and Botvinick, M. Learning to reinforcement learn.
CoRR abs/1611.05763 (2016).

[142] Wang, R., Lehman, J., Clune, J., and Stanley, K. O. Paired open-ended trailblazer
(POET): endlessly generating increasingly complex and diverse learning environments and
their solutions. CoRR abs/1901.01753 (2019).

[143] Watson, I. The aims of artificial intelligence: A science fiction view. IEEE Intelligent
Systems 18, 2 (Mar. 2003), 78–80.

[144] Watter, M., Springenberg, J. T., Boedecker, J., and Riedmiller, M. A. Embed
to control: A locally linear latent dynamics model for control from raw images. International
Conference on Neural Information Processing Systems (NeurIPS) (2015).

[145] Xavier, G., and Bengio, Y. Understanding the difficulty of training deep feedforward
neural network. International Conference on Artificial Intelligence and Statistics (AISTATS)
(Mar. 2010).

[146] Xie, S., Girshick, R. B., Dollár, P., Tu, Z., and He, K. Aggregated residual trans-
formations for deep neural networks. Computer Vision and Pattern Recognition (CVPR)
(2017).

[147] Yang, Z., Dai, Z., Yang, Y., Carbonell, J., Salakhutdinov, R. R., and Le, Q. V.
Xlnet: Generalized autoregressive pretraining for language understanding. In Advances
in Neural Information Processing Systems 32, H. Wallach, H. Larochelle, A. Beygelzimer,
F. d'Alché-Buc, E. Fox, and R. Garnett, Eds. Curran Associates, Inc., 2019, pp. 5753–5763.

[148] Yosinski, J., Clune, J., Bengio, Y., and Lipson, H. How transferable are features in
deep neural networks? International Conference on Neural Information Processing Systems
(NeurIPS) (2014).

[149] Yu, T., Quillen, D., He, Z., Julian, R., Hausman, K., Finn, C., and Levine, S.
Meta-world: A benchmark and evaluation for multi-task and meta-reinforcement learning,
2019.

[150] Zagoruyko, S., and Komodakis, N. Wide residual networks. British Machine Vision
Conference (2016).

[151] Zhang, X., Zhou, X., Lin, M., and Sun, J. Shufflenet: An extremely efficient convolu-
tional neural network for mobile devices. Computer Vision and Pattern Recognition (CVPR)
(2017).

126 BIBLIOGRAPHY

[152] Zhu, J.-Y., Park, T., Isola, P., and Efros, A. A. Unpaired image-to-image transla-
tion using cycle-consistent adversarial networkss. In International Conference on Computer
Vision (ICCV) (2017).

[153] Ziebart, B. D., Maas, A., Bagnell, J. A., and Dey, A. K. Maximum entropy in-
verse reinforcement learning. Association for Advancement of Articifial Intelligence (AAAI)
(2008).

[154] Zintgraf, L. M., Shiarlis, K., Kurin, V., Hofmann, K., and Whiteson, S. CAML:
Fast Context Adaptation via Meta-Learning. ArXiv e-prints (Oct. 2018).

Appendix A
UNN in Mobile Manipulators settings

Introduction

In order to further demonstrate the capabilities of the UNN/BAM method, environments featuring
several mobile manipulators are considered. Using three mobile bases (omnidirectional, bicycle and
differential), four robotic arm configurations and two environments (Pick’n Place task and the
Stacking task), the RL experiments described below underline the advantages linked with the
concept of task knowledge. These advantages, already introduced in the Task-Centered Chapter
are twofold: firstly, it is beneficial to the initial learning process, as it eases the reward function
design and prevents the RL agent to fall within local minima. Next, it is particularly suitable
for transferring skills between differently shaped entities, outperforming naive transfer both in
final performances and training time perspectives and even enabling zero-shot transfer in some
particular cases.

Robots & Environments

Robots

We consider three mobile bases configurations (Omnidirectional, bicycle and differential), as well
as four different manipulator types (KUKA, BLUE, Generic 2, Generic 3). Which, in total, leaves
us with 12 possible configurations, three of them being displayed in Figure A.1. The bicycle mobile
base is non-holonomic and relies on two values: thrust and steering, for moving. The differential
base is also non-holonomic and uses two torque values to compute the resulting direction. Finally,
the omnidirectional base is the simplest as it is holonomic and the two values determine linearly its
next position. Concerning the manipulators, both the KUKA and BLUE robots have 5 DoF. The
Generic arms (rightmost configuration in Figure A.1) have 2 DoF per articulation, which leads to
a total of 4 and 6 DoF for the agents considered through our experiments. All serial manipulators
are controlled using joints target position.

Environments

This section presents the two environments, implemented in the ML-Agents framework (introduced
in (56)), that were created in order to demonstrate the UNN and the BAM advantages. An
additional environment, the Reaching environment, is used to train the base modules and is

127

128

FIG. A.1. A subset of the possible agent configurations. From left to right: Bicycle
KUKA, Omnidirectional BLUE, Differential G3. Parts can be exchanged between agents.

presented below. For each of these environments, we explain the general goal, define the task-
related states and detail the extrinsic reward signal used to guide the policy in the environment.
In these environments, the UNN expects a vector si′ from its input base and always outputs the
same type of information oout. In practice, we have:

• The processed intrinsic information si′ ∈ R6 consist of the end effector linear position and
velocity, computed by an analytical approach. Specifically, the input base relies on a forward
kinematic approach to compute the processed intrinsic information.

• The UNN outputs oout ∈ R3 × B, composed of the desired effector linear velocity and a
Boolean for sucker action.

Reaching Task: This is the primitive base module training environment. Consequently, the state
and actions of this specific task are agent-related. This task involves touching a given point in
space with the agent’s effector. The target point is regularly moved in order to force the agent to
use its mobile base to get in range. This task features the following MDP:

• State: st ∈ R16+n: mobile base pose ∈ R3, arm pose ∈ Rn (n joints positions), vector to
target ∈ R3, LIDAR sensors ∈ R10

• Action: at ∈ R2+n: mobile base movement vector ∈ R2 (specific to each mobile base config-
uration) and target joints speed ∈ Rn.

• Reward: rt = −α × dE,T +
∑

i βi × ci, where dE,T is the distance between the effector and
the target, α is a normalizing constant and βi × ci is a weighted constraint on the arm to
prevent it from falling into undesired local minima

For training the UNN and evaluating the BAM approach, we created two custom environments.
Pick’n Place Task: the agent is expected to pick up an object from one table and drop it to a
given point in space. In this case, the task-related state is spap ∈ R6 ×B, composed of the current
object position, the drop target position and a boolean for signaling whether the cube is held or
not. The agent relies on the following reward function:

rp = α(d0 + d1)−1 (A.1)

APPENDIX A. UNN IN MOBILE MANIPULATORS SETTINGS 129

where the reward rp for the Pick’n Place environment depends on α a positive scaling factor, d0

the distance from the object to the effector and d1 the distance from the object to the drop target
position.

Stacking Task: the goal is to stack a number of cubes. The task-related state is conceptually
similar to the Pick’n Place, that is sstacking ∈ R3∗c × B4 where c is the number of cubes to stack,
in our case c = 4. We also design a reward that penalizes the agent according to the summed
distances between each of the cube and their ideal position. That is:

rs = [
4∑

i=1
αi(d0,i + d1,i)]−1 (A.2)

where the Stacking task reward rs depends on αi a positive scaling factor that is adjusted ac-
cording to the agent progression in the task, d0,i the distance from the cube i to the effector and
d1,i the distance from the cube i to its target position.

Training setup
While RL excels in reactive environments, it is usually less straightforward to design reward func-
tions for sequential environments like those presented above. Indeed, in these cases, tuning the
reward function in order to balance between a negative reward that may induce divergence in the
agent’s behaviour and a positive reward that may lead the agent to accumulate rewards without a
clear line of action is very subtle and requires a considerable amount of tweaking. Thus, in order
to improve the learning performances, PPO is coupled with two additional techniques:

• Pre-training with a Behavior Cloning based (38) approach

• Inverse Reinforcement Learning (50)

In practice, the agent weights go through a first training phase that consists of Behaviour-Cloning
pre-training. Namely, this initial process is a supervised training setup where the agent error
corresponds to the distance between its action prediction and the expert output. Then, during the
Reinforcement Learning process, the agent loss function is enhanced with the Inverse Reinforcement
Learning component. Specifically, this additional loss function evaluates how likely was the latest
agent trajectory to be generated by expert policy. This additional loss is minimized when the
agent’s sequences of states and actions are similar to the expert’s, thus providing a pedagogic
signal to the training agent.

Results
In this section, the results of our method on both training and testing setup, over all environ-
ments are presented. In particular, we compare our architecture, the BAM modeling, with several
baselines, namely the naive PPO approach and the UNN segmentation. A video of our results is
available at https://bit.ly/324Sxnz.

Training

During training, we monitor the agent’s evolution through the mean cumulative reward per episode.
This metrics is common in RL and serves as a measure of how well the agent behaves within its

https://bit.ly/324Sxnz

130

0 100000 200000 300000 400000 500000

Steps
700

600

500

400

300

200

100

0

100

Cu
m

ul
at

iv
e

re
wa

rd

Primitives

Omni. G2
Bicy. Kuka
Diff. Blue
Omni. G3

FIG. A.2. Training performances on Primitive reaching task for 4 predefined configurations

environment.
Curves in Figure A.2 are specific to our architecture and measure the output base training per-
formances with respect to the reaching task. Figure A.3 and Figure A.4 respectively display these
results for the whole architecture (bases + UNN) for the Pick’n Place and Stacking environ-
ments using an Omnidirectional Generic 2 robot configuration. Due to the intermediate model
outputs, constrained through the bases, the UNN is able to learn the task more efficiently than a
naive agent. As a matter of fact, we can see that both UNN-based techniques, in red and orange
respectively representing the UNN and the BAM approaches, clearly outperform the naive PPO
approach in blue. We note that the BAM (red) and UNN (orange) curves both reach a higher final
cumulative reward than the naive PPO, while also being faster, indicating a better performance
at solving the task overall.

Transfer

UNN-based approaches aim at making the skills transfer between agents of diverse constitutions
possible. Hence, after training, we pass pre-trained models on a given configuration to another
one with a different structure and compare their performances. In an ideal case, pairing the UNN
would not require any fine-tuning. However, in practice, most cases require additional training
iterations for the UNN to complete the adoption by another agent configuration. We display
some examples of this process in Figure A.5 and Figure A.6, respectively for Pick’n Place and
Stacking environments. These curves show for each environment how fast the performance can
be recovered for a given configuration. Specifically, the y-axis measures the relative mean reward
of the current agent projected in the lowest-to-highest interval from all initial agents. The x-axis
also indicates how much of the initial training time was necessary to reach said performance.
For the Pick’n Place environment, see Figure A.5, it appears that transfer within the naive
framework is not efficient and even detrimental to the agent. The policy weights when transferred
to another agent do not provide a decent initialization point and, through our experiments, these
agents systematically failed at the task. On the contrary, using the UNN-based techniques allows
to jump-start the new agent configuration with an initial level of performance that exceeds 70%
of the previous agent and allows to recover almost the full performance, evaluated by the mean

APPENDIX A. UNN IN MOBILE MANIPULATORS SETTINGS 131

0 100000 200000 300000 400000 500000

Steps
800

600

400

200

0

200

400
Cu

m
ul

at
iv

e
re

wa
rd

Pick & Place

BAM
UNN - O.G2
PPO - O.G2

FIG. A.3. Comparative Pick’n Place training performances

cumulative reward per episode, in a fraction of the previous training time, mostly depending on the
base conditioning. For the Stacking environment, similar observations emerge from the Figure
A.6 where, again, the UNN-based methodology allows agents with different body configuration to
access to the task knowledge, thus enabling quicker performances recovering.
While mean reward is a very common metric in RL, we also consider test time performances by
averaging over 100 runs the number of steps necessary to complete the task for various agents in
both environments. In this setting, the best agents are the fastest and need the lowest number
of steps to complete the task. Table A.1 details results of this evaluation for Pick’n Place
environment. In this case, we observe very contrasted results. No naive PPO agent was able
to succeed in the task after being transferred, while the UNN-based transfer was particularly
beneficial. Indeed, in these configurations, the performance was mostly conserved, with differences
being related to the output base quality and movement capabilities (that is, it takes more time
for the bicycle mobile base to reach a specific point than it does for the omnidirectional base.)
This is further confirmed by results presented in Table A.2 concerning the Stacking task, where
test performances are globally similar for all UNN-based agents with a transferred task-model.
While these results are not sufficient to unequivocally determine an optimal configuration, they
do however show that in both environments, the UNN and the BAM method yields an increase
in performance and allow transfer between entities. This is due to the fact that, in this modelling
approach, the UNN can focus on the task at hand, without having to learn simultaneously how to
correlate external perceptions to low-level orders.

132

0 200000 400000 600000 800000 1000000

Steps

3000

2500

2000

1500

1000

500

0

500

Cu
m

ul
at

iv
e

re
wa

rd
Stacking

BAM
UNN - O.G2
PPO - O.G2

FIG. A.4. Comparative Stacking training performances

0 5 10 15 20 25 30 35 40
Training percentage

0

20

40

60

80

100

Re
la

tiv
e

pe
rfo

rm
an

ce
 p

er
ce

nt
ag

e

Pick & Place - Transfer

BAM to B-KUKA
BAM to D-BLUE
BAM to O-G2
UNN O-G2 to O-G3
PPO O-G2 to B-KUKA
PPO O-G2 to O-G3

FIG. A.5. Pick’n Place transfer fine-tuning performances

APPENDIX A. UNN IN MOBILE MANIPULATORS SETTINGS 133

0 10 20 30 40 50
Training percentage

30

40

50

60

70

80

90

100

Re
la

tiv
e

pe
rfo

rm
an

ce
 p

er
ce

nt
ag

e

Stacking - Transfer

BAM to B-KUKA
BAM to D-BLUE
BAM to O-G2
UNN O-G2 to O-G3
PPO O-G2 to B-KUKA
PPO O-G2 to O-G3

FIG. A.6. Stacking transfer fine-tuning

TABLE A.1. Transfer: Pick’n Place

Archi. Config. Agent Training % Perf.

PPO
Initial Omni. Generic 2 100% 1355.4

Transferred
Omni. Generic 3 40% Fail
Bicy. KUKA 40% Fail
Diff. BLUE 40% Fail

UNN
Initial Omni. Generic 2 100% 848.8

Transferred
Omni. Generic 3 20% 784.8
Bicy. KUKA 20% 801.7
Diff. BLUE 20% 443.6

BAM
Initial - 100% 412.3

Transferred
Omni. Generic 2 20% 751.6
Bicy. KUKA 20% 707.9
Diff. BLUE 20% 747.7

134

TABLE A.2. Transfer: Stacking

Archi. Config. Agent Training % Perf.

PPO
Initial Omni. Generic 2 100% 4571.9

Transferred Omni. Generic 3 40% Fail
Bicy. KUKA 40% Fail

UNN
Initial Omni. Generic 2 100% 3547.6

Transferred
Omni. Generic 3 20% 4004.1
Bicy. KUKA 20% 3966.1
Diff. BLUE 20% 3847.9

BAM
Initial - 100% 2879.3

Transferred
Omni. Generic 2 20% 3540.4
Bicy. KUKA 20% 3391.8
Diff. BLUE 20% 3312.7

	1 Introduction
	1.1 Opening
	1.2 Goals
	1.3 Proposed Approaches
	1.4 Contributions
	1.5 Manuscript outline

	2 Neural Networks and Learning Frameworks: Theoretical Background
	2.1 Machine Learning
	2.2 Neural Networks
	2.2.1 Neurons
	2.2.2 Feed forward neural networks
	2.2.2.1 Layers
	2.2.2.2 Activation functions

	2.2.3 Loss function and backpropagation for optimization

	2.3 Supervised Learning
	2.4 Reinforcement Learning
	2.4.1 Principle and main concepts
	2.4.1.1 Observations
	2.4.1.2 Policy
	2.4.1.3 Actions
	2.4.1.4 Trajectory and episodes
	2.4.1.5 Reward Function
	2.4.1.6 Reinforcement Learning Objective
	2.4.1.7 Value functions
	2.4.1.8 Bellman Equations
	2.4.1.9 Advantage function

	2.4.2 Practical aspects of RL
	2.4.2.1 The Exploration-Exploitation trade-off
	2.4.2.2 Credit assignment problem
	2.4.2.3 Sample (In)efficiency

	2.4.3 Modern RL algorithms
	2.4.3.1 Model-free and model-based RL
	2.4.3.2 On-Policy vs. Off-Policy

	2.4.4 Proximal Policy Optimization

	2.5 Generative Adversarial Learning
	2.5.1 Principle
	2.5.2 Reaching optimality
	2.5.3 Common issues and failure cases

	2.6 Knowledge representation
	2.6.1 Autoencoders
	2.6.2 VAE

	2.7 Conclusion

	3 Transfer Learning & Related works
	3.1 Societal Needs for Transfer Learning
	3.2 Transfer Learning Principles
	3.3 Common cases of Transfer Learning
	3.4 Computer Vision
	3.5 Natural Language Processing
	3.6 Transfer Learning in control tasks
	3.6.1 Deep learning based control
	3.6.2 From simulation to real world
	3.6.3 Transfer between tasks
	3.6.3.1 Reward-Based Transfer
	3.6.3.2 Curriculum Based Transfer
	3.6.3.3 Intrinsically motivated Transfer
	3.6.3.4 Meta-Learning
	3.6.3.5 Transfer in Hierarchical Settings

	3.7 Knowledge representation in Transfer Learning
	3.8 Conclusion on Transfer Learning

	4 Task-Centered Transfer
	4.1 Universal Notice Network
	4.1.1 Principle
	4.1.2 The UNN workflow
	4.1.3 The UNN Pipeline
	4.1.4 Base Abstracted Modelling
	4.1.5 Building and using UNN modules

	4.2 Experiments
	4.2.1 Vanilla transfer
	4.2.2 Learning setup
	4.2.3 Controlled Robots
	4.2.4 Base Manipulation: Reacher
	4.2.5 A lonely manipulation: Tennis
	4.2.6 Biped walking
	4.2.7 Cooperative Manipulation UNN: Cooperative Move Plank
	4.2.8 Cooperative BAM Manipulation: Dual Move Plank

	4.3 Conclusion on TAsk-Centered methods

	5 Teacher-Centered Transfer
	5.1 CoachGAN
	5.1.1 From Task to Teacher
	5.1.2 The CoachGAN method
	5.1.3 WGAN-GP for a suitable learning signal
	5.1.4 Task and Intermediate State Variables
	5.1.5 Training the Expert
	5.1.6 CoachGAN Results
	5.1.6.1 Effector Position ISV
	5.1.6.2 Approximated Kinematics ISV
	5.1.6.3 Ball Rebound Speed ISV
	5.1.6.4 Analysis

	5.1.7 Conclusion on CoachGAN

	5.2 Task-Specific Loss
	5.2.1 The TSL Principle
	5.2.2 Method
	5.2.3 Transfer
	5.2.4 Experimental setup
	5.2.4.1 Tasks and Agents
	5.2.4.2 Models

	5.2.5 Results
	5.2.5.1 Circle to Circle Contour Displacement
	5.2.5.2 Tennis task
	5.2.5.3 Autonomous TSL
	5.2.5.4 Training Time & Assistive aspects

	5.2.6 Conclusion on Task-Specific Loss

	5.3 Conclusion on TEacher-Centered methods

	6 General Conclusion & Prospects
	A UNN in Mobile Manipulators settings

