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Abstract

Looking at the recent history of automakers, automation has been at the center of

technological  innovation  aiming  to  prioritize  life’s  of  humans  within  it  as  well  as

pedestrians. Initially this research was focused on automating some specific driving tasks

such as locking speed of the vehicle so that it can cruise at a constant speed on a long

stretch of highway, or automating the steering system to keep the vehicle lane centered so

that  driver  might  get  some  relief  from continuous  driving  on  a  long  journey  on  an

highway where much attention is not required.

More recently, a lot of research has been made both by industry and institutions to

completely automate the driving process.  This  potential  societal  benefits  of  this  fully

automated driving are numerous, including safety on roads, easy mobility for disables

and  elderly,  increasing  human  productivity.  But  to  make  this  technology  highly

commercialized,  this  technology should be able to safely share the common space of

mobility with human drivers. This intend to say that this technology should be able to

interact with human drivers and also understand other drivers and predict their intentions

as  a  normal  driver  does  to  avoid  collisions  or  causing  unnecessary  chaos.  For  this

purpose,  autonomous vehicles must  be capable of making decision while  keeping all

these factors into consideration.

 The Objective of this internship is to make an autonomous vehicle navigate on a

road, by avoiding collisions with other road occupants, in a highly dynamical situations

and in the presence of uncertainties (such as perception uncertainties, unknown intentions

of  other  road  vehicles,  etc).  This  report  addresses  the  decision  making  approach  by

presenting a model which is testing on a common highway scenario.

Keywords :  Decision-Making, Markov Decision Process, Partially Observable Markov

Decision Process, Model Predictive Control, Vehicle Dynamics.
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1. Introduction

Since  the  first  competition  of  the  DARPA  Grand  Challenge,  the  research  &

development  in  autonomous  vehicles  starting  picking  pace  and  set  in  motion  the

development of this  new technology which has a potential  to radically transform the

transportation industry. This transformation was in consideration of improvements in the

road safety, in which human error accounts for almost 94-96% of all the motor vehicles

crashes ([1]). So the shift towards safer road conditions for both the vehicle occupants as

well as other road users is more in favor of Autonomous vehicles, but the transition from

human operated vehicles to autonomous vehicles is a little tricky task to achieve. Many

Advance Driver Assistance System (ADAS) have been development and deployed in

mass scale which can handle certain driving tasks under certain conditions. Some ADAS

features to be named are Cruise Control (CC) , Adaptive Cruise Control (ACC), Lane

Keeping Assist (LKA) etc. Which help the driver to achieve some of the driving tasks

under  controlled  situations  automatically.  These  ADAS  systems  certainly  help  in

bridging the gap between the human driven vehicle and autonomous vehicle. Combining

all these ADAS driving tasks will help us to get closer to creating an autonomous vehicle

but  decisions  to  make  switch  between  these  tasks  will  make  the  vehicle  a  truly

autonomous one.

SAE has defined and classified automated vehicles in 6 levels based on their degree

of autonomy and it is shown in Table 1.1 below. In level 0, the driver has the full control

of the vehicle, along with this, some lane departure warning systems, blind spot warning

systems, etc. may be used. Level 1, the driver can automate either longitudinal or lateral

control under certain conditions. Adaptive Cruise Control, lane keeping assistant, etc can

be few examples. Level 2, the vehicle can take full control to itself under controlled

conditions. But, the driver is required to continuously monitor the vehicle and be ready

to  take  back  the  control  at  any  given  time.  Some  examples  like  highway  driving
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assistants, park assist systems come under this criteria. Level 3, the vehicle can drive in

fully autonomous mode under certain conditions without the requirement of driver to

continuously monitor the vehicle, but, must be ready to take back the control if required.

Tesla have commercialized their autopilot technology under this level. Other examples

include  traffic  jam  autonomous  driving  systems  and  the  human  chauffeur  system.

Level 4 , requires no driver inputs during any part of the journey, these level vehicles are

capable of driving in an Geo-fenced areas without any human intervention. The vehicle

is capable of making its own decision under any circumstances in this Geo-fenced area.

The approach used by Waymo which has deployed its Geo-fenced autonomous vehicles

fleet  in  Phoenix,  Arizona,  USA.  Level  5,  this  level  represents  the  highest  level  of

automation possible in driving. This level of vehicles will be able to navigate anywhere

without  having  any  constrains  made  by  Geo-fencing  and  other  things.  This  level

represents unconditional  full  autonomy which every company is  trying to  achieve as

their final objective.
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Level of
Autonomy

Name Characteristics

0 No Automation Driver has full control.

1 Driver Assistance Longitudinal  or  lateral   control  can  be
controlled by the vehicle is possible.

2 Partial Automation Longitudinal  and  Lateral  control  can  be
controlled by vehicle under certain conditions.
But driver should be available to take control at
any time.

3 Conditional
Automation

Vehicle  can  assume full  control  under  certain
circumstances. Driver is not required to monitor
the system continuously but must be ready to
take control when required.

4 High Automation Vehicle  can  assume full  control  in  a  specific
Geo-fenced areas. No action need from driver.

5 Full Automation Vehicle  has  full  control  at  all  times under  all
circumstances.

Table 1: Levels of driving automation (SAE International, 2016)

This  thesis  particularly  focuses  on the  decision making part  for  the autonomous

vehicle  while  taking into  consideration  the  limitations  of  vehicle  dynamics.  For  this

purpose, a particular highway scenario has been taken into consideration to look out for

various  parameters  to  deal  with  while  making  a  maneuver  decision  for  a  vehicle,

considering  uncertainties.

This manuscript starts a brief section 1.1, introduction about the laboratory, which

gave me an opportunity to work on this internship under the guidance on my supervisors.

Then in section 1.2, briefly stating the objectives of this thesis which were given to get

started  with.  Section  1.3,  describes  the  approach  which  was  taken  to  achieve  these

objectives  in  brief,  followed  by  section  2,  literature  review,  in  this  section  a  brief

summary of  all  the  important  papers  which  were  useful  for  our  research  have  been

discussed.  Next,  section  3,  describes  the  system architecture  in  details,  followed by,
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section 3.1 where all  these sub-systems will  be described in  brief  for their  selection

purpose and other options which were looked for. Section 4, discusses the results and

final conclusion of this thesis followed by some recommendations which would help the

model to be get more refined.

1.1 Laboratory

Heudiasyc (HEUristique et  DIAgnostic  des Systemes Complexes) is  a laboratory

managed  jointly  by  Universite  de  Technologie  de  Compiegne  and  CNRS  (Centre

National de la Recherche Scientifique). Heudiasyc’s work is in the area of information

and communication science, and more precisely in computer science, automatic control,

robotics and artificial intelligence.

Heudiasyc  laboratory  mostly  focuses  on  the  investigative  research  and  targeted

research in the field of Mobility, Transport, Communication and Security. Research in

this lab is organized around in three teams which are as follows,

- CID : Knowledge, Uncertainty, Data.

- SCOP : Dependability, Communication, Optimization.

- SyRI : Robotic systems in interaction.

In this organization, I was part of Team SyRI, this team mainly focuses on mini-

UAVs  and  autonomous  vehicles.  The  SyRI  team  develops  embedded  systems  that

enhance the ability of mobile robots to act autonomously in complex open environments,

in  some  cases  in  interaction  with  human  operators,  and  in  other  cases  in  mutual

interaction with other robots.

In team SyRI, the major research topics for this team has been divided in 3 parts as

per their objectives,

1 - Autonomy of mobile robots interacting with humans 

2 – Multimodal ON- Board perception

3 – Multi-Robot systems in interaction

Master AESM 2019-2020 7
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Heudiasyc  laboratory  has  its  own  technology  platform  named  PACPUS,  whose

objective is to provide tools and resources for experimenting on intelligent vehicles. Its

specific intention was for the development, integration and testing of ADAS functions,

particularly  in  relation  to  autonomous  vehicles.  This  platform  comprises  of  5

experimental vehicles, each of which having a specific purpose on developing various

components of an autonomous vehicle.

1.2 Internship Objective
As the title clearly suggest, this internship deals with the decision making section of

autonomous  vehicle.  The  object  of  the  internship  is  to  make  a  autonomous  vehicle

navigate on a road, by avoiding collisions with other road occupants, in high dynamical

situations  and  in  the  presence  of  uncertainties  (such  as  perception  uncertainties,

unknown intentions  of  other  road vehicles,  etc).  This  mostly  deal  with  the  decision

making step where the vehicle decides to make a maneuver to overcome an obstacle and

avoid collision while following a predefined global path for reaching its destination. At

this  level,  the vehicle  dynamics  are  not  finely considered in general,  they are either

neglected or limited to some constraints. This fact reduces the spectrum of safe possible

maneuvers that can be executed by the vehicle and do not integrate at all the passengers

comfort. Also the uncertainty in the environment plays an important role in this decision

making step.

So overall,  in this context, this internship aims to deal with the decision making

aspect in the presence of perception and modeling uncertainties, and while considering

explicitly the vehicle dynamics in order to improve the safety and the fluidity of the

vehicle movement.
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1.3 Summary of proposed work
The internship was organized in following steps :

• Bibliographical  study  on  vehicle  dynamics,  and,  on  maneuver  planning  and

decision making in autonomous vehicles in presence of uncertainties.

• Consideration of a driving situation for testing the proposed approach.

• Development  of  a  new  maneuver  planning  approach  that  considers  various

uncertainties.

• Validation of the proposed approach on MATLAB/Simulink.

Based on these steps the work started with an in depth literature review based on a

global  architecture  of  previously  build  autonomous  vehicles  from the  DARPA event

which marked the true beginning for the development on autonomous vehicles.  This

study  gave  a  basic  platform  on  how  exactly  the  initial  Autonomous  Vehicle  were

constructed and worked on planning and control parts of vehicle. Once an overview of

required architecture was formed, then next step was to focus on deciding the part to be

focused on for the work, that is decision making for the autonomous vehicle. As decision

making  can  be  made  simple  by  studying  of  a  simple  scenario,  for  this  purpose  an

highway overtaking scenario was taken into consideration as this maneuver contains all

the aspects which were essential for testing of objectives of this thesis.

An highway overtaking maneuver contains decision making level where the vehicle

needs  to  take  multiple  decisions  to  successfully  complete  this  maneuver,  also  while

considering  the  uncertainty  of  unknown  intentions  of  the  vehicle  which  is  to  be

overtaken. Also, overtaking maneuver tests the vehicle dynamics limits of the vehicle

taking into consideration the lateral movement and yaw rate changes for the steering of

the vehicle. These characteristics of this maneuver were a good test for the testing of

objectives for this internship. 
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Once a maneuver was decided, then this maneuver was then studied in details to get

the information what all parameters are to be taken into consideration and can further be

manipulated.  An  overtake  maneuver  can  further  be  sub  divided  into  2  lane  change

maneuver  and  a  lane  keeping  maneuver.  One  lane  change  maneuver  at  the  start  of

overtaking maneuver, when the ego vehicle decides to start the overtaking process, then

a lane keeping maneuver where the ego vehicle increases its speed or keep its constant

depending on the speed of the obstacle vehicle, and then again a lane change maneuver

to merge into the initial lane, which marks the end of overtaking maneuver. So, During

this there are 2 main decisions which needs to be made by the vehicle to complete this

maneuver, first is whether to initiate this overtake maneuver or not, and second if yes

then which path needs to be followed to complete this maneuver.

For the first decision to be made by the ego vehicle that is, to initiate the overtake or

not does not give us the exact maneuver to be followed by the ego vehicle. That is, this

decision can be considered as a switch decision process, where as for the second decision

that is, which path to follow exactly need to compute the complete maneuver which the

vehicle  should  follow to  successfully  complete  this  maneuver  without  collision  with

obstacle vehicle. As per our objectives, the main focus need to be on the second decision

making process which gives an exact maneuver path to follow. For the model which was

prepared, the initial decision to overtake the slower vehicle in front of ego vehicle will

be taken as soon as the TTC (Time-To-Collision) is detected to be less than 5 sec. This

TTC was taken into consideration from the research mentioned in the paper, “A general

formulation for time-to-collision safety indicator” in which they have mentioned that

considering TTC between 4-5 sec gives sufficient time for the ego vehicle to react for

avoiding the collision with other vehicle (2). For this initial decision whether to go for a

overtake  or  not  a  study  based  on  POMDP (Partially  Observable  Markov  Decision

Process) as illustrated in paper, “Probabilistic Online POMDP Decision Making for Lane

Changes in Fully Automated Driving” will rather be a good application (3) . 

Master AESM 2019-2020 10
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For  the  maneuver  planning  decision  to  be  made,  we  used  the  MDP (Markov

Decision Process), to step by step select all the best possible decisions for the vehicle to

be  taken for  reaching the  final  goal  position  from initial  position.  Markov Decision

Process  is  a  discrete-time  stochastic  control  process  which  provides  a  mathematical

framework  for  modeling  decision  making  in  situations  where  outcomes  are  partly

random  and  partly  under  control  of  a  decision  maker.  The  driving  task  was  first

formulated as an MDP by defining environment state space, agent action space, which

uses  state  transition  model  and  a  reward  model  to  calculate  and  decide  the  most

rewarding  next  action  step  for  the  agent.  An  detailed  explanation  of  MDP will  be

provided in later section 3 of this report. Once the decision to overtake the slow moving

vehicle is taken, then immediately MDP function is executed which calculates the goal

point to reach based on the current speeds of both ego vehicle and the slow moving

vehicle. Once the goal point is set, the MDP function then calculates and gives an output

of all the available and most rewarding waypoints through which the ego vehicle must

follow. To check whether the initially slow moving car has not changes its speed during

the on going execution of overtaking maneuver, the ego vehicle continuously keeps on

checking on the speed of the slow moving car. If it detects increase in its speed, then

again this  MDP function is  called and once again new goal  point  is  set  for  the ego

vehicle to reach with modified speed of the obstacle vehicle.

As the waypoints are defined from MDP for maneuver, these waypoints are then

given  as  an  input  to  the  Adaptive  Model  Predictive  Controller  which  tunes  these

waypoints as per the set soft and hard constrains for the vehicle dynamics to follow so as

to  get  a  safe,comfortable  and  geometrically  feasible  set  of  inputs  for  the  vehicle

dynamics model. Model Predictive Controller has been given inputs of lateral position

and the yaw angle from which smooth steering outputs are generated which is given as

input to the 3 DOF vehicle Dynamics model.

Following is the snapshot of the successful simulation using this method.

Master AESM 2019-2020 11
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For Simulation purpose, Driving Scenario Designer application has been used. This

application  helps  us  to  test  different  types  of  scenarios  for  different  ADAS  and

Autonomous Vehicles. The Above figure is a snapshot from this simulation application

user interface, which depicts the path followed by the 2 vehicles which are the results of

algorithm implemented to avoid the collision between them. The scenario created was a

highway scenario, in which a slow moving vehicle (orange car) is detected by the ego

vehicle (blue car) in its path to be followed. The pre-defined path for both the vehicles

was to follow same lane until they are at Time-To-Collision less than 5 sec. As soon as

the ego vehicle detected the orange vehicle (speed = 15 m/s) to be slow and in TTC less

than 5 secs, the ego vehicle (speed = 30 m/s) executed the MDP function to find the most

feasible path to overcome this  slow moving vehicle.  In the figure 1,  blue waypoints

define the points calculated by MDP function for executing this overtake maneuver. In

later section 3 we will have  a detail discussion on how exactly the MDP function works

and selects all best possible waypoints to execute the maneuver.
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2. Literature Review

2.1 Architecture
Autonomous driving in a  real urban settings was the important  objective for the

DARPA 2007 Urban Challenge, during which many teams participated and were able to

finish this challenge. But the first to cross the finish line was team BOSS the entry of the

Carnegie Mellon Team followed by Stanford University’s entry “Junior”. The vehicles

which crossed the finish line just  proved that they have a well  proven software and

hardware architecture which can perform all the tasks needed for the autonomous vehicle

to go through Urban traffic scenario. So to understand the architecture of Autonomous

Vehicles, we choose to study Team BOSS and Team Junior’s vehicle architecture. This

study helped us to understand how different departments such as perception, navigation,

sensor interfaces interacted with each others. What all inputs and outputs are handled

between the systems and how the flow of data is handled with each department making

sense of the input data and adding some additional information of its own to help the

vehicle achieve its goals. Following is the flow chart of System architecture of Team

“Junior”.(4) 

Also while studying their architecture, how the decision making was approached by

these vehicles was also studied. For example, team Junior used transition probability for

making decisions for its next set of actions based on its current location and knowledge

of its surrounding. The benefit of this probabilistic view of decision making was that it

penalized plans that delay the maneuver to the very last moment. For example a lane

change maneuver, Junior tends to execute the lane shift at the earliest possibility while

compromising the speed gains, this made their actions safer but made the vehicle slow as

speed gain was penalized.
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This  study  also  helped  in  finding  out  a  clear  differences  of  various  planning

terminologies such as path planning, maneuver planning and trajectory planning. Once

differences were cleared, it was possible to now segregate Path planning section and the

maneuver planning section. This also helped get a clear idea of what the input and output

of the decision making part would be.(3)

2.2 Decision-Making
From DARPA Grand  and  Urban  Challenge,  a  lot  of  research  efforts  have  been

invested for decision making. Every team which participated in Urban Challenge, has

their own distinct approach for making decisions. Some of them implemented complex

driving  maneuvers  requiring  tactical  decision  making  tasks,  while  others  used  some

variant of a state machine. Team “BOSS” used analytic equations based on gaps between

vehicles and used thresholding and binary decisions to switch between the tasks. While

team “Junior” used a cost based approaches for global path planning and a finite state

Master AESM 2019-2020 14
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machine  for  making  the  switch  between  different  maneuvers(4).  Apart  from  these

DARPA entries, many researchers have also tried using fuzzy logic for modeling lane

change  for  decision  making  problems,  this  approach  gave  a  simplicity  and

computationally efficient approach for decision making. 

These early decision making  approaches where mainly focused on some kind of

cooperative behavior with the vehicles surrounding the ego vehicle. They used a set of

analytic cost function for decision making in their architecture. They didn’t draw any

particular attention towards uncertainties of any kind in them and were mostly based on

rule  base  or  human  data  driven  methods.  This  issue  was  addressed  by  many  other

researches in their decision making approach. Y Gaun, S Eben Li, (2018) (5) addressed

this issue by applying a probabilistic decision making Markov Decision Process for their

simulation study of a highway scenario.  Then a study by S. Ulbrich,  M. Maurer,  on

Probabilistic Online POMDP approach on decision making for autonomous vehicles was

also referred which took the uncertainties of perception model into consideration for lane

Master AESM 2019-2020 15
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change maneuver  (3).  In  figure  3,  we can  see  that  how the  authors  sub-divided the

tactical decision making as a sub-problem of overall decision making for a lane change

maneuver.  They  have  specifically  used  it  for  a  lane  change  maneuver  but  this  sub-

division can be done in general to any kind of maneuver which a car can perform. These

methods directly approached the problems of decision making been based on rule based

decision  approaches  and  not  taking  into  consideration  the  uncertainties  of  the

environment. They were based on decision process’s state variables which were directly

based on measured  values  like  relative  distances  and velocities  towards  surrounding

vehicles. This methods helped to keep the decision making directly based on physical

quantities instead depending on per-defined rules. 

The  uncertainties  from prediction  originated  from noisy  perception  data  and the

unknown intentions of human drivers cannot be measured by any system in autonomous

vehicles, which is required for decision making process. For this purpose, study done by

(6) addressed this problem as a Partially Observable Markov Decision Process with the

intention  of  other  vehicles  as  hidden  variables  and  controlled  the  longitudinal

acceleration  of  the  vehicle.  This  gave  the  vehicle  some  time  to  make  the  decision

whenever confronted with uncertain situations. Along with this situation- aware decision

making was also studied. Study done by (7) in their journal considered using POMDP

based  algorithm  which  was  extensively  evaluated  for  various  urban  road  scenarios,

which includes leader follower collision avoidance and traffic negotiations at T-junction

and roundabout.

These studies which were based on Markov Decision Process took our attention as a

possible candidate for the decision making approach to be used in our research and a

well defined base of previously conducted research work in same direction.
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2.3 Control System and Vehicle Dynamics
One of the main reasons in the development of Autonomous Driving was to make it

more safe and comfortable for its passengers. Controlling velocity, acceleration, steering,

etc  gives  a  much  better  way  for  avoiding  collisions  with  other  vehicles  and  road

obstacles. Also, sudden change in vehicles speed be it due to acceleration or braking

causes discomfort among the passengers of the vehicle which is also not desirable from a

good ride comfort perspective. A research done by  (8), which focused on shaping of the

Speed Profile by the use of Model Predictive Controller. The method used by them for

controlling the speed profile showed promising results by use of soft and hard constrains

for suppressing  excessive and sudden acceleration for preventing collision with other

vehicles during a maneuver. 

As we had selected overtaking scenario to test our model, we had to decide various

parameters required to complete this maneuver. A study done by (9) on minimum time

required for overtake problem at various driver’s control input was studied. This study

proposed a novel method to obtain the driver control input during the overtake maneuver

while also studying the safe overtaking distance and time to consider for completing the

maneuver.

While deciding over a maneuver, we must need to first check whether the collision is

avoidable or not. In order to improve vehicle safety, a interaction phase between primary

and secondary safety systems has been defined which according to (10) provided by the

primary safety systems to achieve the objective of avoiding the collision. The authors

showed a method that improves on method to calculate the Time-To-Collision to provide

a more accurate result for collision avoidance system. They showed many results of TTC

which have been used to distinguish whether a collision is avoidable or not and also

showed that with time the value of TTC went on decreasing as the reactions of primary

safety systems increased significantly. We have taken the value or TTC to be equal to 5
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sec in our experiment to be the initiating point for our maneuver. As per (2), a minimum

TTC value of 3.5 sec is to be considered for the non-supported drivers. We considered

1.5 sec more than the minimum as a factor of safety to our system. This can later be

manipulated after considering the reactive time of the complete system Incorporated into

the vehicle.

To conclude our literature review, we decided to divide the decision making task into

2 parts as Tactical decision making and maneuver planning in decision making. For this

we choose to go along with the Markov Decision Process, For tactical decision making

the process specified by (3) which was based on Partially Observable Markov Decision

Process is planned to be used. And for maneuver planning, we decided to approach it

with Markov Decision Process. For control process Model Predictive Controller along

with the basic 3 degrees of freedom vehicle dynamics model was chosen to implement

various limitation of vehicle dynamics to the planned path during maneuver execution

stage. In following section we will have a detailed description of the system architecture

used.
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3. System Architecture

3.1 Global Structure
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This architecture can be sub-divided into 3 major parts :

1. Perception  and  Planning  :  In  this  block,  the  driving  scenario  to  be  tested  is

created, which depicts the data received from various perceptions sensors about

the location and road environment for simulation assuming there is no noise or

error  in  sensor  data.  Also,  for  planning  a  pre-planned  route  is  given  to  the

vehicles created in scenario which will result in a collision.

2. Decision making : This block is responsible for making the decision and creating

a plan to execute so that the vehicle can avoid the collision from happening. This

block is responsible for making maneuver level changes to the planned path in

such a way that it ego vehicle will avoid the possible collision which has been

detected by the system.

3. Control  process  and  vehicle  dynamics  :  This  block  in  system architecture  is

responsible for constraining the defined path by the decision making block which

will  then  be  possible  to  execute  by  the  vehicle  taking  into  consideration  its

geometric limitations.

The working of this system starts with creation of driving scenario in a MATLAB

code either by using a virtual application called Driving Scenario Designer or by directly

using the inbuilt commands to create road segments such as road and lane dimensions.

This mapping is done in a occupancy grid representation where in each block is of the

dimension of 1*1 m. We choose occupancy grid for environment representation purpose

while keeping in mind our actions which we have used in our MDP function. Once the

road dimensions are specified, then ego vehicle and non-ego vehicle are added along

with their characteristics such as their position in grid map, speed, and a default path to

follow.  This  defines  the  initial  2  blocks  of  the  global  structure  which are grid view

representation of the world and path planning. While defining the driving scenario, we
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also define the sample time at which we would like to advance the scenario till the end of

simulation.

So to summarize first 2 blocks, Grid view representation creates the environment

and place the objects at their initial positions in that environment just before we try to

start our simulation. Also, while defining the characteristics of ego vehicle and non-ego

vehicle we have already defined a path which they must follow if there is no risk of

collision between them.

Then the simulation is advanced in a while loop at the rate of sample time which is

0.1  sec  till  the  end  of  simulation.  Selecting  a  higher  sampling  rate  usually  lead  to

unnecessary computational overhead and choosing a low sampling rate leads to loss of

data fidelity. Also, choosing a sampling time also depends on the clocking speed of the

micro controller to process the given data within 2 sampling instants. A much smaller

sampling  time  could  have  been  better,  but  during  some  simulations  with  smaller

sampling time, MATLAB crashed so to prevent this from happening frequently, decided

to go with a much higher sampling rate.  This selection was due to the limitation of

hardware.

During this while loop, at each and every time step Time-To-Collision is calculated

between the ego vehicle and non-ego vehicle. This condition is the first barrier of the

decision making approach, that is, in our simulation this acts as the tactical level decision

making. At this level the approach proposed by (3) for decision making at tactical level

is what we propose to use. They have proposed a Probabilistic Online POMDP based

Decision making for a lane change maneuver.  In this  approach they use POMDP to

decide whether  the lane change is  possible  or beneficial  or not  possible  for the ego

vehicle based on its current state and without knowing the intentions of the other slow

moving vehicle. This approach address the uncertainty of other vehicles intentions. It

makes these calculations based on relative distances, relative velocities and TTC with

objects around the ego vehicle.
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But  for  our  experiment  we  didn’t  implemented  the  POMDP method  into  our

algorithm instead we used a simple TTC concept to trigger the decision of making the

overtake  maneuver.  This  will  not  let  the  ego  vehicle  execute  the  Markov  Decision

Process function (which is been discussed in detail in section 3.2.2 later in this report)

until and unless the TTC is less than 5 sec. From study done by  (M. Saffarzadeh, S.

Naseralavi), minimum TTC to be considered for non-driver supported vehicle is 3.5 sec,

so we considered an extra 1.5 sec of margin as a factor of safety in for our TTC value in

our algorithm. Until TTC is not less than 5 sec, our ego vehicle will be following its

normal  pre-defined  planned  path.  For  calculating  the  TTC,  we  only  considered  the

movement of  vehicle  in  a longitudinal  direction for which a  simple formula is  used

which is as follows,

TTC=
(non−ego vehicle position)−(egovehicle position)

(egovehicle speed )−(non−egovehicle speed )

Once, the Time-To-Collision is less than the threshold, which is, 5 sec it now enters

into the 2nd phase of decision making which is maneuver planning which is calculated by

MDP.

For the execution of MDP function (a detailed description of MDP is presented in

section 3.2.2), we require following inputs,

- Position of ego vehicle and non-ego vehicle in the occupancy grid space, this defines

the initial position to start the overtake maneuver.

- Speed of ego and non-ego vehicle at that time,

- Based on their speed and position the overtaking distance is calculated while taking

time as 2 times of TTC, this gives us the final goal position to reach for ego vehicle.

Based on all these parameters, MDP creates a reward map for the road which has

different reward points for all the cells based on their state, that is, whether it is occupied

or free, identifying the road boundaries and giving them suitable reward to prevent the
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vehicle going off the road boundaries. This reward map is explained in details in later

section 3.2.2 in this report where sub-systems will be explained. After performing the

MDP function we get a list of all the feasible points which ego-vehicle can travel through

to reach the goal position. As soon as this maneuver path is defined by MDP, this path

then replaces the pre-planned path so that the vehicle can go through these points as a

reference  rather  than  using  the  previous  path  which  would  had  lead  to  a  collision

between the 2 vehicles. As soon as the pre-defined path is replaced by the new maneuver

path, the variable named “Overtake” is changed to 0. This change of variable is very

important as this will not let the algorithm execute the MDP function again to perform

the maneuver planning  because, while performing the overtaking maneuver, the TTC is

going to decrease further as the gap between the 2 vehicles is going to decrease. Except

for one case, at every increment of sample time, the algorithm checks for the change in

the speed of the slow vehicle, If in case the speed of slow vehicle is increased, then again

the “Overtake” variable is changed to 1. This scenario considers the uncertainty of the

intentions of the slow moving vehicle. If during performing this overtake maneuver, ego

vehicle  detects  increase  in  speed  of  the  slow  moving  vehicle,  this  results  in  again

planning the maneuver with new changed characteristic of both the vehicles. And finding

the new goal point as set calculated by the MDP function.

Once  all  these  maneuver  waypoints,  that  is,  waypoints  refer  to  all  the  x-y

coordinates which the vehicle should follow to reach the goal position, are collected,

then these waypoints and the yaw angle of the ego-vehicle are given as an input to the

Model Predictive Controller (see section 3.2.4). At the input the data of lateral position

and  yaw angles  are  not  geometrically  feasible  for  an  vehicle  to  perform safely  and

comfortably. Prior to input the steering angle which was detected was in the limits of 45º

for steering movement, which off course is not feasible under normal circumstances. For

our current setup we have 1*1 configuration occupancy grid, we can also manipulate

these  waypoints  by  defining  a  smaller  configuration  occupancy  grid  so  as  to  get  a

smaller angular steering movement between 2 waypoints decided by MDP. But as we
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smaller the size of occupancy grid, this will increase the computation requirement used

my MDP function  which  is  not  feasible  for  real  time  working.  Here  to  confine  the

steering movement of the ego vehicle within its geometric limits, MPC controller is used

which follows the rule of various hard and soft constrains which we can set as per our

vehicle specifications and comfort requirements. For this model we have used following

constraints  taking into consideration the geometric  limits  and considering comfort of

passengers,

Steering angle – from -0.5236 to 0.5236 (rad) 30º hard constraint

Steering angle/rate – less than or equal to 0.2618 (rad) 15º hard constrain

Lateral Position – from -2 to 6 m soft constraint

Yaw Angle – from -0.2 to 0.2 (rad) soft constraint

As the inputs are passed through MPC block, these modified lateral positions and

yaw angle are then given as an input to the steering input to the 3 DOF vehicle dynamics

model (see section 3.2.5) which can be said as acceptable for the vehicle dynamic model

to follow. The output from the Vehicle dynamics model is taken and given as an input to

the simulation  for getting the visual results of the total driving scenario representation.

Following is the Pseudo code representation of the complete algorithm  of which

explanation we just went through.
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Algorithm 1 -

%Create Driving Scenario

1. Add road elements

2. Add ego vehicle

3. - define speed, initial position and a pre-defined path

4. Add non-ego vehicle

5. - define speed, initial position and a pre-defined path

6. variable Overtake = 1;

/*Looping*/

7. while advance(scenario) for every 0.1 sec

8. - calculate Time-to-Collision

9. - If(TTC < 5 && TTC > 0)

10. - If(ego-vehicle and non-ego vehicle are in same lane)

11. - while (Overtake  == 1 )

12. - execute Markov Decision Process

13. - get the new maneuver waypoints to follow

14. - Overtake = 0

15. end while

16. - if(change in speed of non-ego vehicle is detected)

17. - Overtake = 1

18. end if

19. end if

20. end if

21.end while

22.Input of lateral position and yaw angle for each sample step to MPC

23.Output of MPC after application of hard and soft lateral and yaw angle changes

24.Modified lateral and yaw angle changes as an input to vehicle dynamics model

25.Obtain position from vehicle dynamics output

26.Give this as an input to Driving scenario to obtain virtual results
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3.2 Subsystems

3.2.1 Driving Scenario Application

Driving Scenario Application is a part of automated driving toolbox which is

provided by MATLAB for testing simulation environment, driving algorithms, sensor

modeling and synthetic data generation, etc. This application is used to create road and

actor models using an interface, we can also configure vision and radar sensors mounted

on  the  ego  vehicle  and  use  these  sensors  to  simulate  detection  of  actors  and  lane

boundaries in created scenario.

Here  in  this  example,  we can  see  a  road with 2 vehicles  placed on their  initial

positions. This way we can also give them a predefined path to follow till some distance

at different velocities. This way we can create any type of scenario which we want to test

our  algorithm  for  and  get  to  know  how  exactly  our  algorithm  is  working  for  that

situation.
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 3.2.2 MDP

Whenever we are faced with a decision of choosing an action from a set  of

actions  and each action  having its  own consequences,  then choosing the  best  action

requires  thinking  not  only  about  immediate  effects  but  also  to  look  for  further

consequences. Immediate effects of an action are easy to see, but long term effects are

not always as easily predictable. Sometimes actions with poor immediate rewards have

better long term consequences. So, choosing the best action not only based on immediate

reward but also considering the future gains a Markov Decision Process is used. 

There are 4 major components of an MDP model which are :

1) a set of states (S)

A state can be said as the way the world exists, and any action which we decide to

take will have an effect to change the current state of the world. Every action will affect

the current state differently, So if we think about the set of every possible way the world

could be affected, then these all possible states of the world make a set of states in MDP.

2) a set of actions (A)

Actions are the set of possible options to make in the current state. An agent will

have some limited number of actions which it  can perform, the problem is  to  know

which of these actions to take in the current state of world.

3) the effects of actions or Transition (p(s,a,s’))

Every action is going to change the current state of the world in its own way, when

we decide a specific action we have an idea of how this action will affect the current

state. This new changed state can be called as the transition state. Since, an action could

have different effects, depending upon the state, we need to specify the action’s effect for

each state in MDP.
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4) immediate value of actions or Immediate Rewards (r(s,a,s’))

If decision making is to be automated, then we must have some measure of action’s

value  so  that  we  can  compare  different  actions  transition  states.  We  specify  the

immediate value of performing each action in each state.

As now we know a basic structure of MDP, we can now look for how we can solve

an MDP, the solution to an MDP is called a ‘policy’ and it simply specifies the best

action to take for each of the state. A policy  π is a stochastic rule by which the agent

selects actions as a function of states. The agent’s objective is to maximize the amount of

reward it will receive over time till it reaches a goal position. That is, finding an optimal

policy  π*  satisfying the following formula, where as vπ(s) denotes the expected return

from state s using policy π.

Π*  = argπmax vπ(s)                                                          (1)

For all s ϵ S.

The Bellman optimality equation (2), is a special consistency condition that the optimal

value functions must satisfy and that can, in principle, be solved for the optimal value

function.  From this  optimal value function,  an optimal  policy function is  determined

with the value iteration method.

Π* = arga max ∑
s ' ,r

p(s ' , r∣s , a)[r+γvΠ(s ' )]                                      (2)

γ = discount factor can be any value between 0 and 1. for example, A reward R that

occurs N steps in the future from the current state, is multiplied by  γ^N to describe its

importance to the current state. In our MDP we considered discount factor as 1.
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MDP formulation for maneuver planning :

1.  State space :

In our overtaking maneuver driving scenario, the state space is supposed to have a

complete knowledge of all the objects in the environment along with their characteristics

and properties of road. In our case, we calculate the MDP function only once, so the state

space  will  contain  all  the  information  related  to  obstacle  vehicle,  ego  vehicle,  their

precise location in the environment at the exact moment when the Time to collision is

detected  to  be  just  below  the  mentioned  threshold.  In  our  example  we  have  taken

TTC = 5 sec. So, at that instant, MDP creates its own grid view map of environment with

each grid size of 1*1 m2. And place all the objects in the environment in that map at their

corresponding places. This defines the state space for our MDP model.

2. Action :

As we know that during motion, a vehicle can move straight, left or right. For our

model as we are going grid by grid to map a maneuver path, we also selected 3 actions

for our ego vehicle, those are A = {Left, Straight, Right}. Also we know that a vehicle

cannot move 90 degree left or right to its current position, So, this action space left and

right  are  the grids which are diagonal  I.e  at  45 degrees to the current position grid.

Below is a simple representation.
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3. Transition state :

Transition model p(s, a, s’) describes the probability by transition from state s to s’

after performing action a. For calculating this, utility is used, here utility is defined as the

sum of product of probabilities of reaching s’ from s after preforming action a. So this

transition state is calculated for each action possible in the current state. Once utilities of

all the transition states for their respective actions are measured, the highest of them is

selected  and is  considered  the  best  possible  action  to  perform at  state  s.  This  same

process is performed at each an every best possible action from start position to goal

position, this gives us a best possible and most rewarding path to reach our goal position.

In our algorithm described on page 33, we can see this selection of transition state is

performed after assigning utility to each and every cell accessed. As we have 3 actions as

described above, each of these actions (left, straight, right) are then performed at that

current cell  and the action which returns the most reward points is  then selected for

execution for that cell.

4. Reward :

The reward model r( s, a, s’) is similar to that of transition model, but for rewards to

be collected we first  need to assign rewards to every block on the grid so that after

performing the action our agent can collect it after performing the action. This rewards,

can me assigned after complying it with road safety, efficiency, comfort and traffic rules

which will create a complex reward system to perform with. In our model we worked on

a fairly simple and basic reward system in which we determined the road boundaries,

location of obstacle vehicle, giving a common reward for all the unoccupied grids, and a

goal position.  We set a large negative number for the grid where obstacle vehicle is

detected (e.g reward = -100), and also we provided a no gain no loss reward for road

boundaries to avoid ego vehicle going from off-road(e.g reward = 0). This allows ego

vehicle to avoid going into that state, this ensures safety during the maneuver. A very
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high positive gain is given to the goal position so that ego vehicle will be tempted to be

in that state(e.g reward = 1000). All the other free unoccupied grids were also given a

reward. We tried 2 different reward system for this free spaces, one which gave a small

gain (e.g reward = 1) and the other one was to  penalized every action with a small

negative gain so that this will force the vehicle to plan the maneuver in shortest possible

path (e.g reward = -1).

Following is one small scale example of MDP function with smaller world grid to

get an overview of how exactly it  works.  For this  example,  reward structure was as

follows,

In the figure 6, we can see a grid view of a small implementation of MDP function.

As per in image we can see its a world of 20*6 grid, where start point is at (2,1), obstacle

vehicle is placed at (7,2) which has a reward of -100 which is visible in the figure. All

the numerical  values  which are displayed in  each grid shows the cumulative reward

which it gets if MDP function would had selected that option. And the connected points
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shown in the figure, represents the most rewarding path which the agent must take reach

the goal position. Following are the reward structure which was followed,

Reward for unoccupied space = 1;

Goal position = 1000;

Obstacle vehicle position = -100;

road boundary = 0;

vehicle boundary = 0;

We have consideration the vehicle boundary because it gives the ego vehicle a safer

distance to travel around the obstacle vehicle. This gave an evidence to the question that

safety criteria based on distance gap between the 2 vehicles can be planned and executed

in a MDP function using the reward system. This reward system can further me modified

to follow traffic rules penalize the ego vehicle for traveling in wrong lane which some

times becomes necessary for avoiding an collision.
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Following is a pseudo code of MDP function which was implemented,

Algorithm 2 -

1. Define world grid in 1*1 m grids

2. Map all objects along with their rewards

3. Define road and vehicle boundaries

%loop to access each cell in created world

4. while (still accessing cells)

5. for i = x-coordinate

6. for j = y-coordinate

7. update utility

8. performing 3 actions at each cell

9. Choosing best possible action and storing it

10. end for j

11. end for I

12. end while

13. making list of all the best actions

14. path created

15. end
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3.2.3 POMDP

POMDP  stands  for  Partially  Observable  Markov  Decision  Process,  is  a

generalization  of  a  Markov Decision  Process  (MDP).  A POMDP models  an  agent’s

decision process in which it it is assumed that the system dynamics are determined by an

MDP model, but the agent cannot directly observe the underlying state. Instead of which

it maintains a probabilistic distribution over the set of possible states it can be in the

environment on the bases of observations the agent receives. In our model, this method

would have a good option for implementation instead of TTC as a decision making step

whether to go or not to go for an Overtake maneuver. During our literature review we

strumbled upon a research paper titled, “Probabilistic Online POMDP Decision Making

for Lane Change in Fully Automated Driving” written by  (3). In this paper they showed

a  decision  making  approach  for  performing  a  lane  change  maneuver  in  an  urban

environment, that is, they focused on tactical level of the decision making. A tactical

decision making level can be defined as a system responsible for modifying the a-prior-

planned lane level route in such a way that it fits well with the driving maneuvers of

other traffic participants.

For a true system, states are not observable completely, Partially Observable Markov

Decision Process helps to address this issue  by the introduction of idea of a belief of

being in a state xt at time t. A POMDP is represented by the tuple (X,U,T,R,Z,O) where,

• X : set of all environment states xt at time t.

• U : is the set of all possible actions ut at time t.

• T : is the X*U*X → [0,1] in the transition function, 

where T(xt,ut-1,xt-1) = p(xt| ut-1 ,xt-1).

• R : is the X*U → R is the reward function, where r(x,u) is the reward obtained by

executing action u in state x.
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• Z : it is the set of all measurements or observations zt at time t.

• O : is the X*U*X → [0,1] is the observation function,

where O(xt,ut-1,zt-1) = p(z|u,x) gives the probability of observing z if action u is

performed and the resulting state is x.

In real time applications, POMDPs are often avoided because of their computational

complexity. Significant research efforts have been spent on extending POMDP models

and finding approximation methods to solve POMDPs (3).

As this section was not implemented in our model, all the details and experimental

results  are  not  available  directly,  but  below are few important  pieces  of  information

which was mentioned in their paper by its authors S. Ulbrich, M. Maurer (3).

They provided their POMDP model with 8 states, which are as follows,

X = {(LcPossible’, LcInProgress’, LcBeneficial’),

(LcPossible, LcInProgress’, LcBeneficial’),

(LcPossible’, LcInProgress, LcBeneficial’),

(LcPossible, LcInProgress, LcBeneficial’),

(LcPossible’, LcInProgress, LcBeneficial),

(LcPossible, LcInProgress’, LcBeneficial),

(LcPossible’, LcInProgress, LcBeneficial ),

(LcPossible, LcInProgress, LcBeneficial )}

LcPossible  is  a  binary  state  variable  which  describes  whether  a  lane  change  is

possible or not, LcInProgress is a binary state variable which describes whether the agent

is  in  lane  change process  or  not  and LcBeneficial  is  a  binary  state  which  describes

whether a lane change is beneficial or not.
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For these states, They have modeled a 3 actions set which the model can execute,

U = {‘Drive’, ‘InitiateLaneChange’, ‘AbortLaneChange’}

And for the reward function of POMDP, all elements of the reward matrix are set to zero

except for the following one,

r(u = InitiateLaneChange, x = (:,LcInProgress’,:)) = -100;

r(u = InitiateLaneChange, x = (:,LcInProgress,:)) = -10000;

r(u = AbortLaneChange, x = (:,LcInProgress’,:)) = -10000;

r(u = AbortLaneChange, x = (:,LcInProgress,:)) = -200;

r(u = Drive, x = (:,LcInProgress’, LcBenefecial’)) = +5;

r(u = Drive, x = (:,LcInProgress’, LcBenefecial)) = -5;

r(u = Drive, x = (LcPossible,LcInProgress’, LcBenefecial’)) = -5;

r(u = Drive, x = (LcPossible,LcInProgress’, :)) = -60;

r(u = Drive, x = (LcPossible,LcInProgress, LcBenefecial)) = +50;

Every “:” denotes all the possibilities of that state in state space X. 

The Authors finally concluded that their approach scaled remarkably well towards

human  like  decisions  for  lane  change  scenarios  which  they  tested.  For  testing  their

system they have had created a decision alert system through which they were able to

come to this conclusion. From this results we can conclude that this approach would be a

best fit for our 1st tactical level decision where we actually used TTC based approach.

This POMDP based approach will further enhance the overall decision making capability

of our system.
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3.2.4 Model Predictive Controller

To  understand  the  use  of  Model  Predictive  Controller  in  our  systems,  first  lets

understand what in general MPC is, A MPC is an advanced method of process control

that  has  been in  use in  the  process  industry for  a  very long time.  Model  Predictive

Controller relies on the dynamic model of the process most often linear empirical models

obtained by the system identification.  MPC possesses many attributes that make it  a

successful approach to as a control design such as, Simplicity, Practicality, etc. The plus

point of using a MPC over any other controller is its capability to handle large number if

manipulated can controller variables, Constraints imposed on these variables and time

delay. MPC models predict the change in the dependent variables of the modeled system

that will be caused by changes in its immediate independent variables. Following figure

shows the block diagram representation of a basic MPC structure on how MPC interacts

with the plant model.

Following is the block diagram of Model Predictive Control and vehicle dynamics 

structure implemented in algorithm.
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Till now we had deal with all the path planning, decision making and maneuver

planning aspects of an Autonomous vehicle. As we moved towards implementation of

these  calculated  path,  we  first  of  all  need  to  look  for  is  whether  these  points  are

physically  possible  for  the vehicle  to  execute the  maneuver  or  not.  Also taking into

consideration the comfort and safety during to the physical limitations of the vehicle.

Different maneuvers have different results depending on the speed of the vehicle at the

time of execution. This mostly affects the comfort related problem for passengers, but

sometimes may result in losing control of the vehicle if any action’s execution pushes the

vehicle  beyond  its  physical  limitations.  So  the  constrain  these  calculated  maneuver

waypoints as per vehicle’s physical limitations is much needed for safe and comfortable

ride.

For this purpose we decided to use the Model Predictive Controller. MPC is said to

be  an  advanced  method  of  process  control  that  is  used  to  control  a  process  while
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satisfying a set of constrains in the form of hard and soft constrains. MPC controller has

been in use in various other industries to control the processes. In Automotive, we use it

to control certain inputs which we have to give to plant, that is, the vehicle dynamics

model of our vehicle, while following various constraints. MPC uses an inbuilt model to

predict the plants behavior and an optimizer which ensures that the predicted future plant

output tracks the desired reference.

We used an Adaptive MPC in our model to control the steering inputs given to our

vehicle dynamics block because a traditional MPC controller is not effective at handling

the varying dynamics, as it uses a constant internal plant model. For this, we gave an

input of Lateral positions planned by our MDP maneuver planning and the yaw angle to

MPC. We used an MPC designer which is an interactive tool provided by MATLAB as a

part of Model Predictive Control Toolbox. First we had to specify all the parameters in

the MPC toolbox such as number of inputs and outputs along with sample time and

prediction and control horizons, constrains and weights. Following are the details which

we used to set the parameters and tuned the MPC controller,

Sample Time : 0.1 seconds

Prediction Horizon : 10 secs

Control Horizon : 3 secs

Steering angle – from -0.5236 to 0.5236 (rad) 30º hard constrain

Steering angle/rate – less than or equal to 0.2618 (rad) 15º hard constrain

Lateral Position – from -2 to 6 m soft constrain

Yaw Angle – from -0.2 to 0.2 (rad) soft constrain
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In the above figure 7, we can see the connections made to and from Adaptive MPC

controller with the plant model. And following are the control signal results from a test

run for lateral position and yaw angle.
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Figure 10: Model Predictive Controller Block diagram
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3.2.5 Vehicle Dynamics

We used the state space continuous-time model which represented the lateral vehicle

dynamics in them, with inputs of steering angle and longitudinal velocity and output as

lateral position and yaw angle along with the states which is then used as input to the

“update  plant  model”  block  for  the  Adaptive  MPC  controller.  This  “updated  plant

model” takes states as input from the plant  model  and operates at  each time step to

update the MPC model with the current states of plant model as MPC requires a discrete

plant model. The “update plant model” first calculates the state space matrices as from

the inputs, and then computes the discrete model and updates the nominal conditions

according to current operating conditions. These nominal conditions are then given as

input to the Adaptive MPC controller. Following are the vehicle parameters which we

took into consideration,
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Signification Symbol Value Unit

Vehicle Mass Mass 1575 Kg

Vehicle yaw inertia Iz 2875 kg.m2

Distance of COG –
front axle

Lf 1.2 m

Distance of COG –
rear axle

Lr 1.6 m

Cornering stiffness
of front tires

Cf 19000 N/rad

Cornering stiffness
of rear tires

Cr 33000 N/rad

Table 2: Vehicle Parameters

Equations used in Plant model are as follows,

% Continuous-time model

Ac = [ 
−2∗Cf +2∗Cr

m.Vx
, 0 , 

−Vx−(2∗Cf −2∗Cr∗lr)
m∗Vx

, 0;

0, 0, 1, 0;

−(2∗Cf∗lf −2∗Cr∗lr )

Iz .Vx
, 0 ,  

−(2∗Cf∗lf 2
+2∗Cr∗lr2

)

Iz∗Vx
, 0;

1, Vx, 0, 0];

Bc = [
2∗Cf

m
, 0,

2∗Cf∗lf
Iz

, 0]’;

Cc = [ 0 , 0, 0 , 1;

  0, 1, 0, 0];

Dc = zeros(2,1);

xdot = A*x + B*u;
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The Difference between “plant model” and the “Updated plant model” is that the

nominal conditions need to be calculated in discrete time model which is different from

plant model.

Following are the equations used for converting continuous-time model to discrete-

time model,

% Generate discrete-time model

nx = size(A,1);

nu = size(B,2);

M = expm([[A B]*Ts; zeros(nu,nx+nu)]);

A = M(1:nx, 1:nx);

B = M(1:nx,nx+1:nx+nu);

C = Cc;

D = Dc;

%Nominal condition for discrete-time plant

X = x;

U = u;

Y = C*x + D*u;

DX = A*x + B*u-x;

Master AESM 2019-2020 43



Maneuver decision for autonomous vehicles, considering vehicle dynamics and perception uncertainties

3.3 Results
We have divided this results section in 2 parts, first section discusses various types

of MDP reward functions which we tried and the second part discusses the final model in

which we can see how if we the use of MPC smooths the maneuver process as compared

to directing using the MDP defined waypoints. For results related to POMDP, we were

not able to perform it within the duration of internship, but, as results found performed

and discussed by (3) in their journal, decision making by using  POMDP approach gives

results which were much similar to that of decision’s made by an human operator. If

interested in more details on results its recommendation to refer to their journal to get a

much clear idea.
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3.3.1 Different types of reward matrix which was tried in MDP :

Test 1:

• Reward at free space = 1;

• goal position = 100;

• obstacle position = -100;

• road boundary = 0;

• vehicle boundary = 0;

In this test, agent missed to reach the goal position. This happened due to the fact

that,  by the time the agent reached near  goal  position,  it  has already collected more

reward points than the reward available at goal position. This resulted in missing the goal

position and going out of contest.  This issue can be solved by giving reward at goal

position more generously.
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Test 2 :

• Reward at free space = 1;

• goal position = 1000;

• obstacle position = -100;

• road boundary = 0;

• vehicle boundary = 0;

Here we can see as we increased the goal reward, agent was successfully able to

reach the goal position. Also we can see that due to vehicle boarder, agent is able to

move at a safe distance from the obstacle vehicle.
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Test 3 :

• Reward at free space = -1;

• goal position = 100;

• obstacle position = -100;

• road boundary = 0;

• vehicle boundary = 0;

This test is similar to test 1, instead it has a small change, the reward given to free

space or unoccupied cells is given as -1. We can see that there is no major change in the

path taken by the agent to reach the goal position. Agent is successfully able to reach the

goal position because it has not collected more reward by the time it reaches the goal

position.
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Test 4 :

• Reward at free space = -1;

• goal position = 1000;

• obstacle position = -100;

• road boundary = no road boundary;

• vehicle boundary = 0;

This  test  shows  that,  how MDP functions  tries  to  avoid  obstacle  or  no  reward

positions in the environment, this condition forced agent to go at the road boundary. Till

now in 3 test we had road boundaries marked a 0 which forced agent to stay within the

road boundaries, mostly on the center line as it was equidistant from both the boundaries,

or we can say no reward region.
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3.3.2 Final Model results :

In above section, we saw different test cases which were done to find a good set of

reward parameters to be assigned to our MDP function. In this section we will apply this

MDP function with a fix set of rewards parameters and tried to carry out a simulation to

see how exactly it reacts to created scenario. Following is the result of MDP function

been applied to overtake scenario.

Here we can see the results of a MDP function defined path, from this path we can

clearly see that during lane change maneuver, the waypoints are places in such a way

that it  is  almost  expecting a 90º turn from the vehicle  which is  not  possible  by any

physical vehicle to perform. Due to this MPC controller helps to steer the vehicle in a

controlled and physically possible maneuver. Following is the output of same scenario,

but results after MPC controller model.
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Here in  the MPC pathway we can see a  clear  difference in  the path of the ego

vehicle,  the  maneuver  path  is  much  more  smoother  than  the  one  defined  by  MDP

function.  I  have compiled the video results  of  these simulations in  a  video for your

reference. (video link - https://youtu.be/bRG1PzwcVsE)

To see this difference following is the graph plot of lateral position and yaw angle

for the 2 scenarios of MDP and MPC outputs,
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Here we can see a remarkable improvement in the yaw angle between the MDP and

MPC controller outputs. This is the result of hard and soft constrains applied in MPC

controller to control the steering angle of vehicle dynamics model. Here the yaw angle
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Figure 20: Yaw angle
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represented with black is the one which will be given to simulator to execute the motion

of the vehicle. The yaw angle represented with red is like a raw input created my MDP

function without having much vehicle dynamic constrains.

4. Conclusion and Prospects

4.1 Summary
Before concluding this thesis report, we will have a small summary of the material

which has been presented in the thesis. Then, we present the conclusions on which we

arrived followed by the potential future perspective of future work.

In section 1, we introduced the our objectives and motivation to work on the given

topic. Our main goal was to work on the decision making aspect of the autonomous

vehicle. We first of all decided to clear the objectives and tried to have a clear focus on

which areas to focus on to achieve our objectives.

Once decided with this part we moved to section 2, where we reviewed multiple

documents  stating  various  methods  currently  being  used  in  academic  and  industrial

research.  We distinguished various  methods which meet  our  objectives.  As we were

proceeding further we went on selecting one method for each step as per requirement for

our architecture. From literature review we narrowed our focus on MDP/POMDP for

decision making, Model Predictive Controller for processing control.

Once, all the components were developed, it was time to integrate these components

into architecture with inputs and outputs as required by system. During building  the

architecture, each component was thoroughly studied and tried to manipulate to get the

most out of that method being used. Various different combination were tried in MDP

function for its reward matrix which gave varying results for each small change made to

them.
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Integrating these components was a challenging task as may time the outputs of one

system  didn’t  provided  the  data  in  the  manner  which  was  acceptable  to  other

components. But after investigating the issue and trying various different methods, we

were finally successful to implement these components into a global running structure.
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4.2 Conclusion
During the development of this thesis, we can conclude that :

• In this report, we tried to present a method using Markov Decision Process to

define a maneuver path for the ego vehicle which need to modify the current path

which it is following to avoid colliding with other vehicles or to gain some time

to reach the destination.

• The  results  show  that  MDP can  be  used  as  an  effective  maneuver  planning

function which we showed by implementing it for an highway overtake scenario,

but  as we have defined a  general  set  of  actions  for  MDP, it  can be used for

various different scenarios.

• MDP/POMDP are  an  excellent  decision  making  process  which  can  take  into

consideration  the  varies  problems  associated  with  uncertainties  be  it  with

uncertainty in perception or the unpredictable behavior of other road occupants

around the ego vehicles.

4.3 Prospects
To conclude this thesis, we propose some prospects which could help improve this

model and extend the work :

• Reward function in MDP can further be modified to include traffic based reward

so that it may penalize the ego vehicle to break the traffic rules such as driving on

wrong side of the road.

• The horizon for the MDP function can be set to a specific limit which then can be

computed for each sample time.

• Implementation  of  POMDP for  in  tactical  decision  for  the  consideration  of

environmental uncertainties.
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