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UMR 7253, 60203, Compiègne, France.
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Abstract

The growing advancements in Autonomous Vehicles (AVs) have empha-
sized the critical need to prioritize the absolute safety of AV maneuvers,
especially in dynamic and unpredictable environments or situations. This
objective becomes even more challenging due to the uniqueness of every
traffic situation/condition. To cope with all these very constrained and
complex configurations, AVs must have appropriate control architectures
with reliable and real-time Risk Assessment and Management Strate-
gies (RAMS). These targeted RAMS must lead to reduce drastically the
navigation risks. However, the lack of safety guarantees proves, which
is one of the key challenges to be addressed, limit drastically the ambi-
tion to introduce more broadly AVs on our roads and restrict the use
of AVs to very limited use cases. Therefore, the focus and the ambi-
tion of this paper is to survey research on autonomous vehicles while
focusing on the important topic of safety guarantee of AVs. For this
purpose, it is proposed to review research on relevant methods and con-
cepts defining an overall control architecture for AVs, with an emphasis
on the safety assessment and decision-making systems composing these
architectures. Moreover, it is intended through this reviewing process
to highlight researches that use either model-based methods or AI-
based approaches. This is performed while emphasizing the strengths and
weaknesses of each methodology and investigating the research that pro-
poses a comprehensive multi-modal design that combines model-based
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2 Safety of autonomous vehicles

and AI approaches. This paper ends with discussions on the meth-
ods used to guarantee the safety of AVs namely: safety verification
techniques and the standardization/generalization of safety frameworks.

Keywords: Autonomous Vehicles, Control Architectures, Risk Assessment,
Decision-Making, Safety Guarantee, Model-based, Artificial Intelligence.

1 Introduction

Transportation systems have provided the humanity priceless social and finan-
cial advantages, they are also likewise connected with negative outcomes like
traffic fatalities, gas emission, and traffic congestion. Today, like never before
tech companies and research laboratories throughout the world invest huge
efforts to reduce these effects by automating the transportation systems. This
technology has the ability to radically transform the transport sector and
make roads much safer. Over the past decades, the increase in the vehicles
number on the road led to a sharp rise in the accidents number and the auto-
motive industry has set itself the mission of reducing this number. Advanced
Driver Assistance Systems (ADAS) came to help achieving this goal. Nowa-
days, vehicles are equipped with ADAS from Level 1 and 2 according to the
SAE standard grading for vehicle automation [1]. They greatly increase the
safety of a vehicle and they consist in the first step toward the automation
of driving functionalities to lead progressively to a fully autonomous vehicle.
According to the scientific literature, the first automated vehicle was built in
Japan in 1977, within the framework of the CACS (Comprehensive Automo-
bile Traffic Control System) project. Under the supervision of Professor S.
Tsugawa [2], demonstrations were carried out with a vehicle capable navigat-
ing in lane on its own while using a camera that detects lane markings. The
vehicle was successfully driven under various road environments at the speed
within 30 Km/h. The Defense Advanced Research Projects Agency (DARPA)
Grand Challenges gave a new impulse to the research in Autonomous Vehi-
cles (AVs) and on the design of complex system architecture to autonomous
driving. The major challenge in comparison to previous demonstrations is that
there was no human intervention during all the race. Whereas the 2004 and
2005 DARPA Grand Challenges were intended to demonstrate that AVs can
travel significant distances, the 2007 DARPA Urban Challenge (DUC) was
designed to promote and encourage innovations in AVs in cluttered urban envi-
ronments. The learned lessons from the Urban Challenge were very valuable
and a lot of them are still subject of nowadays research. Among these sub-
jects, the guarantee of safety of AVs is one of the major research topics in
the domain. It consists in providing a fully generic solution that deals with all
kinds of scenarios and is able to cope with any environment traffic condition
while making the appropriate decision even in highly dynamic and uncertain
environments/situations.
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1.1 Motivations and contributions

Driving is a complex task gathering strategic decision-making, maneuver han-
dling and controlling of the vehicle while accounting for external factors, traffic
rules and hazard. The purpose of researchers in this field is to develop the
necessary autonomous system able to: Assess the risk in the surrounding envi-
ronment; Take appropriate decision in nominal driving situation; Execute the
decided maneuver; Verify the safety and coherence of the executed maneuver
and Plan evasive maneuvers if required.
The goal through this survey is to lead the reader through the process, con-
cepts, and methods defining an overall control architecture for AVs able to
ensure high level of safety and are equipped with of an SAE level 3 or higher
of autonomy [1]. We also review research on relevant methods for the safety
assessment, decision-making, and guarantee of safety of AVs and propose
a classification of these methods from the model-based an AI perspectives.
Indeed, one of the originalities of the paper is to highlight researches that use
either model-based methods or AI-based approaches. This is performed while
emphasizing the strength and weakness of each methodology and investigating
the research that propose a comprehensive multi-modal design that combines
model-based and AI approaches, and in certain cases both in the same struc-
ture. After given in subsection 1.2, the main useful definitions to model-based
and AI-based methods, the remainder of this paper is composed of the following
sections: Section 2 presents an overview of the most-used system architectures,
in the literature, for self-driving cars. Section 3 presents the related work on
risk estimation and safety assessment. Section 4 details research on relevant
techniques for decision-making and ends with a discussion about the methods
used to guarantee safety of AVs in all conditions namely: safety verification/-
validation and standardization/generalization of decision-making framework.
A classification is proposed for each of theses parts of the different existing
approaches from the model-based and AI perspectives with an emphasis on
methods that have shaped the history of AVs. Finally, Section 5 concludes the
paper.

1.2 Main definitions

Model-based denotes the use of mathematical representation in the modeling
of the system and thus incorporates a physical understanding of the system.
Based on this understanding, vehicle’s motions and the uncertainty evolution
is formalized analytically in a model-based control architecture. Among its
main field, extensively used in the literature, we can cite: system identification,
adaptive control, robust control, optimal control, variable structure control,
Lyapunov-based controller designs, and has led to the development of frame-
works such as the Robot Operating System (ROS). These methods often use
statistical estimation techniques e.g., Kalman Filtering or Particle Filtering to
estimate uncertainty.
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Data-driven in the other hand is preferred when the system model is not
available or hard to model, but instead the system data and historical proper-
ties are available. In fact, nowadays, a huge amount of process data is stored
at every time instant. These data contain all the important state information.
Using these data, online and offline, to design controller, assess risk, predict
trajectories or make decision become very relevant especially under the lack of
accurate models. Learning approaches, specifically deep learning, are illustra-
tive of this approach. These examples are a part of a bigger family: Artificial
intelligence (AI).

AI according to Bellman [3] is “The automation of activities that we asso-
ciate with human thinking, activities such as decision-making, problem-solving,
learning, etc.”. AI encompasses a huge variety of sub-field among which
we can cite: Natural Language Processing (NLP), Knowledge representation
(e.g. ontological engineering), Probabilistic reasoning and expert systems (e.g.
Bayesian Networks and its variants or Markovian Processes), Learning (e.g.
Supervised, Unsupervised or Reinforcement). In this paper, our reviewing pro-
cess will focus on the model-based methods from the literature compared to the
AI-based methods focusing on research in learning and probabilistic reasoning
for AVs.

2 Control architectures for AVs

Several classifications have been proposed in the literature to categorize control
architectures either using model-based [4–6] or AI-based [7–9] approach. Some
other works try to make a classification based on the way these architectures
are organized. This classification falls into two categories: modular or end-
to-end control architectures. The modular control architecture design is the
most used in the autonomous driving industry. It organizes and partitions the
problem of automating the driving task into a multitude of parts: localization,
perception, motion planning, decision-making (also called the behavior gener-
ation/behavioral layer) and control (cf. Fig. 1). Each of these parts is divided

Fig. 1 Standard components in autonomous driving systems listing the various tasks.

in a multitude of sub-tasks. For example, path planning can be partitioned
into trajectory prediction, obstacle avoidance, path following, behavior gener-
ation, etc. All of these behaviors are organized in a hierarchical structure able
to handle the coordination while guaranteeing the stability of these systems.
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on the other hand, instead of keeping all the modules composing the automo-
tive system architecture separate, an alternative framework proposes what is
called “end-to-end” method, which integrates into one block: perception, local-
ization, planning, and decision-making, that generates a control input for the
vehicle. Typically such methods mostly rely on machine learning.

In this section, we propose a state-of-the-art of the different architectures
shown in the literature and the interactions between the modules especially
motion planning, risk assessment, and decision-making, while highlighting
their importance in ensuring safety.

2.1 Model-based system architecture

Many types of model-based architecture have been proposed throughout the
history of mobile robotics and multi-robot systems. Centralized, decentralized,
cognitive, reactive or behavioral/multi-controller architectures are examples
of these architectures and have been the subject of many research in the lit-
erature [10] and have evolved with technological progress. While the reactive
architectures cannot support the expanding complexity of the multitude of
tasks related to autonomous navigation, the behavioral one has the ability to
accomplish more complicated behaviors thanks to hierarchical coordination
that selects between several elementary controllers like ADAS (such as Lane
Keep Assist or Automatic Lane Change), in the purpose of mastering the
overall AV behavior. Such a behavior-based architecture and action-selection
mechanism have been extensively used notably by the team VictorTango which
arrived third in the DARPA Urban Challenge 2007 [11]. The chosen Action
Selection Mechanism operates within the Behavior Integrator that chooses the
winning driver among a list of drivers depending on the current situation (e.g.,
Merge driver, Left turn driver, etc.).
Optimization-based control has also been used in this kind of architecture. A
pioneering event in automotive history is the Bertha-Benz historic route. In
August 1888, Bertha drove her husband’s vehicle the Benz Patentmotorwa-
gen Number 3 without him knowing from Mannheim to Pforzheim, Germany
over 100 km. The popular responses on her journey paved the way for the eco-
nomic success of her husband and the adoption of the automobile in society.
Exactly 125 years later, a collaboration of Daimler AG and KIT (Karlsruher
Institut für Technologie) automated a Mercedes-Benz S-Class named “Bertha”
that repeated the Bertha Benz Memorial Route but this time in a complete
autonomy [12]. The Bertha-Benz historic route is particularly challenging as
it covers rural roads, 23 small villages, and major cities and passes a differ-
ent variety of traffic scenarios, narrow streets, intersections and roundabouts
with oncoming traffics. The autonomous vehicle had to react on a variety of
objects: parked cars, bicycles, and pedestrians.

The architecture follows the classical structure by layer [12]. The percep-
tion and localization modules come first and feed the lower layers with the
processed perceptive information then an optimal trajectory generation is per-
formed based on a continuous optimization. The trajectory is then transformed
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into actuator commands by lateral and longitudinal controllers. At the end
of this journey, the team working on the project stated that the overall car
behavior is still far inferior then the performance of an attentive human and
one way to achieve comparable behavior is to improve the ability of the vehi-
cle to interpret a given traffic scenario and predict the behavior of other traffic
participants.
The architectures highlighted above are usually defined while using model-
driven approaches to characterize the motion of the navigation system and/or
the optimization functions and constraints. This arise the priority of having
accurate models that captures and formalize the system behavior and the
uncertainty evolution as modeling errors, simplifications, and linearization are
among the main reasons that complicate the validation phase of AVs. This
is without mentioning the impossibility and the irrelevance in certain cases
of modeling large-scale systems. On this regard, the Intelligent Transporta-
tion System (ITS) community is divided as the usage of data-driven/learning
approaches is seen as a cut-off with modeling. Even though classical architec-
ture designs are the most used in the autonomous driving industry, the total
scene understanding that is required by these architectures to derive a decision
may add unnecessary complexity to the overall system when in most situations
only a small portion of the detected objects are indeed relevant. In addition,
the individual sub-tasks involved in each of the modules of these architectures
are themselves subject to open research.
As mentioned earlier, the DARPA Grand Challenges were pioneering events
in the AV field. The racing team from Stanford University won the second edi-
tion of the DARPA Grand Challenge with the robot Stanley. The winner of
the race had to complete the course in less than 10 hours. The Stanford racing
team had the best time with 6 hours and 53 minutes. Their main challenge was
in the perception systems for road finding and obstacle detection, as well as
high-speed obstacle avoidance. From a general point of view, Stanley’s software
reflects a common approach in AV architecture design. Nonetheless, many of
the individual modules relied on state-of-the-art of artificial intelligence tech-
niques. The use of machine learning, both ahead and during the race, made
Stanley robust and precise. This was a defining moment in self-driving car
development, recognizing Machine Learning and AI as central components of
autonomous driving. The defining moment is additionally eminent since most
of the literature work in this domain is dated after 2005 and will be discussed
in section 2.2. Nowadays, a great number of control architectures have at least
one module based on AI formalism [13–15].

2.2 AI-based system architecture

A certain consensus has been established in the ITS community for
autonomous driving systems concerning the categorization of these sys-
tems and three paradigms emerge: The first one is the Mediated perception
approaches which analyzes the entire scene before making a driving decision.
It has been discussed in section 2.1. The second is called the Behavior reflex
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approaches first seen in [16] that maps directly an input image for example to
a driving action like steering and will be detailed in section 2.2.1). The third
paradigm proposed in [15] is called direct perception approach and falls in
between the two previous paradigms and allows the right level of abstraction.
This is discussed in section 2.2.2 and 2.2.3.

2.2.1 End-to-end autonomous driving

Many works in the literature survey the transition between the model-based
control to data-driven control [17, 18] especially with regards to deep learning
applications to Autonomous Vehicle Control [14]. In [14], the approaches were
separated into three categories: lateral (steering), longitudinal (acceleration
and braking), and simultaneous lateral and longitudinal control methods. For
each of these methods, the application of deep learning has been shown. The
ALVINN (Autonomous Land Vehicle in a Neural Network) system for exam-
ple proposed by Dean Pomerleau with the CMU NavLa pioneered end-to-end
driving in 1989 [16]. An artificial neural network is taught to perform lateral
control by outputting steering angle to keep the vehicle on the road by tak-
ing images from a camera and a laser range finder as inputs. By 2006, it was
at that point conceivable to learn how to avoid obstacles directly from raw
stereo-camera inputs and that was achieved by DAVE (DARPA Autonomous
VEhicle) [19]. It is trained to predict the steering angles from data provided
by a human driver during training. The collected data gather a wide variety of
terrains, weather condition,s and obstacle types. The learning system is a large
6-layer Convolutional Neural Network (CNN) whose inputs are unprocessed
low-resolution images. The robot showed good aptitudes to detect obstacles
and to navigate around them in real-time at speeds of 2 m/s.
Many years later, with the rise of GPU-computing capacities for efficient learn-
ing for CNN, NVIDIA [20, 21] made popular end-to-end methods as part
of the PilotNet architecture (cf. Fig. 2). The proposed approach is to train a
CNN to map raw pixels from a single front-facing camera directly to steer-
ing commands. The system learns to drive in traffic on roads with or without
lane marking with only images from a front-facing camera coupled with the
time-synchronized steering angle recorded from a human driver as training
data. The authors stated that end-to-end system performs better than clas-
sical methods because the system’s internal components are self-optimized to
maximize the overall performance which is better than optimizing a selected
module e.g., path planning, decision-making, etc. The motivation for PilotNet
was to eliminate the process of hand-coding rules and allow the system to learn
by observing. Similar end-to-end architectures have been reported in [22–24]
and they differ mostly in the used sensor inputs or in the problem space. Most
of the end-to-end methods in the literature predominantly utilize Deep Neu-
ral Network (DNN) to train off-line real-world or synthetic data [20, 22–24]
or Deep Reinforcement Learning (DRL) that are usually trained and tested
in a simulation as the work of [25, 26]. Some other works try to make use of
DRL for real-world driving [27]. Pan et al., [28] tried to go one step closer to
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Fig. 2 System architecture of PilotNet (Image credit [20]).

real test by first training a Generative Adversarial Network (GAN) to gener-
ate real-looking images from the synthetic images of the simulation and then
giving these generated images as input to the RL algorithm. Techniques for
porting trained DRL models from simulation to real-world driving have been
proposed in [27]. Imitation learning has been also widely used for end-to-end
learning and is considered as the dominant paradigm in this domain. In [29], a
model predictive controller is used as an expert to generate optimal trajectory
examples and exploited to train a CNN. Waymo through their Recurrent Neu-
ral Network (RNN) named ChauffeurNet [30] proposed exposing the learner
to synthesized data in the form of perturbations to the expert’s driving. The
authors argued that standard behavior imitation is not sufficient for handling
complex scenarios. Adding these perturbations has allowed to create complex
situations such as collisions and lead the learned model to be robust and able
to drive a real vehicle in such critical situations. In [31], the authors state
that a vehicle trained end-to-end to imitate an expert (by training a model
that maps perceptual inputs to control command) cannot be guided to take
a specific turn at an intersection. They proposed instead to use command-
conditional imitation learning which is an approach to learning from expert
demonstrations of low-level controls and high-level commands input to output
steering and acceleration. In [32], it is introduced an approach to learning a
generic driving model from large scan video data set. The model used a Fully
Convolutional Network - Long Short Term Memory (FCN-LSTM) architecture
to learn from driving behaviors. The driving model is evaluated based on the
continuous/discrete feasible action prediction across diverse conditions. In the
same manner, as the previous cited research, the work given in [33] proposed
to learn a driving model using a route planner (OpenStreeMap and planned
route on TomTom Go Mobile) and a surrounding view of the vehicle with a
360-degree camera input as they argue that human drivers also use rear and
side views mirrors when driving. For deeper analysis and review, the reader
may refer to the extensive work and various surveys that exist in the literature
concerning end-to-end learning such as [34, 35]. Although the idea of Dean
Pomerleau [16] for end-to-end driving is very impressive, the need for guaran-
teeing functional safety is essential in self-driving cars, something that AI has
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difficulty with. This is mainly due to the black box problem that doesn’t have
the transparency of their model-based counterparts.

2.2.2 Learning-based approaches

The main idea in Chen et al,. [15] is to map an input image to a small number
of key perception indicators that directly refer to the accessibility of the road-
/traffic state for driving such as the angle of the car relative to the road or
the distance to the lane marking. It is based on a deep Convolutional Neural
Network (ConvNet) framework to automatically learn image features and esti-
mate 13 indicators for driving. Based on these indicators and the speed of the
car, a controller computes the driving commands to autonomously drive the
car in different tracks of TORCS an open racing car simulator [36]. Although
the approach is very interesting, and highlights a multi-modal design that
combines model-based and AI concepts, further extension is needed to han-
dle unpredictable and complex situations. In [37], it is proposed to combine
the benefits of a classic driving system architecture with an end-to-end driv-
ing approach. Indeed, simulation in end-to-end driving systems brings up the
problem of transferring the driving policies to the real-world. The key idea to
resolve this issue is to encapsulate the driving policy such that it is not exposed
directly to raw perception input. The architecture shown in Fig. 3 is orga-
nized into three major stages: perception implemented by an encoder-decoder
network, a command driving policy implemented by a branched convolutional
network that maps from a semantic segmentation to a local trajectory plan
specified by waypoints that the car should follow, and low-level control based
on a PID controller. The system is trained in simulation using CARLA simu-
lator [38] by training a driving policy from a per-pixel semantic segmentation
of the scene to output high-level control. The trained driving policy is then
transferred to a robotic trick in a variety of conditions. However, the shown
results were applied to a simplified scenario and further extension is needed
to make it applicable to real AVs. Some other works try to make use of what

Fig. 3 System architecture by Muller et al., (Image credit [37]).

is called deep learning model (e.g., deep model predictive control [39] [40] or
model-based Reinforcement Learning [41]). For instance, this method states
that interactions of the system with the environment could be used to learn
policies, value functions or even a model. However, learning a model introduces
extra complexities and can induce model errors.



10 Safety of autonomous vehicles

2.2.3 Probabilistic modeling approaches

According to Judea Pearl [42], current AI systems only operate in a model-
free mode which entails severe theoretical limits on performances as he states
that such systems cannot have a retrospection reasoning and cannot thus
serve a strong basis for AI. For this reason, because the purpose in the con-
ception of an intelligent system consists in trying to imitate the inference
process of humans, model-free learners need the guidance of a model of real-
ity. He proposed thus to equip machine learning systems with causal modeling
tools through graphical representation that have made model-driving reason-
ing computationally possible, and thus represent a good basis for strong AI.
Bayesian Networks (BNs), fall under this definition because they are consid-
ered as a probabilistic graphical language suitable for inducing models from
data aiming at knowledge representations and probabilistic reasoning under
uncertainty. In [43], the authors state that BNs possess the property of being
both a machine learning knowledge-based representation and a model-based
formalism. Indeed, it allows structuring domain knowledge while accounting
for dependencies between variables. This is also why many works classify them
as knowledge-based approaches [44, 45]. BNs have been successfully applied to
solve a variety of problems in many different domains mainly related to mod-
eling and decision-making under uncertainty [46]. Unlike neural networks that
need extensive amounts of data and learning time, the BNs have short response
time given their computational tractability (for relatively small networks) due
to the exploitation of conditional independence relationships [46, 47]. On the

Fig. 4 Probabilistic multi-controller architecture for road navigation (Image credit [13])

other hand, finding a realistic mathematical model that is able to understand
the environment and its dynamic and make real-time decisions is not a simple
task. BNs are also able to handle the uncertainty that may arise from uncer-
tain observations or the situational model. In contrast, neural networks can
solve problems with uncertainty however massive data should be available.
In [13], it is proposed a design of a Probabilistic multi-controller architecture
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(P-MCA). It effectively links model-based approaches and Artificial Intelli-
gence (AI) developments for intelligent vehicle navigation in roadway. The
model-based approach appears in the path planning (based on analytical tar-
get set-points definition) and the control law (based on a Lyapunov stability
analysis). The AI-based approach appears in the proposed Sequential Level
Bayesian Decision Network (SLBDN) for handling lane change maneuvers in
uncertain environments and changing dynamics/behaviors of the surrounding
vehicles.

2.3 Discussion

In the light of the investigated literature, Table 1 illustrates a comparison
between performances of the model-based and the AI-based approaches. Fur-
ther, this table summarized what has been already said in each part through
this chapter. Aspects considered in the depicted comparison are the most
important requirements in today’s AV in terms of complexity, uncertainty
handling or generalization ability. A classification of the AV problem space is
proposed in connection with the mentioned requirements.
Accordingly, model-based approaches have a strong ability to control vehicles

Approach Algorithm Name Driving environ-
ment

Generalization Low Com-
putational
complexity

Uncertainty:
model
errors/noisy
measure-
ments

Experiments

Model-
based
approaches

Behavioral/multi-
controller
architectures [11]

Autonomous driv-
ing in urban envi-
ronment

+ + + + - Real & Simulated

Bertha-Benz
Memorial Route in
2014 [12]

Autonomous driv-
ing in urban envi-
ronment

+ + + - Real & Simulated

AI-based
approaches

Probabilistic
Multi-Controller
Architecture based
on BNs [13]

Autonomous driv-
ing in road-way

+ + + + + Real & Simulated

The direct percep-
tion approach [15]

Autonomous Driv-
ing in multiple con-
figurations

+ + - - Testing on real-
world data and on
TORCS simula-
tor [36]

PilotNet by
NVIDIA (end-to-
end) [20]

Autonomous driv-
ing in real traffic
situations

+ - - + + Real & Simulated

ChauffeurNet by
Waymo (end-to-
end) [30]

Autonomous Driv-
ing in multiple
urban configura-
tions

+ - - + + Real & Simulated

Table 1 Comparison between model-based and AI-based system architecture for
autonomous vehicles.

when accurate models are available and they also have a systematic modu-
lar design which makes it possible to improve or add additional features not
supported in the original design without huge modification or training. Gen-
eralization regardless of the used method is a challenge in the AV domain due



12 Safety of autonomous vehicles

to the highly complex nature of the navigation environment, however model-
based does well compared to others as the algorithms are analytically defined.
Learning methods have a better performance when the models are not avail-
able but they lack systematic designing procedures and means of analysis.
Specifically, end-to-end approaches on the other side have the strength to be
compact and self-optimized as all the modules composing the classical archi-
tecture are integrated. However, in real-world applications, data is limited in
quantity and quality and is usually gathered for a specific task or scenario. Path
planning, trajectory prediction, and control demand real-time performance,
which means for deep learning usage, the time-consuming data collection and
training procedure should be simplified for online systems. Even with these
conditions, proof of the stability of the control system is necessary and how to
generalize the deep learning models to all cases is still a challenge [39]. Indeed,
a single false decision can lead to a critical situation. A promising paradigm
arose and aims to reach the defined objectives while using a smart combination
of AI-based and model-based formalism. These approaches have the utility of
dealing with the limitations that arise from each one of the methods. If a good
equilibrium between approaches is found, we believe that this can be the basis
of a powerful system.

3 Risk Assessment of AVs

While it may not be difficult for human drivers to tell whether a situation is
safe, it is far from obvious for an autonomous car [48]. In that context, it is
associated with the idea of whether the situation is or will be risky/dangerous
for the vehicle and for other traffic participants. Thus, it is natural to con-
sider collisions as the main source of risk and to base the assessment of risk
solely on collision prediction [49]. Therefore a maneuver is said to be safe if no
potential collision is possible and risk could be intuitively understood as the
likelihood and severity of the damage that a vehicle of interest may suffer in
the future. From this understanding, to assess risk it is necessary to predict
how a particular situation will evolve. This is performed while using motion
prediction [50–52]. It is used to infer the intentions of the surrounding drivers
and predict what their state will be in the future timesteps. This domain has
been the center of interest of numerous works in robotics [49, 53, 54]. Lefevre
et al., [49] proposed a comprehensive survey that classified existing motion
prediction approaches used for risk assessment of AVs into three distinct parts:
Physics-based motion model, Maneuver-based motion model, and Interaction-
aware motion model. Table 2 represents a summary of motion models and
prediction inspired by Lefevre’s classification [49]. After predicting the poten-
tial future trajectories of all the moving entities the next step is to effectively
detect collisions between pairs of entities and their predicted trajectories. This
is known as Collision-based risk assessment. While the simplest techniques
provide basic methods on whether and when a collision will occur, more com-
plex methods can compute in addition information on its probability or its
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Approach Methods Algorithm and tools Advantages (+) and
limitations (-)

Physics-based motion
model [49, 52]

Kinematic and Dynamic
models

Kalman Filtering, Monte-
Carlo simulation

+ Simplicity and Computa-
tional efficiency
- Short-term prediction
- Inter-Vehicles interaction
disregarded

Maneuver-based motion
model [52, 55, 56]

Maneuver Intention esti-
mation coupled with tra-
jectory prediction

Most popular method is
Hidden Markov Model
(HMM), Classification
of motion patterns [49],
Support Vector Machines
(SVM) [57]

+ Longer prediction hori-
zon - Inter-Vehicles
interaction disregarded

Interaction-aware motion
model [58, 59]

Trajectory prediction by
including inter-vehicles
interaction

Majority are build using
Dynamic Bayesian Net-
works (DBNs) [50]

+ Consider interaction
between road participants

+ Design Flexibility
- Computationally expen-
sive

Table 2 Motion Models and Prediction: A summary (updated version of [49])

severity. However, these collision-based risk indicators rely on a rather uncon-
strained evolution of the environment. It estimates the risk of a situation by
predicting the future trajectories mostly based on the current state and then
looking for a collision between these trajectories.

Another interesting approach for safety assessment named Behavior-based
risk assessment, estimates the risk of vehicles deviating from their nominal
behavior expected on the road. Hundreds of researchers have been done in
the domain of warning and detection systems [60, 61] of incoherent or unex-
pected events done by vehicles in the environments mostly for ADAS. When
dealing with AVs, the behavior-based risk can mostly be estimated by either:
Defining a nominal behavior of vehicles and then detect events that do not
match, detecting conflicting intentions between vehicles or with regards to traf-
fic rules, or by dealing with unexpected behavior as independent events while
using safety verification techniques, upstream of the risk assessment modules
for emergency situations which will be discussed in Section 4.3. Many meth-
ods have been proposed in the literature and we propose in what follows, a
classification of the risk assessment methods from model-based and AI-based
perspectives.

3.1 Model-based approaches

In this section, the model-based techniques will be discussed. These techniques
generally use the physics-based motion models of evolution (cf. Table 2) in
order to assess the risk. The risk metrics are divided in two categories: the
deterministic risk indicator and optimization-based risk assessment.
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3.1.1 Deterministic risk indicators

It relies on the collision-based risk assessment definition. The most-known
indicators of criticality are: the change in velocity of the vehicles, the collision
angles (rear-end or head-on), the amount of overlap between different shapes
representing vehicles (ellipses, circles, polygons, etc.) [5, 10, 62], the occupancy
of conflicting areas [58], the rate of change steering, the configuration of tra-
jectories in a collision course, the remaining time span in which the driver can
still avoid a collision by braking (e.g., Time-to-Brake or by steering, etc.) In
the literature, there exists several risk metrics [63–68] that cover these indica-
tors of criticality. Table 3 presents some of the most-known deterministic risk
measures used in nowadays AVs. They are classified in a chronological way of
appearance in the literature as well as in three categories which are: the longi-
tudinal risk assessment, lateral risk assessment and both at the same time. A

Table 3 Some examples of deterministic risk measures

Approach Risk measure Description Equation

Longitudinal Risk
Assessment

Time-to-Collision (TTC)
(Hayward 1972) [69]

The time required for two vehi-
cles defined with their pose,
velocity, and wheelbase denoted
as (Xi, Vi, Li) to collide if they
continue on at their present
speed and path.

TTC = X1−X2−L1

V1−V2

if V2 > V1 for the case of
rear-end collision (see [70]
for other configurations).

Post-Encroachment Time
(PET) (Allen et al.,
1977) [71]

The time between the moment t1
that the first vehicle last occu-
pied a position and the moment
t2 that the second reaches the
same position.

PET = t2 − t1

Deceleration to Safety
Time (DST) (Hupfer,
1996) [72]

The deceleration aDST that has
to be applied to the ego vehicle
velocity ve to maintain a certain
safety time ts with respect to the
object vehicle velocity v0.

aDST = 3(ve−v0)
2

2(x−v0.ts)

with x the distance
between both vehicles.
(see [47] for more details)

Lateral Risk
Assessment

Time to Line Cross-
ing (TLC) (Godthelp
1984 [73])

The time duration tLC available
for the driver before any lane
boundary crossing.

For straight road config-
uration and zero steering
angle:
tLC = yll

vl
with vl the lat-

eral velocity and yll the
lateral distance of front
left tire to the line that
would be crossed. (see [73,
74] for more configura-
tions)

Longitudinal &
Lateral Risk
Assessment

Time To React (TTR)
(Hillenbrand et al., 2006)
[67]

The remaining time to avoid
an imminent collision by emer-
gency braking with full decel-
eration (which is known as
Time To Brake (TTB)), steering
with maximum lateral accelera-
tion (Time-To-Steer (TTS)), or a
kick-down maneuver (Time-To-
Kickdown (TTK)) by leaving the
collision zone early enough for
example.

The TTR is calculated as
the maximum of the TTB,
TTS and TTK [67]
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unique warning threshold is usually applied to the obtained value to classify
the situation as risky or safe. Some other works [75, 76] distinguish multiple
warning levels that improve the decision-making process and conform to the
driver perception of safety in a dynamic environment. Despite the good num-
ber of metrics that exist in the literature, the Time-to-Collision (TTC) remains
the most used and the oldest risk metric to the best our knowledge in the
domain of AVs. This is mainly because of its simplicity, its low cost computa-
tional time and it has many variants for multiple different configurations [70].
However, as pointed out by Laugier et al., in [77] this metric suffers from
the lack of context and singularities that may occur in some configurations.
Indeed, TTC alone is insufficient as a risk indicator for managing complex
situations. In addition, the common definition of the TTC is restricted for a
specific path to detect longitudinal collision and for well-defined scenarios such
as car following. To overcome this issue, extended definitions of the TTC have
been proposed in multiple works [62, 78–80]. The works given in [13] and [62]
address the problem from a planar perspective where vehicles are considered
in a two-dimensional plane and the state of each vehicle is defined by a vec-
tor position, velocity and acceleration components on X and Y direction. This
Extended TTC (ETTC) is computed at each time step for each vehicle pair
that are close enough. Even though a deterministic approach has less com-
putational complexity, the main drawback of these criteria is the incapability
to deal with the unpredictable as only short-term prediction is considered by
these metrics.

3.1.2 Optimization-based risk assessment

Other methods estimate the risk jointly within the path planning through
algorithms (for example while using optimization approaches) based on a cho-
sen trajectory considered as safe with respect to certain constraints related to
the vehicles dynamic, the road geometry, the dimension of the vehicle or the
occupancy of objects in the environment. In this kind of application one can
make the analysis concerning the constraints defined in the optimization and
the used algorithm. On-board of the vehicle that completed the 103 km of the
Bertha-Benz-Memorial-Route fully autonomously, Ziegler et al., [81] proposed
to use an optimal trajectory generation based on a continuous optimization.
The solution trajectory is the constrained extremum of an objective function
that is designed based on the dynamic feasibility and comfort. Static and
dynamic obstacle constraints are incorporated in the optimization in a form
of polygons (cf. Fig. 5). The constraints are designed in such away that the
solution converges to a single global optimum. Pek et al., in [5] developed a
fail-safe trajectory planner for self-driving vehicles. This trajectories are com-
puted in real-time in continuous space by making use of convex optimization
techniques. This allows to separate motions into a longitudinal and a lateral
component while defining the constraints suitable for each motion and thus
guaranteeing the drivability of the resulting motions. Collision avoidance is
done through the convex constraint set while considering the kinematic vehicle
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Fig. 5 Constraints for an oncoming Object (cyan). The trajectory is constrained by poly-
gons of corresponding color (Image credit: [12]).

model. It is described with respect to a curvilinear coordinate system aligned
to a reference path and restricts solutions so that they do not intersect with
the predicted occupancy sets of other traffic participants.

3.2 AI-based approaches

In this section the AI-based techniques will be discussed and are divided in
two categories: the probabilistic methods and the learning approaches.

3.2.1 Probabilistic methods for risk assessment

These approaches take into account the uncertainty of motion along the pre-
dicted trajectory (cf. Table 2). It generally uses the maneuver-based or the
interaction-aware motion model (cf. table 2) in order to assess the risk. Several
probabilistic frameworks have been used: Hidden Markov Model (HMM) [82],
DBN [83] or other probabilistic frameworks. In [50], it is proposed to inte-
grate what is called in the paper a network-level collision prediction through
a Random Forest classifier with interaction-aware motion models under a
Bayesian framework DBN for risk assessment of AVs. The network-level
collision prediction consist of the safety context (safe or collision-prone) of
the road segment on which the ego-vehicle is traveling on and interprets the
traffic scene as either “dangerous” or “safe” enabling a vehicle to be more
vigilant in collision-prone situations.
The grid based approach is another way to assess the risk. It consists in
constructing grid cell values from sensory information. It is used to model the
environment and propose to split the space into a set of cells that may be free
or occupied. Usual methods aim to calculate the probability of occupation of
a cell from sensor data. It was first proposed by Elfes in [84]. Bayesian Infer-
ence is the common used methods to cope with uncertainty and errors. Many
extension have been published in the literature. For example the Bayesian
Occupancy Filer (BOF) used by [85] provides filtering, data fusion, and veloc-
ity estimation capabilities of the cells while allowing parallel computation.
Evidential grids [86, 87] are a variation of occupancy grids. It is is based on
Dempster-Shafer (DS) theory and offers a solution to make the difference
between unknown and doubt caused by conflicting information output from
the fusion process. Many other works combine the efficiency of a deterministic
criteria like the TTC with an interaction-aware formalization while using a
DBN. It is the case for example of the works done in [50, 88].
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Other researches used the reachable set computation in order to assess col-
lision in future planned path [4, 89]. The classical definition of a reachable
set is a set that contains all possible states that the system trajectories can
evolve into. A collision is verified by checking whether the reachable positions
of the ego vehicle intersect the reachable positions of another vehicle. How-
ever, with the classical definition of reachable set, which could be considered
as too conservative, other vehicles rapidly cover all positions the AV could
possibly move to. Which results in the fact that the planned paths of AVs are
often evaluated as unsafe. For this reason, the reachable sets are enhanced by
stochastic information that gives the probability of the crash and it is called
stochastic reachable sets [90].
In order to avoid the extensive complexity of generating all the possible tra-
jectories to detect collisions between each possible pair that is often used in
Collision-based risk assessment, Behavior-based risk assessment is used. For
example, Lefèvre et all., in [91] proposed an interaction-aware formalism for
the trajectory prediction and the maneuver intention prediction. Dangerous
situations are identified by detecting conflicts between intention and expecta-
tion, i.e., between what drivers intend to do and what is expected of them. It
is formulated as a Bayesian inference problem where intention and expectation
are estimated jointly for vehicles converging to the same intersection. Risk is
computed as the probability that expectation and intention do not match.
This method can be categorized in both behavior-based and probabilistic risk
assessment as the risk is computed as the probability that expectation and
intention do not match. Another example is the work of Schulz et al., [58]. By
making use of the interaction aware formalism, it was proposed a behavior
prediction framework through a DBN, which explicitly considers the inten-
tions of drivers and the inter-dependencies between their future trajectories.
The decision-making process of an agent is divided into three hierarchical
layers: which route the vehicle is going to follow (route intention), whether it
is going to pass a conflict area at an intersection before or after another agent
(maneuver intention), and what continuous action it is going to execute.
Unexpected behaviors are not included explicitly in the framework however
the inter-dependencies between all the vehicles future trajectories are taking
into account which allows to deal with conflicting areas and act accordingly.

3.2.2 Safety of learning approaches

Control architectures in AI are either solely based on machine learning in an
end-to-end fashion (cf. section 2.2.1) or involve some combination of model-
based reasoning and AI components (cf. section 2.2). Either way, the urge
for explainable AI able to guarantee safety is receiving increasing attention in
nowadays researches [92–97]. More and more AI and deep learning strategies
are effective and reliable even for safety-critical related issues [98, 99].
Guaranteeing the safety of a system running any kind of method or technique
heavily rely on: the type of the used technique, the application context, the
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understanding of the impact of possible failures, the definition of what is a safe
behavior, the definition of the assumptions and the constraints on the system
and its environment, the uncertainty handling. In the particular case of deep
learning approaches, in addition to the previous requirements, the need of a
clear justification about the taken decision and the insurance of safety on all
possible driving situations remains subject of highly active nowadays research.
Many works in the literature try to map these requirements for deep learning
techniques by defining a set of constraints and assumptions in the design of
the used network that needs to hold in order to ensure the safety of the spec-
ified behavior. The work given in [94] for example, designed an application of
CNNs to detect (i.e., classify and localize) objects based on camera images
as part of a collision avoidance system for self-driving vehicles. For example,
standard specifications which could be obtained at the level of the machine
learning feature could include: the class of the located object that are at a
specified distance or with a certain lateral precision and that depends on the
velocity of the ego vehicle or the TTC. These assumptions are mapped to the
dimensions of the image frames and presented to the CNN.
On the other hand, some researchers focus their effort in analyzing the faults
and failures caused in deep learning components. They may be due to unre-
liable or noisy sensor signals, neural network topology, learning algorithm,
training set, or unexpected changes in the environment. For example, Varsh-
ney in [95] reasoned about the definition of the term “safety” stating that
it should be defined in terms of risk, epistemic uncertainty, and the harm
incurred by unwanted outcomes. Instead of reasoning about the input data,
he analyzed the choice of cost function, the appropriateness of minimizing the
empirical average training cost and the empirical risk and defined strategies to
achieve safety. In the same spirit, the work given in [96] attempted to analyze
the problem from the point of view of “accidents” stating that these danger-
ous behaviors may arise from poor AI system design and proposed a list of
five practical research problems related to accident risk, classified according to
whether the problem results from having the wrong objective function (avoid-
ing side effects and avoiding reward hacking), an objective function that is too
expensive to evaluate frequently (scalable supervision), or undesirable behav-
ior during the learning process (safe exploration and distributional shift). The
most cited example is the Tesla Autopilot accident in 2018, caused by a mis-
classification error despite the 130 million miles of testing and evaluation under
extremely rare circumstances. Despite the fact that fail-safe mechanisms (that
must stop the AV in case of a failure is detected) exists [100], one of the main
cause that lead-vehicle governed by deep learning to crash are the mistakes
done by lower-level components. These mistakes propagate up to the decision-
making process and lead to devastating results. In the case of the Tesla, the
low-level component failed to distinguish the white side of a turning trailer
from a bright sky. In this kind of system, the uncertain information, in this
case distinguishing between the sky and another vehicle, should be escalated
to a higher level decision and may advise the user to take control of steering.
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Gal in his Ph.D [101] worked on developing tools to obtain uncertainty estima-
tion and confidence models in deep learning, casting recent deep learning tools
as Bayesian models without changing either the models or the optimization.
For the purpose of accounting for uncertainties, [102] proposed to use end-
to-end Bayesian deep learning architecture for AVs. A comparison has been
made between a framework built on traditional (non-Bayesian) and Bayesian
deep learning. Although both systems use the same initial sensory information,
propagating uncertainty through the prediction and decision layers allows the
Bayesian approach to avert disaster.
In all these cases, the safety of a decision in deep learning can be reduced to
ensure the correct behavior of the system, and many surveys the techniques
used and the uncertainty handling [34, 101]. Verifying the program is work-
ing as intended before deployment is possible, however, safety insurance and
formal verification methodologies are still not clearly fixed yet.

3.3 Discussion

An important challenge in the field of risk assessment is to find the perfect bal-
ance between ensuring safety with all the imposed constraints: Uncertainties
in terms of model errors or noisy measurements, Computational complexity
assessing the risk while keeping the complexity manageable and Conservativ-
ity in the navigation. For these reasons defining risk assessment strategy that
must be able to: insure High Reliability, take into account the prediction and
the interactions between vehicles (Interaction-aware Formalism) and Gener-
alize to arbitrary driving conditions and unknown environments. Because no
standardized performance indicator exists in this domain, a classification is
shown in Fig. 6, based on the criteria stated above, which are considered the
most used in the ITS community.

Fig. 6 Comparison between the reviewed Risk Assessment (RA) methods
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Obviously, none of the methods seems to be fully infallible. The AI-
based (Probabilistic) seems more efficient than the remaining methods with
respect to most requirements as it has the potential to consider the nature
of the stochastic dynamics of the traffic environment, be able to account for
model and sensor uncertainties through well-known probabilistic algorithms
and consider for present and future interactions between participants. The
learning methods are more and more effective and reliable even for safety-
critical related issues and have the strength that they use real data in their
training which makes the resulting safety system very realistic. However, this
dependency on the data makes it unpredictable regarding to unknown/unseen
situations for most of the defined requirements. For the model-based RA, the
deterministic ones provide low computational complexity, however, they are
inefficient when dealing with the unpredictable in long-lasting maneuvers. The
optimization-based RA is more efficient in this regard, however, these methods
are dependent on the modeling of the optimization problem and its defined
constraints.

4 Decision-making and risk management for
AVs

The need of an efficient Decision-Making System (DMS) is rising as the ulti-
mate challenge in nowadays research. The main reason is that decision-making
is located at the highest level of the automotive architecture. An efficient
DMS requires well-functioning sensors and perception, self-localization, pre-
cise maps, accurate interpretation and assessment of traffic situations to make
safe and efficient decision. In this section, the focus will go to risk management
strategies defined within the standard modular control architecture (cf. Fig. 1
(a)) as end-to end methods have already been discussed in section 2.2.1.

In order to provide safe and reliable AV maneuver decisions under vari-
ous driving situations, four interconnected systems are needed: Global motion
planning, behavior reasoning (or risk assessment coupled with decision-
making), local motion planning and control. Global motion planning finds
the fastest and safest route on the road network to get from origin to the
final destination. Behavior reasoning assesses the driving situation (through
risk assessment cf. section 3) and determines the overall behavior of the
autonomous vehicle (through decision-making strategies) based on the global
route and perception information. The local motion planning generates the
trajectory based on the global route and the determined behavior and is
responsible of avoiding static and dynamic obstacle collisions. Finally, the
AV has to be controlled in order to be guided along the planned trajec-
tory. Many works in the literature surveys motion planning algorithms for
self-driving cars [53, 54, 103], and different techniques and a number of clas-
sifications have been proposed for each algorithm. This section will focus on
the decision-making strategies used for autonomous vehicles’ navigation.
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4.1 From the earliest approaches to current challenges in
decision-making

Already in the early 90’s, the reflection was already ongoing and different sys-
tems for decision-making of AVs were proposed. For example, one of the earliest
work was the decision-making model proposed by Dickmanns et al. [104], in
which a rule-based structure would enable alternative maneuvers for the ego-
vehicle triggered by special events recognized through vision.
Through the different DARPA Grand Challenge (2004, 2005 and 2007) (cf.
section 2.1), multiple pioneering solutions have been proposed in multiple
areas. But the decision-making as it is defined in nowadays research have been
investigated only in the last edition. The objective was to prove that navigation
could be done in traffic when there were both moving intelligent vehicles and
moving vehicles driven by humans. Competitors had to drive 97 km through
urban environments, interact with other traffic participants and obey to the
California traffic rules. This made it necessary to the competing team to use
evolved decision-making mechanism to guide the behavior of the controlled
vehicles. It is important to mention that the most common approach in the
DARPA competitions was to use a rule-based decision process based on Finite
State Machine (FSM) as decision-making strategy [105]. As an example Junior
and Odin (the second and third ranked in the competition) used FSM to gov-
ern their vehicles’ behavior. The FSM is given by a finite set of states in which
the agent can be, and by the transitions between the states in response to
some inputs. Based on the state of the vehicle in the world, the FSM searches
for a suitable behavior (changing lane, making a U-turn) that makes the vehi-
cle able to reach an objective checkpoint. Then, it either sends the controller
the chosen trajectory that in return send steering and velocity commands or
send a message to the planner that the checkpoint cannot be reached. Most of
these transitions are coded and tested by hand and thus prone to errors.

FSM methods perform well in basic scenarios, however, this approach lacks
the ability to generalize to unknown situations and to deal with uncertainties.
In addition, when considering traffic scenarios, unexpected behaviors that have
not been considered during the construction of the system, which necessitates
the addition of new rules, and consequently increases the complexity of the
decision-making process.
For this reason, state machines based methods have been improved and fused
with other methods to cope with a larger variety of real urban traffic sce-
narios [12, 106, 107]. As an example, a research using the concepts of state
machine was the team working on the Bertha Benz Memorial Route [12].
However, they structured the program flow of upcoming behaviors/decisions
while using manually implemented architecture. The authors proposed a hier-
archical concurrent state machine as behavior generation method. Depending
on the current driving situation, behavior generation formulates constraints
(which is considered as the program flow) that arise from the current driving
corridor, static obstacles, dynamic objects, and yield and merge rules. What
is called decision-making is skipped in their approach and theses constraints
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are directly given to the trajectory planning modules. In this case, planning
is used to make decisions in the specific situation by the means of an optimal
trajectory generation based on a continuous optimization.
In the same spirit, multiple works focus on the definition of constraints
that condition the trajectory planning module rather then defining a proper
decision-making module. The trajectory planner chooses a trajectory consid-
ered as safe with respect to certain constraints related to the vehicle’s dynamic,
the road geometry, the dimension of the vehicle or the occupancy of objects in
the environment. Model Predictive Control (MPC) for example sets the current
control by anticipating future events using a model of the system dynamics.
It is originally used as a control method but have been extended in the lit-
erature for decision-making. In [108], it is presented a decision and control
algorithm for lane change and overtaking maneuvers. The problem of deriving
decisions regarding appropriate driving maneuvers i.e., selection of desired lane
and velocity profile, on two-lane, one-way roads, is considered as a Mixed Log-
ical Dynamical (MLD) system to be solved through MPC using mixed integer
program formulation. The predictive controller allows full control of accelera-
tion/deceleration as well as providing a decision variable regarding preferred
lane at each time instant.

Today’s research in decision-making focuses mostly on finding global and
robust solutions. Solutions that generalize to all situations while taking into
account uncertainty, unpredictable situations while guaranteeing always the
AV safety.

4.2 Decision-making based AI

In contrast with the methods shown in the previous section, where decision are
either encoded by hand or directly nested in the planning, in this section will be
discussed methods based on either a probabilistic definition or learning-based
approach.

4.2.1 Probabilistic approaches

Among the main used probabilistic framework for decision-making in the
literature let us mention:

• Markov Decision Processes (MDP): Partially Observable MDP (POMDP),
Mixed Observability MDP (MOMDP), Hidden Markov Model (HMM) and
semi-MDP (sMDP) [109–112].

• Bayesian Networks (BN): Two types are used the Dynamic Bayesian
Network (DBN) and the Decision Network (DN) (also called Influence
Diagrams) [13, 47, 113, 114].

Methods based on Markov Decision Processes (MDP)

MDP is a discrete-time stochastic state transition system [115, 116].
It is used to model the sequential decision process of an agent acting in a

dynamic environment with uncertain dynamics. In an MDP, the agent interacts



Safety of autonomous vehicles 23

with its environment - while taking the available information of the state of
the world- by taking actions at discrete time steps. Upon taking such actions,
the state of the world changes and make a transition and the agent receives a
reward signal.

The goal of such a problem is to find an optimal policy (sequence of actions)
π∗ that maximizes the expected reward over the time horizon. The commonly
applied approach to find an optimal policy is value iteration [115].

Mouhagir et al., in [117] proposed a method based on an MDP like model
for trajectory planning with clothoid tentacles. The idea is to generate realistic
trajectories with tentacles method and select the best tentacle regarding the
MDP process. However, the simulations was held with only static obstacles
with no uncertainty consideration. In [109] a theoretical approach is proposed
for combining continuous world prediction by a DBN and discrete world semi-
MDP planning. A semi-MDP allows actions that take varying amount of times
to complete and is very useful in this work where the goal is to plan sequences
of lane change maneuvers. The transition probabilities of the semi MDP are
modeled using the DBN proposed by Gindele et al., [110] that accounts for
the interactions between vehicles. The policy is then recalculated each time a
new traffic situation is encountered, which still raises the question of real-time
applicability.
POMDP [118], on the other hand, is an extension of an MDP to account for
partial observability of states in a system. POMDP helps to introduce the idea
of a belief bel(xt) of being in a state xt at time t.

The objective of solving a POMDP is to find an optimal policy π∗ which
maximizes the expectation for the reward sum over the future time steps.
However, despite the close relationship between POMDP and MDP, solv-
ing a POMDP is considerably more difficult than solving the corresponding
MDP as the POMDPs computational complexity grows exponentially with
the planning horizon. To overcome this issue, approximate solution methods
have been proposed. Some of the solutions focus on solving offline POMDP
models which means that the focus is not to calculate the best possible action
for the current belief state but rather for every imaginable belief state. This
restricts their applicability to only small problem domain. In contrast, online
approaches [111, 112] allow a calculation of a good policy at the current belief
state of the agent. In what follows, some works using these methodologies for
decision-making are presented. In [111], online POMDP is used for decision-
making for performing lane changes while driving fully automated in urban
environments. The online POMDP is applied to accommodate inevitable sen-
sor noise to be faced in urban traffic scenarios. An ingenious way is proposed
to keep the complexity of the POMDP low enough for real-time decision-
making while driving through a two steps algorithm. The first step is through
signal-processing networks that assesses the situation, whether a lane change
is feasible or not, and whether a lane change is advantageous or not. The out-
puts of this signal processing networks are submitted in the second step to the
POMDP decision-making algorithm.
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Brechtel et al., in [119] in the other side presented a generic approach for
decision-making under uncertainty through a continuous POMDP that can
be optimized for different scenarios. The cornerstone of this work consists
in considering uncertainties and finding the suited space representation for
driving as the prevailing challenges for automatic decision-making. For this
reason, the proposed POMDP automatically learns a suited representation
depending on the specific given problem which is directly based in this paper
on the pose and velocities of the involved road users. We can see through the
above mentioned works that the use of POMPD differs in the way of solving
them in terms of the used methodology, the complexity of the design and the
driving environment.
A Hidden Markov Model (HMM) is a temporal probabilistic model in which
the state of the process is described by a single discrete random variable.
The possible values of the variable are the probable states of the world. The
work given in [77] proposed to use HMMs for the behavioral model with the
aim of estimating the probability for a vehicle to perform one of its feasible
behaviors. The behavioral model comprises two hierarchical layers, and each
layer consists of one or more HMMs. The upper layer is a single HMM where
its hidden states represent high-level behaviors, such as: move straight, turn
left, turn right, or overtake. For each behavior in the HMM of the upper layer,
there is a corresponding HMM in the lower layer which represents the sequence
of state transitions of the behavior, for example Overtake has 4 hidden states:
lane change, accelerate (while overtaking a car), lane change to return to the
original lane, resume a cruise speed.

Methods based on Bayesian Networks (BN)

The second well known family of probabilistic decision-making is based on
BN. BNs for decision-making is used through two known extensions. The first
one is Decision Network (DN) or Influence Diagram and the second is DBNs.
Bayesian Networks in summary are Directed Acyclic Graphs (DAG) in which
each node corresponds to random variables connected by directed links called
arcs. For every variable Xi in the graph, with parents Xj Bayes theorem
is applied to quantify the effect of the parents on the node and deduce the
conditional probability distribution.

The aforementioned conditional probabilities are summarized in a con-
ditional probability table (CPT). The topology of the network specifies
the conditional independence relationships between variables which makes
Bayesian Networks by definition computationally tractable for reasonably
small networks. This is one of the main advantages of Bayesian Networks. BNs
are used for probabilistic reasoning which is a method of representation of
knowledge where the concept of probability is applied to indicate the uncer-
tainty in knowledge. It is largely used in many industries and according to [3]
BNs are a leading paradigm in AI research on uncertain reasoning and expert
systems. It allows for learning from experience, and it combines the best of
classical AI and neural networks.
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Decision Networks (DNs or Influence diagram) [3] combine BNs with addi-
tional node types for actions and utilities. DNs allow us to support probabilistic
reasoning, decision-making under uncertainty for a given system and yield
the capacity to incorporate multiple decision criteria. In the field of decision-
making for autonomous driving many use DNs. When modeling the DNs, most
of the work chose to design the topology of the BNs with two main levels:
the situation assessment level to infer the current situation state based on
the risk assessment and the decision-making strategy to deduce the maneu-
vering decisions. Using this formalism, Schubert in [47] uses DNs for lane
change decision-making. The paper presents a system that can perceive the
vehicle’s environment, assess the traffic situation, and gives recommendations
about lane-change maneuvers to the driver. The situation assessment is done
in the upper layer while using a well-known threat measure the Deceleration
To Safety Time (DST) as a threat measure to assess the danger of the navi-
gation lanes status. The lower layer is dedicated to decision-making with one
decision node for lateral maneuvers. The utility value is assigned manually for
each combination of traffic situation and the maneuver decision.
A DBN on the other hand is a Bayesian network that represents a temporal
probability model. The system is modeled as series of snapshots or time slices
each of which contains a set of random variables. DBNs generalize HMMS by
allowing the state space to be represented in factored form, instead of a single
discrete random variable. DBNs are extensively used for maneuver intention,
trajectory prediction and modeling the interaction between traffic participants
(cf. Table 2) which makes them very suitable for decision-making. One of the
pioneering contribution and a must cited example is the work of Forbes et
al., [114] with the BATmobile. The authors proposed to use a Dynamic Prob-
abilistic Network (DPN). The used DPN resembles the definition of a DBN
and contains nodes for sensor observations as well as nodes for predicting
driver intentions, such as whether the driver intends to make a lane change
or to slow down. The DPN is used as the basis for three separate decision-
making approaches: dynamic decision networks which is the DPN extended
with actions node and utility function for each time slice, hand-coded policy
representations through a decision tree and supervised learning and reinforce-
ment learning methods for solving the full POMDP. Even though Forbes et al.,
deduced that avoiding manual programming and considering partial observ-
ability improves the results, their proposed solution were ahead of their time
given the present state of technology. Schulz et al., [113] proposed a decision-
making framework, which explicitly considers the intentions of drivers and the
inter-dependencies between their future behaviors. The decision-making pro-
cess of the agent is divided into three hierarchical layers: which route it is
going to take (route intention Rt), whether it is going to pass a conflict area
at an intersection before or after another agent (maneuver intention Mt), and
what continuous action A is going to executed. The proposed DBN have two
consecutive time slices and the inter-dependencies between vehicles Vi. The
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used inference algorithm is a Multiple Model Unscented Kalman Filter (MM-
UKF). Each UKF represents the complete state space, i.e., kinematic state,
route, maneuver, and action of all agents in the scene.

4.2.2 Learning-based approaches

In this section we will focus only on the methods developed specially for
decision-making using learning approaches as end-to-end techniques have been
detailed in section 2.2.1. Three key paradigms in machine learning exist: Super-
vised, Unsupervised and Reinforcement. Supervised learning makes decision
based on the output labels provided in training. Two commonly used exam-
ples of supervised learning for decision-making are Decision Trees and Random
Forest. Unsupervised learning is based on unlabeled data. It aims to find an
accurate representation of the unlabeled information. Clustering is a type of
unsupervised learning that gathers samples of similar characteristics. The third
machine learning paradigm is Reinforcement Learning (RL), that takes its
root from Markov decision process (MDP). In RL the agent interacts with the
environment to learn how to behave without having any prior knowledge by
learning to maximize a numerically defined reward (or to minimize a penalty).
In this regard, Ngai et al., in [120] proposed a reinforcement learning algorithm
of lane change decisions for highway driving. By making use of Q-learning for
determining action decisions, seven different goals are considered among which:
lane changing, collision avoidance, and lane following, as the author believes
that by expliciting the goals, the problem can be better solved. The Inverse
Reinforcement Learning (IRL) model [121] have also been used to get the indi-
vidual driving style of traffic participants and plane the safest trajectory. In
a similar fashion, Q-learning algorithm have been applied for lane change sce-
narios [122].
Deep Learning (DL) is closely related to the above three paradigms of ML and
is used to extract higher-level features from data. DL are inspired by the multi-
layered structure of human neural system and recurrent neural networks and
convolutional neural networks are examples of known deep learning architec-
tures. Human-like decision-making based on DL have been extremely used in
the field of ITS [34, 39, 40, 123] and robotics in general [124]. Contrary to the
other methods for decision-making, these methods recognize human personal-
ity and social intelligence and does not fully focus on the “correctness” [125]
as they learn from real driving scenarios. According to Waymo, accidents that
occurred with their AVs can also be used as a valuable experience for the
self-driving system [126]. On this basis, several neural network have been pro-
posed for the decision-making strategies. In [127] a decision-making system is
presented, the main novelty lies in the human-like thinking ability integrated
in the neural network. RL combined with deep learning, named deep RL, is
according to [123] currently accepted as the state-of-the art learning framework
in control systems. While RL can solve complex control problems, deep learn-
ing helps to approximate highly nonlinear functions from complex dataset.
The mentioned deep learning methods do offer great advantages in terms of
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flexibility and scope of utilization. However, one of the main drawback is that
no one can analytically ensure that the corresponding output for these sys-
tems will tend towards always an acceptable safe solution. For this reason,
some works choose to combine deep learning approaches with safety verifica-
tion methods to guarantee safety of the decisions. Mirchevska et al., in [128]
present a reinforcement learning-based approach, that is combined with for-
mal safety verification to ensure that only safe actions are chosen at any time.
The deep reinforcement learning agent learn to drive as close as possible to a
desired velocity by executing reasonable lane changes on highways. However,
this doesn’t resolve another drawback of deep neural networks concerning the
computational complexity needed in the learning phase and the fact that these
methods do not have any analytical formulation, which leads to non-provable
outputs.

4.3 Guarantee of safety of AVs

Despite several years of developments of decision-making strategy for
autonomous vehicles (AV) and the rich literature in this domain, there is unfor-
tunately not yet a fully generic solution that deals with all kinds of scenarios.
For this reason, recent advances in AVs raised all the importance of ensuring
the complete safety of AV maneuvers even in highly dynamic and uncertain
environments/situations. This objective becomes even more challenging due to
the uniqueness of every traffic situation/condition. Indeed, the lack of safety
guarantees proves, which is one of the key challenges to be addressed, limit
drastically the ambition to introduce more broadly AVs in our roads, and
restrict the use of AVs to very limited use cases.
This section provides a discussion on the methods used to guarantee the safety
of AVs among which it is investigated: safety verification techniques, evasive
maneuvering in emergency situations and the standardization/generalization
of safety frameworks.

4.3.1 Safety verification

The common task for AVs after the decision-making is to determine a nominal
trajectory to perform lane changes and other maneuvers, taking into considera-
tion any constraints or traffic condition that are known at the time of planning.
The procedure must therefore be aborted automatically in case of any unex-
pected approaching objects, such as other objects and road users, entering
the planned course of the vehicle. The vehicle must then be able to replan by
determining an alternate route, i.e., the emergency trajectory, which the car
will pursue instantly to avert an accident and guarantee safety all the time.
Extensive testing to simulate all possible behaviors of other traffic participants
is a time-consuming task. Indeed, considering the uniqueness of each traffic sit-
uation, the task of modeling every situation is nearly impossible. In addition,
it can only prove that a system is unsafe, but is not able to propose an alter-
native. Classical safety verification techniques perform the safety verification
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offline before the vehicle is deployed and can only investigate a certain class
of situations, as it is done for the verification of an automatic cruise controller
in [129]. These techniques are usually called scenario-based verification.
Since every traffic situation is unique, it is necessary that the decided/planned
maneuvers be always verified during navigation of the vehicle. This has been
called in the literature online safety verification [130] or formal verification
and answers to this challenge. It has been used in many works of the liter-
ature [130, 131]. In [130] reachability analysis is used as a safety verification
method. The verification is carried out by estimating all potential occupan-
cies set of the automated vehicle and other traffic participants. To capture all
potential future possibilities, reachability analysis is applied to account for all
potential behaviors of mathematical models including uncertain inputs (e.g.,
sensor noise, disturbances) and partially unknown initial states. Possible future
collisions are identified when comparing the intersection of the obtained sets.
However, if the trajectory is regarded as unsafe no alternative is proposed to
avoid the collision.
Pek et al., in [132] presented an approach for verifying the safety of lane change
maneuvers of AVs by incorporating formalized traffic rules. The assessment is
based on safe distances, allowing the ego vehicle to drive safely for an infinite
time horizon which allows the AV to verify its decision to change lanes and
recover if the lane change becomes unsafe during the maneuver.
Safety Verification of Deep Neural Networks on the other hand, have been little
studied and few works exist in this topic. Huang, et al., [93] proposed a frame-
work for automated verification for the safety of classification decisions, which
is based on search for an adversarial misclassification within a given region.
The key distinctive features of this framework compared to existing work is
the guarantee that a misclassification is found if it exists. In a global manner,
deep learning techniques have become increasingly popular in the domain of
decision-making and autonomous navigation, however, still remains questions
about their ability to guarantee safety since their output responses are not well
known, particularly outside the training data scope. Authors in [97] identified
some challenges about the safety verification process in artificial intelligence
systems and they mainly consist in modeling issues of the environment or the
system as formal verification critically relies on having a precise, mathematical
statement of what the system is supposed to do.

4.3.2 Evasive maneuvering in emergency situations

Because maneuvers are verified online while using safety verification tech-
niques, the ability of the system to re-plan and evade a dangerous situation
becomes possible. Emergency scenarios may necessitate maneuvering up to the
vehicle’s handling limits in order to avoid collisions [133]. The common used
methods and the one from very early work related to emergency situations
is to simultaneously plan a nominal and an emergency trajectory in order to
guarantee the safety of the vehicle controller. With the help of this planning
process the vehicle controller is able to provide an emergency trajectory before
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and during the performance of a lane change or any other maneuver. Several
literature research tackle this problematic [134, 135]. However, generating an
emergency maneuver for each time step is computationally expensive and often
not needed.
Presented in [136] a Nonlinear Model Predictive Control (NMPC) dedicated
for emergency collision avoidance in complex situations between a driver’s vehi-
cle and neighboring vehicles. NMPC is used to predict the trajectories of all
vehicles, and if a collision is detected in the predicted trajectories, the driver’s
vehicle attempts to avoid the collision through a left lane change, right lane
change, or braking maneuver. An even detailed procedure for evasive action
handling is proposed in [5]. Pek et al., developed a fail-safe trajectory planner
for self-driving vehicles. This trajectories are computed in real-time in contin-
uous space by making use of convex optimization techniques. This approach
simultaneously favors jerk minimization through the defined motion models
and their corresponding constraints and incorporates the safety verification in
the planner in such a way that trajectories are always verified as safe. However,
this approach lacks real experimentation to prove its efficiency. Another inter-
esting approach is proposed in [137] where a Sequential Decision Networks for
Maneuver Selection and Verification (SDN-MSV) that utilizes multiple com-
plementary threat measures to propose discrete actions that allow to: derive
appropriate maneuvers in a given traffic situation, provide a safety retrospec-
tion and verification over the current maneuver risk and outputs, if advised,
appropriate evasive action according to the environment dynamic, in order to
face any sudden hazardous and risky situation. However, the evasive decision
has been applied to the system with a constant velocity configuration while
having an already defined fixed path to follow, which limits the flexibility of
the evasion.
A step forward into emergency situation management, is considering cases
where the collision is unavoidable. Fraichard et al., in [138] have worked on
the subject by proposing a concept called Inevitable Collision State (ICS). An
ICS is characterized as a state for which, no matter what the future trajec-
tory followed by the system is, a collision with an obstacle eventually occurs.
It takes into consideration both the dynamics of the system and the obstacles.
The concept is useful both for navigation and motion planning purposes as for
its own safety, a robotic system should never find itself in an inevitable col-
lision state, however, determining ICSs is computationally intense and suffer
from uncertain future motion of obstacles. To palliate to this issue, authors
in [139] introduce invariably safe sets which are regions that allow vehicles to
remain safe for an infinite time horizon. A tight under-approximation of the
proposed sets is obtained in real-time with respect to the number of traffic
participants while maintaining formal safety guarantees. Moreover, these sets
have been used to determine the existence of feasible evasive maneuvers and
the criticality of scenarios by computing the time-to-react metric. The draw-
back around set-based methods is that they tend to be overly conservative.
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Thus, in dense traffic and a highly uncertain environment, these methods are
likely to yield no suitable solution.

4.3.3 Standardization and generalization of safety frameworks

In order to be compared, decision-making framework must be tested on the
same data set. To the best of our knowledge, no publicly available data set
exists with real nominal/emergency situations on which decision-making algo-
rithm has been tested and published. Simulation could be used as a mean to
generate collision data which could be used by the ITS community to compare
algorithms. In addition, in this matter no standardize performance indicator
exists to be able to compare algorithms between them.
An interesting resolution of the current years is the willingness of IEEE to
start a range of recently recognized AV working groups. Under the reference
IEEE P2846 1, the IEEE standardization organization has started working on
the definition of “A Formal Model for Safety Considerations in Automated
Vehicle Decision-Making”. The idea for industries and governments is to be
able to eventually align with a common definition of what it means for an AV
to make decisions that balances between safety and practicality. According
to the IEEE, this approach is justified by the fact that the decision-making
capacity of an on-board computer, with its set of artificial intelligence algo-
rithms, is generally hidden from observation and constitutes a sort of “black
box”. This makes an objective comparison of the safety offered by different
AVs almost impossible. As some experts have already pointed out, the IEEE
emphasizes that statistical evidence - such as the number of kilometers trav-
eled, the frequency of human intervention or the hours of simulation - cannot
capture all situations, especially those that the AV has never seen before.
In concrete terms, the future IEEE P2846 standard aims to define a formal
mathematical model based on rules related to vehicle decision-making using
mathematical algorithms and discrete logic. The model will apply to the plan-
ning and decision-making functions of an AV from levels 3 to 5 (according to
the SAE standard grading for vehicle automation) [1]. The model will be for-
mally verifiable, via mathematical proof, will be technology-neutral and will
be parameterizable to ensure the necessary customization at the level of indi-
vidual jurisdictions. The standard will apply to specified scenarios and driving
cases that do not eliminate all hazards, but that strike a balance between
safety on the one hand and reasonable feasibility of application on the other.
A highly publicized contribution by Mobileye [6] proposed a standardization
of safety assurance and a formal model of safety by answering two main chal-
lenges: lack of safety guarantees, and lack of scalability. The lack of safety
guarantees relies on answering the question what are the minimal requirements
that every self-driving car must satisfy? and how can these requirements be
verified? The second area of risk scalability concerns engineering solutions that
result in huge costs will not be scalable to millions of cars, which will push
interest in this field into a niche academic corner, and drive the entire field

1https://sagroups.ieee.org/2846
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into what the authors called a “winter of autonomous driving”. The combined
issues leads the authors to propose a number of properties that answers to
these challenges gathered in a framework called the Responsibility-Sensitive
Safety (RSS) and that covers all the important ingredients of an AV: sense,
plan and act. The RSS represent a rigorous mathematical model formalizing
an interpretation of the law which is applicable to self-driving cars thus guar-
antees that from a planning perspective there will be no accidents which are
caused by the AV. In addition, the framework has been designed such that it is
not overly-defensive concerning the driving policy and efficiently verifiable in
the sense that it can be proved that the self-driving car implements correctly
the interpretation of the law. Jack Weast, Senior Principal Engineer at Intel
has been appointed by the IEEE P2846 to lead the working group respon-
sible for building the standard. To get started, Intel will contribute with its
Responsibility-Sensitive Safety (RSS) environment.

4.4 Discussion

This section discussed the state of the art algorithms in the domain of
decision-making of AVs. Table 4 summarizes the main characteristics of the
aforementioned decision-making algorithms.
The most important aspects in a decision-making framework is its ability to

Approach Reference Prediction Uncertainty
Handling

Offline/Online Space Computational
complexity

Generalization Online Safety
Verification

Rule-based DM FSM [105] X X Offline Discrete Low - - X

Optimization-based
DM

Trajectory Plan-
ning [12]

✓ Uncertainty in
the measure-
ments

Online Continuous Manageable + X

Fail-safe Trajectory
Planning [5]

✓b Uncertainty in
the measure-
ments

Online Continuous Manageable + ✓

Probabilistic
approaches

Decision Net-
works [47]

✓ Uncertainty in
the states

Offline The states are
either discrete or
continuous, it uses
a utility value for
decision

Low + (✓)

POMDP [111, 119] ✓a,b Uncertainty in
the states and
measurements

Online Continuous High + + X

DBN [113] ✓a,b Uncertainty in
the states and
measurements

Online Continuous High + + (✓)

Learning-based
approaches

Reinforcement
Learning [120, 122]

(✓) (✓) Offline Discrete High - X

Table 4 Comparison of Decision-Making (DM) approaches for AVs. X means that the
feature is not supported. (✓) means that the feature is not supported in the original work
but can be integrated. ✓a means the prediction considers interaction between traffic
participants. ✓b means that long time horizon prediction is considered. Offline/Online
means whether the system find the best possible maneuver to be executed in the current
situation or during an offline training phase.

solve any situation, consider uncertainty and unexpected situation while find-
ing the right balance between accuracy and computational expenses.
The first distinction between them lies in the uncertainty handling. The most
complete methods take into account the uncertainty in the states and measure-
ments of the traffic environment. The second distinction relies in their real-time
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execution ability (learns or reason during an offline training phase and execute
the maneuver online in the current driving situation). Due to the unlimited
number of traffic situations (especially that training data for emergency sit-
uation is scarce) the offline training can be unsatisfactory and insufficient.
However, if this kind of data become available, learning-based approaches can
become the best solution to autonomous driving. Another important aspect
is online safety verification and this is where difference can be made com-
pared to other approaches. Probabilistic approaches stand up well regarding
the defined characteristics as it have the potential to consider the nature of
the stochastic dynamics of a traffic environment, be able to account for uncer-
tainties through well-known probabilistic algorithms and consider for present
and future interactions between participants. The model-based and probabilis-
tic approaches allows also to easily include an online verification mechanism
in the decision-making of self driving cars due their analytical definition. This
latter is mandatory since every traffic situation is almost unique and a quick
response is needed to deal with any emergency situation.

5 Conclusion

This paper has surveyed research on autonomous vehicles while focusing on
the important topic of safety guarantee of AVs. Scrutinizing through the lit-
erature, it is presented a detailed review of relevant methods and concepts
defining an overall control architecture for AVs, with an emphasis on the safety
assessment and decision-making systems composing these architectures. More-
over, through this reviewing process, it is highlighted research that uses either
model-based methods or AI-based approaches. This is performed also while
emphasizing the strengths and weaknesses of each methodology and investi-
gating the research that proposes a comprehensive multi-modal design that
combines model-based and AI approaches. With these investigations, it was
shown one of the promising ways to reach the mentioned requirements and
characteristics that can be obtained by a smart combination of model-based
methods and AI-based approaches when applied in a coherent, complemen-
tary, and synergistic manner. This paper ends with a discussion of the methods
used to guarantee the safety of AVs among which it is investigated: safety
verification techniques and the standardization and generalization of safety
frameworks. These subjects remain regardless of the used method a challenge
in the AV domain as autonomous vehicles are probably the most advanced
intelligent systems under development so far in the world.
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[53] B. Paden, M. Čáp, S.Z. Yong, D. Yershov, E. Frazzoli, A survey of motion
planning and control techniques for self-driving urban vehicles. IEEE
Transactions on intelligent vehicles 1(1), 33–55 (2016)
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