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Abstract— This paper proposes an Unsignalized Intersection
Management Control Strategy (UIM-CS) to enable an au-
tonomous vehicle to perform a safe and smooth maneuver,
taking into account the curvilinear trajectories of the considered
vehicles. This is done while using a metric to assess the
risk of the encountered situation through the appropriate use
of the Predicted Inter-Distance Profile (PIDP) [1], [2], and
its controlled minimum (mPIDP). The proposed control is
based on an adaptive PD controller where the parameters are
learned by using an Adaptive Network based Fuzzy Inference
System (ANFIS). The variables that allow the assessment of
the dangerousness based on PIDP are carefully defined to
allow the genericity of the approach to all types of insertions,
especially the unsignalized one (e.g., roundabout or highway
insertion) where the Autonomous Vehicle (called Ego-Vehicles
(EVs) in what follows) has to make a choice on its behavior
(acceleration/deceleration). The proposed approach for the
creation of the dataset allowing the learning of the adaptive PD
controller parameters, that directly influence the responsiveness
of the EV while taking into account its actual capacity and
constraints, is also presented. To demonstrate the reliability
and safety of the overall proposed control architecture, several
simulations are performed.

I. INTRODUCTION

Risk Assessment (RA) during the real-time navigation of
an EV is essential to ensure the safety of the maneuver
performed by these kinds of vehicles. This is even more
crucial if the environment surrounding the EV is highly
dynamic where RA allows to monitor the impact of the
risk of collision due to the dynamic changes in the en-
vironment. The RA metrics are generally associated with
the probability of collision and are considered to be of
the first necessity for decision-making to ensure the safety
and smooth navigation for an EV. In the literature, several
metrics have been developed to serve the navigation of a
vehicle or anticipate the maneuvers of surrounding vehicles
[4], [5]. Some metrics are used to estimate the instantaneous
danger of an obstacle vehicle, like the well-known Time To
Collision (TTC) which corresponds to the time remaining
before the occurrence of collision. Some others metrics allow
a retrospective evaluation of the performed maneuver like
Time Exposed TTC (TET) and Time Integrated TTC (TIT)
[6]. Different kinds of classification can be found in the
literature with the time-scale and distance-scale metrics [4],
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[5] or quantitative risk evaluation based on binary collision
prediction [7].

This paper focuses first on the use of an appropriate risk
assessment metrics based on PIDP [1], [2], in order to tune
on-line the parameters of a PD controller, while using an
Adaptive Neuro-Fuzzy Inference System (ANFIS). The used
PIDP (cf. section III) will allows to prevent collisions while
considering curvilinear trajectories of EV, which can classify
the risk in the time-scale and in the progress of distance-
scale metrics. TTC is a good indicator if vehicles are in
the same corridor on a straight road [9]. There are several
works that use the approximation of this metric to take into
account the curvatures of the trajectories, as in [10] where
the authors take into account the constant radius of curvature
of the road for vehicles in the same corridor. The authors in
[7] propose an algorithm that allows to determine if there
will be a collision for intersected curvilinear trajectories by
comparing the entry and exit of each vehicle in the area of
potential collisions. In [11], [12] and [13], improved methods
to calculate TTC in two dimensions considering the constant
orientations of the vehicles and their speeds are proposed.
In [14], an Extended Time to Collision (ETTC) takes into
account the acceleration, in addition to the speed and the
orientation. However, in order to have a right ETTC value,
vehicles must maintain their heading, which is not the case
if they follow curved paths. To sum-up the features of each
highlighted metrics, TTC, ETTC and TIT/TET are all based
on only time-scale information. Further, each of the above
mentioned metrics do not allow to manage a curved path
(such the working of PIDP). Indeed, the TTC constrains the
vehicles to be co-linear, and the ETTC evaluation requires to
the vehicles to maintain their orientation. TIT and TET are
also appropriate metrics to evaluate the dangerousness of a
performed maneuver but do not allow an anticipation. In [15],
authors developed a coordinate transformation to convert
curved road into straight road to simplify their collision-free
decision model. Considering the literature [4], there is no
classical metric that consider the curvature of trajectories
without transformation or work around explicitly the tra-
jectories curvature (they use generally approximations). The
most common approach to consider the trajectory curvature,
consists in discretize the trajectories and iteratively checking
that there is no collision at each discrete time step [16].

Once the adequate safety metric is well identified, this
paper focuses on the way to learn how the EV can make
safe insertions into roundabouts. Recently, deep-learning
techniques have exhibited their capability to make real-time



Fig. 1: Overall proposed Risk Assessment and Management (RAM) control architecture. More details on the main components
composing the proposed control are given in [3].

decisions and operate in complex environments [17]. An
important part of the works concerning the roundabout nav-
igation, is based on Deep Reinforcement Learning (DRL).
In [18], a reinforcement learning framework is proposed
and allows to pass through a roundabout while taking into
account obstacles vehicles. A dense traffic flow is considered
in [19] where a model-free DRL use a bird-view input of
the environment in order to reduce the sample complexity.
In [20], a safety reward is proposed and allows to consider
the distance between vehicles and shows good results in
terms of distance control between EVs. DRL approaches use
a reward policy in order to make the best decision until a
high success rate is reached. The proposed approach in this
paper is different and aims to use appropriate PIDP features
(cf. section III) to learn defined parameters to maintain
this metric above a threshold, adapted to the dynamic of
the obstacles-vehicles surrounding the EV. This approach
has the advantage of guaranteeing the EV safety within a
defined operating range (i.e., outside of which an emergency
maneuver is required. This is not included in the proposed
work.)

In this paper an Unsignalized Intersection Management
Control Strategy (UIM-CS) is proposed, which is a subpart
of the Risk Assessment and Management Control Strategy
(RAM-CS) allowing to apply an adaptive speed profile to
perform safe insertions taking into account the trajectories of
the vehicles. The insertion on an unsignalized intersection as
highway insertion or more specifically a roundabout insertion
treatment in the literature prioritizes the stop of the EV on
the yield lane. It can be very penalizing because the waiting
time can be long [22]. This paper is structured as following.
section II presents the overall RAM-CS. The first subpart of
the RAM-CS is the Risk Assessment (cf. section III) with
the Predictive Inter-Distance Profile (PIDP) metric. The Risk
Management (cf. section IV) is the main contribution of this
paper and presents a method for quantifying the dangerous-

ness using the PIDP metric to determine the parameters of
an adaptive PD controller through a neuro-fuzzy inference
system. Simulation results are presented in section V and a
conclusion and some prospects are given finally in section
VI.

II. OVERVIEW OF THE RISK ASSESSMENT AND
MANAGEMENT (RAM) CONTROL ACHITECTURE

The proposed control strategy for risk assessment and
management is summarized in Figure 1. The perception
and localization block is not treated in this paper, but it
is important to highlight the main inputs necessary to the
right working of the proposed overall strategy. It is assumed
that a High Definition map is embedded in the EV where
the static environment is described and allows to compute
the path that respects the code and structure of the road. The
embedded sensors allow to observe the dynamic environment
with the ability to characterize and predict the behaviors
of the encountered obstacles (e.g., calm, aggressive) [21]
and allows to define their trajectories through an horizon of
time thorizon, which corresponds to the inputs of the used
monitoring metric corresponding to the PIDP (cf. section III).
The block 2 given in Figure 1, corresponds to the architecture
feature which allows defining the desired dynamic minimum
safety temporal distance which should be maintained by the
EV w.r.t. each detected Obstacle Vehicle (OV), according
to its behavior and also its velocity (cf. section III-A).
In this paper, OVs behaviors are not treated but they can
have different initial speeds. The proposed risk assessment
is based on the continuous monitoring metric PIDP (cf.
Figure 1, block 3), which makes it possible to define the
dangerousness of the detected OV to evaluate the feasibility
of the maneuver. The Risk Management part is the main
contribution of this paper based on UIM-CS (cf. Figure
1, block 4) allowing to apply an adaptive speed profile
based on an adaptive PD controller where the parameters Kp



and Kd are determined from neuro-fuzzy surfaces that are
previously defined using ANFIS. This speed profile allows
to maintain the safety distance with the considered OV. Once
the proposed Risk Assessment and Management Strategy
obtain the most suitable set-points for the EV, this one uses
an appropriate Control law (cf. Figure 1, block 5). The
nonlinear control law [24] allows to drive the EV toward
a static or dynamic target and it is based on a Lyapunov
function designed to ensure the convergence of the EV to
the targeted set-point. In order to have more details about
the overall proposed control architecture, please refer to [3]
where an insertion in dense traffic flow is performed.

III. PREDICTIVE INTER-DISTANCE PROFILE AS
CONTINUOUS MONITORING METRIC FOR RISK

ASSESSMENT

The PIDP represents a projection of the inter-distance
between two vehicles if paths are known and their dynamics
are maintained [1], [2], [25]. This risk assessment metric,
which can be classified as a time-scale and a distance-scale
metric, allows a continuous monitoring of the dangerousness
of the situation between two vehicles through a given time
thorizon. The objective of the control strategy proposed
in this paper, is to apply a speed profile that allows the
Ego-Vehicle to maintain safe distances using PIDP. The
following subsection introduces the method for selecting the
behavior (acceleration or deceleration) that the Ego-Vehicle
must adopt during a roundabout insertion (cf. section III-A).
The second subsection (cf. section III-B) presents the safe
distance maintenance method on the basis of the proposed
adaptive PD controller.

A. Ego-Vehicle behavior selection

Before entering the roundabout, the EV must know
whether it can accelerate, decelerate or maintain its momen-
tum, taking into account the obstructing vehicles already
in the roundabout to maintain a desired safe distance. To
determine this behavior, the vehicles are defined by two
circles (cf. Figure 3a) and the PIDP is determined for each
pair of circles, i.e., 4 PIDP must be calculated in order to
determine the macro-behavior that must be considered by the
EV. In order to know which PIDP is the most dangerous, it
is necessary to determine the desired safety distance dsafety ,
with the considered OV.

dsafety = dmin + tsafety.vr (1)

with vr the relative speed between the two vehicles, dmin

the initial extreme limit to manage small relative speeds and
tsafety a constant. If one of these PIDP crosses the safety
distance dsafety (cf. Figure 2a), the vehicle is considered
dangerous and the speed profile of the EV must be adapted.
Each crossing is represented by a time of non-compliance
with the safety distances tSNR and the minimum is retained
with the corresponding PIDP (cf. Figure 2a). If this PIDP

(a)

(b)

Fig. 2: The Figure 2a shows the Predictive Inter-Distance
Profile (PIDP) for all possible combinations between two ve-
hicles that are interacting with each other and the dangerous-
ness of the situation (SR: Safety Respected, SNR: Safety Not
Respected and Collision) w.r.t. the defined safety distance
dsafety through the horizon time thorizon as a time-scale
metric. The Figure 2b represents this same dangerousness
but displayed as distance-scale metric through the defined
path of each vehicle.

computation corresponds to a front collision (PIDPfront),
the EV must decelerate, and if the collision took place at the
rear (PIDPrear), the EV must accelerate (there are some
specific cases where the front and rear are not respected at the
same time and the corresponding behavior can be checked
in the table given in Figure 3b). Otherwise, if there is no
crossing point, the EV can keep its dynamic without any
risk of collision.

B. Safety distance insurance based on the progress of the
minimum of PIDP (mPIDP)

The objective of the proposed control strategy is to ensure
the safety of the EV while navigating in an unsignalized
insertion (e.g., roundabout or highway). If the safety distance
is not respected (i.e., the minimum of PIDP (mPIDP) is less
than the desired safety distance), a speed profile, based on
an adaptive PD controller, is applied to control the error
ePIDP (cf. Figure 2a). This new use of PIDP allows us to
apply an appropriate correction, based on the proportional
and derivative of this error, is computed as follows:



(a)

Ef Er Of Or Behavior

0 0 0 0 Keep the same dynamic
0 1 0 1 Acceleration
0 1 1 0 Acceleration
0 1 1 1 Acceleration
1 0 0 1 Deceleration
1 0 1 0 Deceleration
1 0 1 1 Deceleration
1 1 0 1 Deceleration
1 1 1 0 Acceleration
1 1 1 1 Deceleration

(b)

Fig. 3: Circles used as buffers to characterize the different
possible collisions between the EV and the OV. The macro-
behavior (acceleration or deceleration) that can be taken by
the EV according to the projected situation is resumed in
the above Table. For the insertion, deceleration is always
prioritized because EV does not have priority. For example,
in its line 5, Ef (Ego’s front) = 1 and Or (OV’s rear) = 1,
the designed EV macro-behavior is to decelerate.

u(t) = KpePIDP (t) +Kd
∂ePIDP

∂t
(2)

where Kp and Kd are the proportional and the derivative
coefficients respectively, and the command u is the speed that
the EV must add to its current speed in order to converge
mPIDP to the desired dsafety limit.

Depending on the dangerousness of the encountered situa-
tion, these parameters (Kp and Kd) must be adapted to react
according to the error (ePIDP), its derivative (cf. section IV)
and the time (tSRN ). This means that the speed of the vehicle
is adapted online. The Figure 4 shows, for the same scenario,
the result of the evolution of mPIDP without correction (blue
line) and with parameters Kp and Kd considered optimal
(red line). However, between the two situations, there are
several pairs of parameters that allow to reach the desired
safety distance and each pair of parameters allows to respect
the convergence but with more or less reactivity of the EV.

The proposed approach is to work around the PIDP metric
in order to quantitatively assess the dangerousness of the
encountered situation. PIDP allows the evaluation of the
dangerousness of a situation while taking into account the
curvilinear paths of the considered vehicles, but also, their
dynamics. In other words, defining the dangerousness of
a maneuver such as an insertion using PIDP, allows the
proposed approach to be generic since whatever the radius
of curvature of the trajectories or the type of insertion (e.g.,

Fig. 4: Evolution of the minimum of PIDP (mPIDP) during a
scenario. In light blue, the evolution of the minimum without
applying any correction and in dark red with optimal Kp

and Kd parameters, which allow to converge asymptotically
toward the desired safety distance. The dotted lines represent
the safety distances evolutions for each scenario.

roundabout or highway (cf. Figure 2b)), these information
are included in the profile shape. In order to create a dataset
to find the optimal parameters (Kp and Kd), the inputs
must then be based on the PIDP metric. The most obvious
variables that indicate the need for a more or less rapid EV
response are the time when the safety is not respected tSNR

and the error ePIDP (cf. Figure 2a). If tSNR is very small, it
will require a greater response from the EV than if tSNR is
far away in time. The same applies to the error, which will
require a larger speed gap if the error ePIDP increases.

IV. ADAPTIVE PD CONTROLLER BASED ON A
NEURO-FUZZY INFERENCE SYSTEM

The objective of the proposed strategy is to identify the
optimal pair of parameters that ensures that the EV main-
tains the required safety distance in the smoothest manner
while taking into account the dynamic environment state
and the vehicle’s capability according to assessed risk of
collision. Because the relationship between the parameters
to be applied according to the dangerousness of the situation
is not known, the use of an Adaptive Network based Fuzzy
Inference System (ANFIS) [23] is proposed to solve this non-
linear optimization. In order to be able to learn and adapt
the parameters of the fuzzy system, it is first necessary to
determine the input metrics allowing the evaluation of the
dangerousness of the encountered situation (cf. section III-
B), but also to provide a representative dataset covering the
whole range of values that these input metrics can take and
that the vehicle can encounter.

To create the dataset, once the input and output variables
have been defined, it is necessary to define the ranges of
values that they can take in order to cover the maximum
number of situations that the vehicle will encounter during
an insertion. For the first one, tSNR ∈]0, thorizon]. For the
second one, the error ePIDP depends on the relative speed
between vehicles. To do this, a roundabout insertion was used
where vehicles start with initial speeds ranging from 5m/s



(a) (b)

Fig. 5: Fuzzy membership functions trained from ANFIS and the corresponding surfaces for the Kp and Kd parameters.

to 12m/s (OV keeps a constant speed during a scenario
for the dataset creation). The initial position of the OV is
carefully chosen and adapted to each scenario so that a
potential collision between the two vehicles occurs on the
PIDP computation. The detection distance of the EV before
entering the roundabout is another parameter that varies from
30m to 70m with the aim of having tSNR varying from 0s to
thorizon while keeping realistic scenarios. In order to obtain a
consistent result, the variables tSNR and ePIDP are recorded
at the time of OV detection if they exist. Otherwise, the
vehicles maintain their initial speeds until a non-compliance
with the safety distance is observed. For each scenario,
several pairs (Kp,Kd) are tested with the aim of finding
the optimal targets Kp and Kd to avoid the dangerousness
of the detected situation. This optimal pair is defined using
the minimization of a multi-criteria function (3) (cf. Figure
4):

J = ω1JRiseT ime + ω2JOvershoot + ω3JAccOrDec

+ω4JArea + Penalty (3)

where:

• JRiseT ime represents the time taken by the EV to reach
95% of the targeted value dsafety .

• JOvershoot is the size of the first peak above the safety
distance. Minimized, it allows to reduce the response
oscillations.

• JAccOrDec allows to minimize the acceleration or de-
celeration employed by the EV by computing the speed
derivative. The objective is to always respect the feasible
acceleration/deceleration of the EV.

• JArea area between the curve defined by the safety
distance to be respected dsafety and the evolu-
tion of mPIDP (cf. Figure 4), with Area =

∫ thorizon

0
|(dsafety −mPIDP )|dt.

• A Penalty ∈ R+ (where Penalty is a big value, much
bigger than of all the possible values given by the other
terms of J) is added if the vehicles collide or if the
acceleration/deceleration or EV speed limit is exceeded.

and ωi = 1..4 ∈ N are constants permitting to give the right
balance between the different sub-criteria. All sub-criteria
are normalized by using the weighted sum method [8].

Once the optimal parameters have been determined for the
100 scenarios corresponding to different levels of dangerous-
ness, 80 points of the dataset are used for ANFIS training
and 20 for testing. The results are normalized and shown in
Figure 5. It can be seen that the Kd parameter is particularly
dependent on the error ePIDP and that Kp increases with
increasing error and decreasing time tSNR, which is logical
since it is directly related to the reactivity requirement of
the EV. It can also be noted that below a tSNR < 0.2 on
the normalized figure, the parameters are not consistent with
the rest of the figure (cf. Figure 5). This is because in the
used scenarios to reach these points, the differential speed
of the vehicles is too large and the detection of the OV is
too late for the EV to react properly (i.e., higher values of
Kp and Kd do not allow the vehicle limits to be respected
in acceleration/deceleration and speed). In these situations
where the OV is detected too late, an emergency maneuver
must be performed. This later is not addressed in this paper.

V. SIMULATIONS

The simulation results have been performed in Mat-
lab/Simulink. To highlight the proposed strategy, a two
lane roundabout with a size of 40 m has been built on
RoadRunner1 to reproduce a real roundabout and to generate

1RoadRunner: https://fr.mathworks.com/products/roadrunner.html
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Fig. 6: Batch simulation of 10 scenarios where the error
ePIDP = mPIDP − dsafety are represented on the
same plan (a) with the corresponding EV’s speeds and
accelerations/decelerations (b).

an HD map described in OpenDrive2 format. In each scenario
that is performed, an OV is navigating on the inside lane and
an EV wants to insert itself on this lane. The EV always
starts from the same initial position but detects the OV
at different distances (cf. section IV). The OV is initially
positioned so that a collision is detected on the PIDP profile.
The time tsafety is set to 2s (cf. Equation 1) and the time
thorizon is set to 5s. In order to highlight the generalization
of the proposed approach, several tests were carried out
with random initial speeds and detection distances within
the learning range (cf. section IV and see the video at this
link: https://urlz.fr/lykE) but with different values from those
used to create the dataset. 10 scenarios were selected and are
shown in Figure 6, with the constraint that the detection of
the VO must allow a tSNR > 2s in order for the EV to be
able to apply a speed profile that satisfies these constraints:

• The maximum acceleration amax is 3m/s2.
• The maximum deceleration dmax is −3.5m/s2.

To better illustrate the results of the different tested scenar-
ios, the evolution of each mPIDP has been subtracted from
the safety distance in order to see them on the same plane
with a safety distance equal to 0 (cf. Figure 6a). But it is as-
sumed that the safety distances evolve during the scenarios as

2OpenDrive: https://www.asam.net/standards/detail/opendrive/

(a)

(b)

Fig. 7: Scenario showing the effectiveness of the proposed
approach where the dynamics of the obstacle vary during
the scenario. The safety distances are maintained despite
these changes (a). Vehicle speeds and accelerations are also
presented (b).

shown in Figure 4 and equation 1. During these 10 scenarios
the safety distances were respected each time without ever
exceeding the speed and acceleration/deceleration constraints
imposed to the EV (cf. Figure 6b).

In order to verify the efficiency and the robustness of
the proposed approach, a second type of test was carried
out and is detailed in Figure 7. In this scenario, the OV
changes its dynamics when the EV enters the roundabout.
There is an initial adaptation of the speed profile by the
EV in order to maintain the desired safety distance (cf.
Figure 7a, part (1)) and this will be maintained until the
OV dynamics change. When the change in the dynamic is
detected, the desired safety distance increases abruptly due
to the relative speed (cf. equation 1) and becomes critical.
The Kp and Kd parameters are updated to respond to this
new risk of collision (cf. Figure 7a, part (2)) and impose a
new deceleration on the EV. If this requirement does not
meet the constraints of the EV, an emergency avoidance
maneuver must be considered. The safety distance is however
maintained despite the change in dynamics while respecting
the constraints imposed on the EV.



VI. CONCLUSION AND PROSPECTS

This paper proposed an Unsignalized Intersection Man-
agement Control Strategy (UIM-CS) allowing to an EV to
navigate safely and to perform a safe and smooth maneuver
while taking into account the curvilinear trajectories of
the considered vehicles. This strategy is a subpart of the
global Risk Assessment and Management (RAM) control
architecture allowing to have a continuous monitoring of
the dangerousness of the assessed risk by the appropriate
use of the Predicted Inter-Distance Profile (PIDP) and its
minimum (mPIDP), controlled by an adaptive PD controller.
The variables that allow the risk assessment, based on PIDP,
are carefully defined to allow the genericity of the approach
to all types of unsignalized intersections. The approach to
determine the optimal PD controller’s parameters, associated
with the dangerousness in order to create a dataset for
learning based on an Adaptive Network based Fuzzy Infer-
ence System (ANFIS), was presented. To demonstrate the
reliability and the safety of the proposed approach, several
simulations were performed in a roundabout insertion and
allows a flexible and reliable navigation. As a short-term
perspective, it is planned to consider the uncertainties in
the Predictive InterDistance Profile and to implement the
proposed approach on the autonomous vehicles available in
the laboratory.
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