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Abstract: This paper proposes a Multi-Risk Assessment and Management Control Strategy
(MRAM-CS) allowing autonomous vehicles (called Ego-Vehicles (EVs) in what follows) to apply
an adaptive trajectory planning, computed online, to navigate safely in dense roundabouts.
The EV is able to insert itself into a roundabout while considering its curved paths and the
presence of dense traffic flow. The EV must also navigate and insert itself safely even between
close following vehicles if a safe solution is found. A safety distance with the most dangerous
obstacles of the identified groups of obstacles-vehicles (OVs), is monitored by the appropriate
use of the Predicted Inter-Distance Profile (PIDP) Bellingard et al. (2021) metric and its
controlled minimum (mPIDP). The proposed control is based on an adaptive PD controller
where the parameters are obtained from a regression model to always guarantee an appropriate
curvilinear safety margin between all the surrounded group of obstacles. A fuzzy fusion process
is also used to manage multiple OVs and apply an adaptive speed profile along a known path
based on flexible defined Limit-Cycles Adouane (2017). Several simulations are performed to
demonstrate the reliability and the safety of the overall proposed control architecture. Several
simulations are performed to demonstrate the reliability and the safety of the overall proposed
control architecture.

Keywords: Adaptive control architecture, Risk Assessment and Management, Trajectory
planning, Roundabout crossing

1. INTRODUCTION

The roundabout is a very common road infrastructure
that regulates road traffic and allows to greatly reduce
the number of accidents compared to a conventional in-
tersection. France is the country that contains the most
roundabouts in the world with approximately 30 000
roundabouts and builds between 500 and 800 roundabouts
per year Dalloni (2021). This kind of intersection is very
common because, unlike conventional intersections with
traffic lights, roundabouts could a continuous traffic flow.
This kind of intersection permits to reduce between 50
to 70% the number of accidents Deluka Tibljaš et al.
(2018) by decreasing the speed of vehicles wanting to pass
through this intersection. Further, the vehicle arriving at
this roundabout must adapt its speed according to the
vehicles circulating in the roundabout, which have the
priority, to always respect a safety distance between vehi-
cles. In the literature, roundabouts are divided into several
parts with a Decision zone where the EV does not have the
priority and must evaluate the possibility of safe insertion.
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A Transition zone that allows to reach the Ring zone and
the last part is the Exit zone to go out the roundabout
Masi et al. (2022), Rodrigues da Silva et al. (2022).

The curvature path is the first important information to
maximize the speed window during the insertion, taking
into account the comfort and the safety during the in-
sertion. Before defining the speed to insert a roundabout
containing obstacles, the EV must know the global path
that allows it to pass through the roundabout, from the
initial roundabout entrance to the desired exit section. The
curvature of the path can give information about the speed
limit, taking into account the lateral acceleration and the
comfort. Some works have proposed to use Bezier curves
to create a path to navigate in a roundabout Vinayak et al.
(2021), Lattarulo et al. (2020), González et al. (2017),
Rastelli et al. (2014). Nevertheless, all these approaches
consider single-lane roundabouts. A two-lane roundabout
is considered with paths based on clothoids Rodrigues da
Silva et al. (2022), Silva and Grassi (2017) where the
planned path is smooth with a continuous curvature but
for the authors in Rastelli et al. (2014), the computation
of this solution is more complex and expensive than using
Bezier curves.



Fig. 1. Overall proposed Multi-Risk Assessment and Management (MRAM) control architecture.

The desired speed to enter a roundabout, considering
its diameter, is described in Rodegerdts (2010). For a
roundabout with a diameter between 13 and 27 m, the
entry speed should be between 25 and 30 km/h maximum.
In Garcia Cuenca et al. (2019a) and Garćıa Cuenca et al.
(2019b), a learning-based approach is used to define the
predictive model of vehicle speeds and steering angles
considering the size of the roundabout and other traffic
participants. Another learning-based approach proposes
to define whether it is safe to enter a roundabout and
makes a decision learned from past examples Wang et al.
(2018). In Masi et al. (2022), virtual projections are used
to predict the dynamic situation in the roundabout. This
solution uses communicating EVs and assumes that the
intentions of the obstacles are considered known precisely.
If we do not know the intentions of the obstacle-vehicle
(in case of a human driver for instance), two virtual copies
of the obstacle-vehicle are created at the ends of the
possible paths to manage obstacles that can go out of the
roundabout.

In this paper it is proposed a Multi-Risk Assessment and
Management Control Strategy (MRAM-CS) allowing, on
the one hand, to generate a flexible path for the entire
roundabout navigation that respects the constraints of
the static environment and the road traffic law, and on
the other hand, an adaptive speed profile allowing a
safe navigation through the roundabout while considering
dense OVs flow. The dense roundabout treatment in the
literature prioritizes the stop of the EV on the yield
lane. It can be very penalizing because the waiting time
can be long Medina-Lee et al. (2022). This paper is
structured as following. Section 2 presents the overall
proposed MRAM-CS. The first subpart of the MRAM-
CS is the Multi-Risk Assessment (cf. Section 3) with
the Predictive Inter-Distance Profile (PIDP) metric. The
Multi-Risk Management (cf. Section 4) with its main
components such as an adaptive PD controller and a fuzzy
fusion process to manage multiple obstacles. Simulation
results are presented in Section 5 and a conclusion and
some prospects are given finally in section 6.

2. OVERALL VIEW ON THE PROPOSED
MULTI-RISK ASSESSMENT AND MANAGEMENT

(MRAM) CONTROL ARCHITECTURE

The proposed control strategy for risk assessment and
management is summarized in Figure 1. The perception
and localization block is not discussed in this paper, but
it is important to highlight the main inputs necessary for
the proper functioning of the proposed overall strategy. It
is assumed that a High Definition map is embedded in the
EV where the static environment is described and allows
to compute the path respecting the code and structure
of the road (cf. Section 3.1). The embedded sensors allow
to observe the dynamic environment with the ability to
characterize and predict the behaviors of the encountered
obstacles (e.g., calm, aggressive, ...) and allows to define
their trajectories through an horizon time constant th,
corresponding to the inputs of the used monitoring metric,
which is the Predicted Inter-Distance Profile (PIDP) (cf.
Section 3.2). The block 2 given in Figure 1, corresponds
to the architectural feature that allows to define the
desired dynamic minimum safety temporal distance that
should be maintained by the EV w.r.t. each detected
OV, according to its behavior and also its velocity. In
order to make the focus on the main contributions of the
paper, this block will not be discussed in detail below.
The minimum safety distance is assumed to be constant.
It is important to notice that the proposed MRAM-CS
works with the same strategy whether dsafety is variable or
not. In this paper, obstacles behaviors are not treated but
they can have different initial speeds. The proposed Multi-
Risk Assessment is based on the continuous monitoring
metric PIDP (cf. Figure 1, block 3) allowing to define the
groups of OVs that impose a same behavior on the EV
(cf. Figure 1, block 4). The Multi-Risk Management (cf.
Section 4 and Figure 1, block 5 and 6) allows to apply an
adaptive speed profile based on an adaptive PD controller
to find the right speed profile to maintain the safety
distance with the considered obstacle and also based on
a fuzzy fusion process to manage the groups of OVs. Once
the proposed Multi-Risk Assessment and Management
Strategy obtains the most suitable setpoints for the EV,
it uses an appropriate Control law (defined by the block 7
in Figure 1). The nonlinear control law Vilca et al. (2015)
allows to drive the EV towards a static or dynamic target



and it is based on a Lyapunov function designed to ensure
the convergence of the EV to the targeted setpoint.

3. PROPOSED MULTI-RISK ASSESSMENT
STRATEGY

This section will make the focus on the main components
characterizing the proposed Multi-Risk Assessment strat-
egy, which relies, among others on the trajectory that
should be taken by the EV (cf. Section 3.1) and the defini-
tion of two groups of dangerous obstacles (the one which
require acceleration and the one which require deceleration
to avoid them (cf. Section 3.2).

3.1 Path planning for roundabouts based on Limit-Cycles

Fig. 2. Defined Limit-Cycle (LC) paths to manage the
entire roundabout navigation according to defined
entrance and exist that must be taken by the EV with
maximum of 3 Limit-Cycles (entrance, ring zone with
the lane change if necessary, and exit).

The paths that allow to navigate with smooth and flexible
way in the roundabout (phases of: entrance, ring zone and
exit) are defined in this paper while using appropriate
Elliptic Limit-Cycles (ELC) Adouane (2017), Adouane
et al. (2011) (cf. Figure 1, block 1). These latter are
defined according to elliptic periodic orbits, corresponding
to ellipses of influences. In previous works Adouane (2017),
Adouane et al. (2011), an ellipse of influence is generated
around the obstacle and allows to circumvent this last
one. In Iberraken and Adouane (2022), the generation of
an ellipse of influence, around the obstacle-vehicle, allows
to an EV to have smooth and adaptive overtaking in
highway. In the proposed paper, it is not suggested to use
the limit-cycles to achieve overtaking maneuver Iberraken
et al. (2018) or to avoid obstacles Adouane (2017), but
to achieve smooth and flexible navigation of the EV in
a roundabout (thus: insertion, displacement/lane-change
and exit; cf. Figure 2 to see the three mains used limit-
cycles).

To have self-content paper, it is given in what follows
the main features characterizing the used ELCs. They are
defined according to the following equations:{

ẋs = mys + µxs(1− xs/a
2
lc − y2s/b

2
lc + cxsys)

ẏs = −mxs + µys(1− xs/a
2
lc − y2s/b

2
lc + cxsys)

(1)

with m = ±1 according to the direction of avoidance
(clockwise or counterclockwise). (xs, ys) corresponds to the
coordinate of the obtained path (limit-cycle (LC)) accord-
ing to the center of the roundabout. alc and blc characterize
the major and minor elliptic semi-axes respectively. In the
case of a roundabout, alc = blc. c gives the orientation
of the ellipse but not used in the case of a circular LC
and µ a positive constant that enable us to modulate
the speed of convergence of the LC trajectory toward the
ellipse of influence (orbit). This last term allows to fit the
curve entry and to minimize the curvature according to
the roadsides (cf. Figure 2). Knowing the roundabout exit
that the EV has to take, the internal or external lane
must be used. The comfort for a roundabout insertion is
approached in González et al. (2017) with Bezier curves
and in Rodrigues da Silva et al. (2022) with clothoids. The
choice of LC method to define trajectories on a roundabout
is done because of the smooth and high flexibility of the
trajectories that could be computed with these LC, for
the different roundabout phases: entrance, ring zone and
exit. The path planning phase is not the main focus of
the proposed paper and is uncorrelated with the proposed
method to determine the speed profile but it is important
to know the evolution of the curvature to take into ac-
count the comfort of the passengers by limiting the speed
according to the curvature of the trajectory. This part will
be subject to future developments.

3.2 Obstacles’ groups definition based on PIDP features

Before safely entering a roundabout, the EV must take
into-account dynamic obstacles which are already present
in the roundabout. In this paper, as shown in Section 3.1, it
is considered that the EV circulates on its already planned
path, based on LC (cf. Figure 2). It is also assumed that
each obstacle-vehicle navigates in its corridor and follows
the center of the lane. To check if the EV’s planned trajec-
tory (defined path and adaptive velocity) induces collisions
with the other dynamic obstacles, two buffer circles are
defined for each vehicle (cf. Figure 3(a)). All obstacles are
represented by two circles. This is justified by the fact that
it is important to know whether the collision took place at
the front or at the rear of each vehicle in order to adapt
accordingly the behavior (acceleration/deceleration) of the
EV.

Before explaining the proposed strategy to know the EV’s
macro-behavior consisting of accelerating/decelerating to
have a safe insertion, let us first define, the metric de-
fined in previous works Iberraken et al. (2018), Bellingard
et al. (2021) (cf. Figure 1, block 3). This metric, named
Predicted Inter-Distance Profile (PIDP), represents the
evolution of the distance between two vehicles (Ego and
the considered obstacle) according to the time. Knowing
the path and the dynamics of both vehicles, and if these
ones remain unchanged in the desired time horizon th, it
is possible to predict the evolution of the inter-distance
between them and thus assess the risk of collision. As
mentioned before, it is assigned for each vehicle two circles
(cf. Figure 3 (a)), four PIDP must be thus calculated
(one for each pair of circles) in order to determine the
macro-behavior that must be considered by the EV. If
one of the PIDP crosses dsafety, the obstacle is considered
as dangerous and the speed profile of the EV must be



(a)

Ef Er Of Or Behavior

0 0 0 0 Keep the same dynamic
0 1 0 1 Acceleration
0 1 1 0 Acceleration
0 1 1 1 Acceleration
1 0 0 1 Deceleration
1 0 1 0 Deceleration
1 0 1 1 Deceleration
1 1 0 1 Deceleration
1 1 1 0 Acceleration
1 1 1 1 Deceleration

(b)

Fig. 3. Circles used as buffers to characterize the different
possible collisions between the EV and the Obstacle-
Vehicle. The macro-behavior (acceleration or deceler-
ation) that can be taken by the EV according to the
projected situation is resumed in the above Table.
For the insertion, deceleration is always prioritized
because EV does not have priority. For example, in its
line 5, Ef (Ego’s front) = 1 and Or (Obstacle’s rear)
= 1, the designed EV macro-behavior is to decelerate.

adapted. To know the behavior, all times (i.e., at each
time step) where the Safety is Non Respected tSNR (cf.
Figure 4, which represents the first crossing point (if it
exists obviously) between dsafety and PIDP, are computed.
For one obstacle, the considered PIDP is the one that cross
dsafety first. If there is no crossing point, the EV can keep
his dynamic without any risk of collision. The behavior
that must be adopted by the EV can be checked in the
table given in Figure 3 (b).

Fig. 4. Example of PIDP plotting progress that the EV
can meet during an insertion or a lane change in a
roundabout where 3 OVs are detected and these 3
risky OVs corresponding PIDP are computed. The
two closest obstacles impose a deceleration of the
EV and can be grouped. The third one imposes an
acceleration while taking into account the table given
in Figure 3 (b).

Once the set of PIDP are computed for each OV, through
a time horizon, th and the behavior that each obstacle
imposes on the EV are known (cf. Figure 4), the proposed
control strategy suggests to bring together all the obstacles
that impose the same macro-behavior (acceleration or
deceleration (AccOrDec)) (cf. Figure 1, input block 4).
As shown in Figure 4, three obstacles are considered with
their respective PIDP. If the collision takes place at the
front of the EV (PIDP solid lines for the Obstacles 1 and 2
in Figure 4), the EV has to decelerate considering the most

dangerous obstacle, i.e., the one that crosses first dsafety,
otherwise the EV must accelerate (PIDP dashed line for
the obstacle 3). For a number nco of obstacles with rear
(or front respectively) consecutive collisions, the obstacle
considered for each group is defined by the following:

tGi = min(tSNR1, ..., tSNRnco ) (2)

with i ∈ N|i = 1, 2 for each possible existing group of
induced macro-behavior (acceleration/deceleration). The
min is selected since it is the closest time of collision, con-
sidering the defined obstacles’ group. Due to the proposed
control strategy and the traffic rules, there is no alterna-
tion of more than two groups in the given time horizon.
There will be a maximum of 2 groups, one requiring a
deceleration with a collision rather at the front of the EV
and another at the rear with an acceleration demand. This
situation, when two groups are identified in the given time
horizon th, means an insertion between two vehicles, one
requesting an appropriate average deceleration (during the
overall considered time horizon) and the other an appro-
priate acceleration to avoid the collision. All the challenge
is therefore to define the most suitable velocity adaptation
profile to guarantee the EV insertion between these two
OVs because it is in this situation that vehicles can be
stopped for an indefinite period, depending on the traffic
Medina-Lee et al. (2022). The proposed online and reliable
approach is given below.

The time tgap that will be between the two defined critic
obstacles, is expressed by (cf. Figure 4):

tgap = |tG1 − tG2| (3)

If this parameter, tgap, is below the set limit where inser-
tion is allowed to guarantee safe insertion (by keeping safe
distances between the two designed obstacles), then the
insertion can be performed. Otherwise, the two identified
groups are grouped together to form a single group that
will impose a single dynamic (acceleration or deceleration)
to the EV, while considering the most dangerous obstacle.
All this strategy is resumed in the upper part of the
flowchart presented in Figure 5.

4. MULTI-RISK MANAGEMENT

The aim of the proposed control strategy is to adapt
the speed profile based on an adaptive PD controller (cf.
Section 4.1) and a fuzzy fusion process (cf. Section 4.2).
The continuous monitoring metric, PIDP allows the EV
to maintain safety distances even with a dense traffic flow.
During an insertion in a roundabout, the EV has the
possibility to stop (before to enter the roundabout) and
to give priority to the OVs navigating in the roundabout.
This is not the case during a lane changing in the round-
about. If there is no speed profile that allows to respect
the safe distances, the component parameters which define
the differential equations of the LC (1) allow to redefine a
path, online, but this part is not the focus of this paper (cf.
Section 3.1). When one of the detected OV will not allows
to respect the safety distances (i.e., mPIDPi < dsafety
with mPIDP the minimum of PIDP (cf. Figure 4)), the
EV has to update its speed profile in order to respect
the defined safety distance dsafety. The error ePIDP ,
represents the difference between dsafety and mPIDPi.



Fig. 5. Flowchart of the main steps describing the se-
quentiality of the proposed Multi-Risk Assessment
and Management parts of the overall MRAM Control
Architecture

ePIDPGi = dsafety −mPIDPGi (4)

with i ∈ N|i = 1, 2 for each group. The sign of ePIDPGi,
computed at each time step, depends on the behavior
imposed by the concerned group and that must be adopted
by the EV (acceleration or deceleration). This error is
managed by an adaptive PD controller which applies
an appropriate correction based on the proportional and
derivative of this error according to the following (5):

u(t) = KpePIDP (t) +Kd
∂ePIDP

∂t
(5)

where Kp and Kd are the proportional and derivative
coefficients, respectively, and the command u is the speed
that the EV must add to its current velocity in order to
converge the mPIDP towards the dsafety limit (cf. Figure
4). This means that the EV updates online its velocity to
always maintain a minimum distance dsafety.

4.1 Proposed Adaptive PD parameters

In order to reach the safety distance, according to the
situations (positions represented by the PIDP derivative
and speeds of the obstacles), it is proposed to update the
parameters of Kp and Kd (cf. Figure 1, block 5), according
to the optimization of a multi-criteria given in (6). For dif-
ferent scenarios involving several initial speeds of obstacles
and EV, several proportional values of Kp are used. A cost
function J , that must be minimized, is used in order to find
the right proportional gain value for this situation which

Fig. 6. Polynomial regression to describe the variables Kp

and Kd with different initial speed of the Ego-vehicle
and the obstacle-vehicle.

allows smooth insertion without oscillations of the speed
while respecting the safety distances with a response time
that respects the maximum acceleration/deceleration that
can be provided by the EV. The cost function J used is
defined as follow:

J = ω1JRiseTime + ω2JOvershoot + ω3JAccOrDec (6)

where:

• JRiseT ime represents the time taken by the EV to
reach 95% of the targeted value dsafety.

• JOvershoot is the size of the first peak above the safety
distance for a second order response. Minimized, it
allows to reduce the oscillations.

• JAccOrDec allows to minimize the acceleration or
deceleration employed by the EV. The objective is
to always respect the actual capacity of the EV.

and ωi|i = 1..3 ∈ N are positive constants permitting to
give the right balance between the different subcriteria.
All sub-criteria are normalized by using the weighted sum
method Triantaphyllou (2000). Once the right propor-
tional Kp is found for each scenario, the same process is
used to find Kd using the best Kp found from the cost
function J . When Kp and Kd satisfying the constraints
are found for each scenario, a polynomial regression is
performed to describe the appropriate selectedKp andKd,
according to the obtained results as shown in Figure 6).

4.2 Fuzzy fusion process to respect the imposed constraints
of the two possible groups of obstacles

In order to take into account the possible conflicting
behaviors given by two identified groups of vehicles and to
manage the two computed speed profiles, if tgap, defined by
the equation (3), respects the chosen limit time to allow an
insertion, a fuzzy fusion process is carried out to determine
the speed that must be applied to maintain the safety
distance with the two groups simultaneously (cf. Figure
1, Block 6). Priority must be given to the group with the
highest level of risk of collision:

v(t) = ω.vG1(t) + (1− ω).vG2(t) (7)

with v, the speed at each time step that must be applied to
respect the safety distances with all the obstacles’ groups
and ω ∈ R, determined by a fuzzy logic controller (cf.
Figure 7) while considering the gap tgap and the error



ePIDP of each group. If the gap is high, this means
that the collision with the most dangerous vehicle of the
first group is imminent and the EV must consider this
first group as a priority. Otherwise, if tgap is close to the
limit where the insertion is aborted, the priority given to
each group is equivalent but ePIDPG1&G2 are also used
to determine the right balance and it is useful in this
particular case. The priority will be given to the one with
the highest error (ePIDPG1||G2). This allows to find the
right balance between the action to be performed, for each
group, in order to safely deal between all the observed OVs.

Fig. 7. Fuzzy membership functions used to find the right
balance between speed profiles computed for the two
groups with 3 inputs and 1 output ω.

5. SIMULATION RESULTS

The simulation results have been performed in Mat-
lab/Simulink. To highlight the proposed strategy, a two
lane roundabout with a size of 40 m has been built on
RoadRunner 1 to reproduce a real roundabout and to
generate an HD map described in OpenDrive 2 format.
Each performed scenario includes 8 obstacles with random
initial velocities (inside an interval of coherent velocity in
the roundabout) and positions, and on the external and
internal lane (cf. Figure 2 and 9). The initial speed of each
vehicle is set at the beginning of the scenario and it is kept
constant throughout the simulation. The acceptable time
tgap between two obstacles is considered equal to 3s. For
all tested scenarios, the safety distance dsafety is set to 6m,
for all the obstacles. At the beginning of the decision zone,
the EV detects online the visible obstacles (according to its
sensors) represented by a number n of dynamic obstacles
(or not if they are on the other side of the roundabout).
Let us consider some constraints that the EV must take
into account:

• The maximum acceleration amax is 3m/s2.
• The maximum deceleration dmax is −3.5m/s2.
• The maximum lateral acceleration alat is 2m/s2.

In order to find the best parameters Kp and Kd that
minimize the cost function J , 30 000 simulations have
been performed with one group of vehicles. Different initial
1 RoadRunner: https://fr.mathworks.com/products/roadrunner.html
2 OpenDrive: https://www.asam.net/standards/detail/opendrive/

speeds for the obstacle-vehicle and the EV have been
considered between 6 and 12m/s and for different initial
slopes of PIDP (different by the fact that OVs are detected
and considered at different initial distances) represented
by the PIDP derivative between the actual distance and
its minimum mPIDP.

The obtained Kp and Kd (cf. Figure 6) are used for 50
random scenarios. During these 50 scenarios, the EV has
to insert and cross the roundabout while considering all the
detected dynamics obstacles. All these scenarios represent
a critical aspect to test the actual ability of the overall
control architecture, where the future possible collisions
are detected at the beginning of the scenario (cf. Figure 8
with mPIDP close to 0m) and will appear if the EV does
not adapt its speed. In some scenarios, the EV detects
obstacles from afar before entering the roundabout, this is
why the actual inter-distance, at the beginning of the sce-
nario, starts at 50m (cf. Figure 8, right figure). Some other
scenarios present a late detection, close to the insertion,
to test the reactivity of the proposed strategy. The mean
time of convergence of mPIDP is 0.88s with a maximum
of 1.05s and a minimum of 0.2s in these scenarios. The
safety distance of 6m is always respected during these 50
scenarios. One case is presented in Figure 9, and in the
video given though this link: https://urlz.fr/lfuH to illus-
trate an insertion between vehicles. The video highlight
also several other scenarios.

Fig. 8. Simulation of 50 scenarios of a roundabout crossing.

Fig. 9. One example where the EV, in blue, has to insert in
a roundabout. Red vehicles are the detected obstacles
and the white ones are not detected (not dangerous
here). PIDP at the given time step is also represented
on the right figure for all detected obstacles. We can
see that an acceleration is needed to avoid one OV
(green PIDP) and a deceleration needed for another
(violet PIDP).

6. CONCLUSION AND PROSPECTS

This paper proposed a Multi-Risk Assessment and Man-
agement (MRAM) global strategy allowing to an EV to
navigate safely in a roundabout (entrance, ring zone and



exit) even in dense dynamic traffic. A flexible path defini-
tion based on Limit-Cycles has been presented and allows
to define a global path that respects the road structure
and the traffic rules for each phase of the roundabout,
knowing the entrance and the exit. An entire strategy to
apply an adaptive speed profile allowing the EV to insert
and navigate in the roundabout, while considering a dense
continuous traffic flow has been presented. This strategy
aims to analyze traffic to identify groups of Obstacles-
vehicles in order to perform a safe insertion and allows
the crossing of the roundabout despite of the density of
traffic. It is based on the continuous monitoring metric
PIDP and its minimum mPIDP, controlled by an adaptive
PD controller. The proposed control is also based on a
fuzzy fusion process to respect the imposed constraints
of the identified groups of obstacles. Several simulations
have been performed to demonstrate the reliability and the
safety of the proposed approach that allows a flexible and
reliable crossing of dense roundabout. As a short-term per-
spective, it is planned to implement the proposed approach
on the autonomous vehicles available in the laboratory.
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