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Abstract. Recent progress in robotics and artificial intelligence let us envision a
future where robot presence and activity will be ubiquitous. Fueled by economics,
cultural background, and design choices, human creativity will most likely design
robots of various forms and shapes, using a wide range of sensors and actuators to
accomplish their tasks. Consequently, it is highly probable that differently struc-
tured robots will be required to perform the same task. As many of these tasks
may require learning-based control, which still relies on millions of examples to
perform correctly, it would be eminently useful to be able to transfer skills from
one agent to another, notwithstanding their distinct physical structure. As such,
we propose a new method for the fast transfer of skills using a family of differ-
entiable task-specific distance metrics called Task-Specific Losses (TSL). After
highlighting the main shared concepts and differences with the closest existing
state-of-the-art method, we demonstrate this technique on two different assistive
control tasks, showing that we can indeed transfer the realization of a task learned
from an expert/teacher to an agent with no previous interaction with the environ-
ment.

Keywords: Transfer learning · Variational autoencoders · Generative
adversarial networks · Control · Differentiable models

1 Introduction

Knowledge sharing has always held a particularly important place within human soci-
eties, from the first educational tales transmitted vocally to modern knowledge instances
such as universities, the internet or social media. When engaged in physical activities,
humans can also benefit from the knowledge transfer. Indeed, in environments such as
sport classes, relying on an expert/teacher to learn a movement can greatly decrease the
time needed to master these skills.

Given the immense benefits of this human feature, considerable efforts have been
dedicated to adapt and translate this transfer process for a pool of robots. Within
the scope of learning-based methods, Reinforcement Learning (RL) methods present
the closest paradigm to the human traits introduced above and have been observing
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a strong popularity increase, due to recent advances [33,36,37,47,52]. Nevertheless,
these methods are also known for their very poor sample efficiency and their extreme
sensibility to state distribution. Indeed, even when trained, transferring a successful
RL policy from a simulated environment to the real world is very challenging. Conse-
quently, the added complexity of having to additionally make the policy adapt to a new
robot thus appears to be beyond the scope of current RL capabilities. As a supplemen-
tal motivation, let us consider a case of everyday life usage of robots such as assistive
robots.

As the use of assistive robots spreads among the elderly and people with phys-
ical disabilities, it appears crucial that their usage is as intuitive and easy as possi-
ble. However, as the agility of these robots is linked to their degrees of freedom, their
increased dexterity de factor makes them severely arduous to control through a joystick.
As painful as it is to get used to this type of control, this process shouldn’t be replicated
every time the assistive robot is changed.

Following the concept of teacher-student transfer proposed in [28], this current work
proposes an alternative way to envision the transfer of knowledge between differently
structured agents. More precisely, using a non-linear encoding of a task realization for
a given robot, it is possible to create an intuitive controller that pilots a robot with a
high number of degrees of freedom with low-dimensional inputs from a user. Then, we
want to enable the transfer of the latent space of the skills needed to solve the task to
another robot featuring a different body configuration. To do so, we will introduce the
concept of Task-Specific Loss (TSL). Formally, the TSL is a differentiable, task-specific
distance metric that aims at inducing a similar state variation, in both the student agent
and the teacher agent. As a result, this allows us to quickly distill the teacher skills
within the student agent without it having to access to the task environment.

2 Related Works

Currently, the concept of transfer learning is essential to an important part of deep learn-
ing research, particularly in supervised and unsupervised tasks. Originally motivated
by the increasing number of parameters in Computer Vision models [14,20,56,61],
it has proved very useful even for downstream tasks such as detection or segmenta-
tion [11,12,41–44,46,54]. Since the introduction of Language Models (LM), a simi-
lar trend has been observed in Natural Language Processing [6,7,15,21,24,40] and it
is very common for deep learning practicioners to initialize a model with pre-trained
parameters.

In modern data-based approaches, control tasks, such as controlling a robot in a
manipulation setting, is usually addressed with RL techniques, rather than supervised
learning [31,32]. Impressive progresses in the field have made model-free RL meth-
ods very attractive [1,2,16,25,37,38,53,55]. Nevertheless, these techniques still suffer
from a low sample efficiency, which in turn generates interests for transfer learning.
However, in this setting. it is not clear how to apply transfer learning partly due to the
important modification between environments [57]. Consequently, there exists multiple
ways to conceive transfer learning in the RL scope. Various works focus on transfer-
ring knowledge between simulation and reality [31,34,39] where the author implement
strategies to make the agent less sensitive to state distribution modification. Another
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important research axis is concerned with transfer of skills between tasks [1,2,35]
where the objective is to repurposed pretrained agents on a different task, for instance
through the modification of the reward function. While the state space and action space
stay the same, the authors have shown that some policies can benefit from their past
experience to improve their performances in the new task. An alternative strategy for
similar results is the Curriculum based transfer [5,31,45,59]: in this context, a complex
task is broken down in multiple stages which help the agent learn faster while tackling
the full task initially would likely have resulted into a failure to learn. Alternatively,
multiples works consider broadening the agent’s skillset through the use of intrinsic
motivation [3,9,22,29,48,49,51,63]. These strategy, either relying on a curiosity-based
reward or an entropy-maximization scheme incites the agent to maximize its state-space
exploration which in turn is bound to develop a more thorough control, ultimately offer-
ing a better preparation for potentially new environments. This paradigm can also be
encountered in most works relying on Meta-Learning [8,10,17,30,50,58,64] where the
goal is to increase the agent understanding and adaptability by training it on a span of
tasks. While extremely appealing, in practice, the task distribution considered in these
settings are usually very narrow [62]. For instance, a common evaluation of Meta-RL
algorithm involves changing the maximal joint velocities of a serial robot on a manipu-
lation task while another one consists in choosing different running directions for sim-
ulated legged robots [10].

As can be understood from the above paragraphs, transfer learning and fine-tuning
are becoming increasingly present in modern deep learning. Nevertheless, there is a
clear contrast when considering the application of transfer learning in supervised learn-
ing and reinforcement learning. Indeed, supervised tasks and common models architec-
ture are particularly well suited to preserved the embedded knowledge and pass it on to
for downstream tasks. From this point of view, the absence of dimensional bottleneck in
RL models and the diversity of agents considered makes transfer less straightforward.
Although very diverse and powerful frameworks are investigated, each one of these is
also focuses on a single agent with a fixed morphology. However, there exist numerous
real-world cases that would rather benefit from transferring knowledge from one entity
to a distinct one. For instance, the authors of [26,27] propose to create a task model,
independent from the agent’s body, thus allowing them to transfer it from one agent to
another. Although this technique is theoretically powerful, it is in practice constrained
by the information bottleneck between the task model and the agents, limiting its flex-
ibility. In this dynamic, the Task-Specific Loss (TSL) function can cope with a broad
scope of situations and is not limited by the task model expressiveness. The specific
objective considered in this paper has been studied in [28], where the author developed
the CoachGAN method. The next section focuses on the main characteristics of this
method and provides motivations for the TSL.

3 From CoachGAN to TSL

In order to fully appreciate alternative paradigm and the enhancements brought by the
TSL framework to the transfer of task knowledge between kinematically distinct agent,
this section goes over the most important ideas and concepts of the CoachGANmethods
and highlights its relationship with the TSL framework.
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3.1 The CoachGAN Principle

The CoachGAN principle is best understood with an analogy: Consider a crowd assist-
ing to a sports event, such as a boxing match. It is likely that the many individuals
among the assistance are not genuine experts of the sports. Nevertheless, having assisted
to several matches has endowed them with enough experience to be able to detect good
moves (at least some) and distinguish them from actions that are unlikely to yield desir-
able results. As such, they can provide a feedback signal to the current fighter but are
also able to translate their overall understanding to a different training athlete.

The CoachGAN method is inspired by the situation described above and imple-
ments it within the Generative Adversarial Network (GAN) framework [13]. Specifi-
cally, to transfer knowledge from an expert agent to a potentially kinematically different
student agent, the CoachGAN method proceeds in two-steps:

1. Trains a teacher adversarial pair, such as presented in Fig. 1, green rectangle: Using
the expert dataset, a GAN is trained to produce states that are likely to be the result
of the expert policy. The goal in this step is to create a reliable discriminator (an
educated boxer observer)

2. Once the teacher discriminator is ready, it is repurposed to train a student generator
to produce experts-like states, orange rectangle in Fig. 1

Fig. 1. CoachGAN high-level principle [28]. The green rectangle depicts the teacher adversarial
pair training process. Once trained, the teacher discriminator is used to train the student, in the
orange rectangle. The concept of ISV is introduced in Sect. 3.2.

While interesting conceptually, this approach faces a non-negligible issue due to the
fact that the expert and the student have probably different state spaces. To circumvent
this obstacle and allow the discriminator to provide a suitable learning signal to the
student generator the Intermediate State Variable (ISV) concept is introduced.

3.2 Intermediate State Variable

The interesting aspect of CoachGAN is to be able to transfer knowledge from one agent
to another one with different morphology. However, the geometry differences between
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the expert and the student usually result in different state spaces, which would render
unusable the teacher discriminator knowledge if it were applied directly to the student
states distribution. Consequently, the CoachGANmethod first requires the user to define
a state transformation function (noted RISV in Fig. 1) that will produce an intermediate
state representation, the ISV, on which the teacher discriminator is trained. The stu-
dent generated states will then be transformed accordingly to enable the discriminator
knowledge to be applied blindly to both agents. As an example, consider the Tennis
environment in which an agent is trained to bounce the ball against a wall. Specifically,
let us define the expert agent as a 5 DoF, planar serial manipulator and the student as a
4 DoF robot. In this case, a possible ISV could be the effector position on impact: the
teacher discriminator would be trained to evaluate effector positions given the initial
ball configuration (position and speed), based on the expert dataset. It is then possible
to transfer this knowledge to the student agent. As all agent training relies on backprop-
agation, it is crucial for the state transformation function to be differentiable: failing
to meet this condition would effectively prevent the student error, as defined by the
discriminator, to be used to optimize the students weights.

3.3 CoachGAN Results and Analysis

Relying on an adversarial framework and a simulated Tennis task as experimental envi-
ronment, the CoachGAN technique was evaluated using various Intermediate State
Variables (ISV), such as the effector position or the rebound ball speed that demon-
strates the flexibility of this framework. Figure 2 shows the teacher discriminator eval-
uation of effector positions for a given initial ball configuration (position and speed)
as well as student generated joints positions and their resulting effector position. As
the teacher discriminator is trained on the expert dataset, it learns to recognize suitable
effector positions to hit the ball. In order to evaluate the teacher discriminator reliability
a vector of sample effector positions is fed to the discriminator, for a given ball con-
figuration, which then return an associated scalar for each position that represents the
desirability of this position. This measure is represented by the colored background,
where yellow color indicates highly desired effector positions and blue colors symbol-
ize positions unlikely under the expert dataset. Once the student generator is trained,
it is similarly evaluated for a given ball configuration. As can be observed, the student
distribution of effector positions is located in an area considered suitable by the teacher
discriminator and the best rated position is close to the ground truth (expert) position.
Additionally, it can be noted that the untrained student generator states propositions
result in a wide distribution, far from the discriminator preferences. These results sug-
gest that CoachGAN is indeed a suitable approach for transferring task knowledge to a
student agent without interaction of this agent with the task.

Furthermore, this method allows training student within minutes, while most RL
tasks require several hours of training, as displayed in Fig. 3. Thus, the applications of
CoachGAN are numerous, especially given the increasing availability of approximation
models that could result in very diverse and flexible ISV.

This method, in its current form does however present some limitations. Specifi-
cally, the student generator outputs correspond to final target states (for instance, the
expected configuration for touching the ball). This output definition can in some cases
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Fig. 2. CoachGAN results: [28]. Student generator proposed configurations and their resulting
effector position. Best position according to the teacher discriminator is represented by the full
robot. Background color represents teacher discriminator evaluation of ISV (effector positions)
in the task-space.

be detrimental to the application spectrum, particularly in cases where unexpected event
must be handled. This limitation stems directly from the learning process. Indeed, as the
learning loss is established based on the ISV, the discriminator learns to evaluate states.
As the student generator is trained using the discriminator, predicting intermediate state
conditioned on current state makes training more difficult.

Taking into account this limitation, various alternative ways could offer a way out. A
straightforward approach would be to adapt the generator to output several intermediate
key state and sum the teacher discriminator evaluation of these to compute the error.
Although appealing, this formulation could introduce stabilization issues related to the
number of intermediate steps and the distance between them. Another paradigm would
be to find a way to evaluate the results of a student action with respect to the action taken
by the teacher for a similar environment configuration. The next section introduces the
Task-Specific Loss (TSL), which implements this strategy to propose a reactive agent
formulation.
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Fig. 3. CoachGAN results: Interception performance and training time [28].

4 The Task-Specific Loss Method

As mentioned above, the Task-Specific Loss (TSL) approach introduced in this paper
distills the task knowledge of a teacher agent within a student agent of a different struc-
ture through the use of a loss function relying on a differentiable task-specific metric.
In this section, we first present the original learning process and pipeline, proposed in
[23] for the assistive control of robots. It relies on an expert dataset, which is a set of
trajectories composed of a succession of state and action tuples. These trajectories can
be generated with a trained RL process or a state-of-the-art robotic method, if available.
Afterward, focus is set on the proposed transfer process and the various losses used to
reach this goal.

4.1 Learning in the TSL Framework

As explained, our goal is to transfer a skill learned with a given robot to another one
with a different body structure. As opposed to [26], where a manually-defined vector of
physical values is used as an interface between the robot and the task, we would like to
avoid to explicitly restrict the state representation.

Thus, the first step of this method is to create a latent space suitable for solving
the task. We do so through a Variational AutoEncoder (VAE) [19], which is a common
generative type of neural networks. A classic VAE architecture is shown in Fig. 4. The
main principles behind a VAE are rather close to those behind a classic AutoEncoder
(AE). Indeed, they both compress high-dimensional inputs to a much smaller represen-
tation, sometimes called code and denoted z, with a loss function that encourages the
network to reconstruct the input as closely as possible. However, VAE are also con-
trolled through an additional loss, the KL loss (Kullback-Leibler divergence loss [19])
that focuses on the low-dimensional representation and penalizes the network shall the
code distribution be too far from a multidimensional Gaussian. This allows for a smooth
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and exploitable latent space structure, thus giving the VAE its generative capacity. Prac-
tically, the total loss LVAE to be minimized by the model can be put as follows:

LVAE = Lr+αLKL (1)

with α ∈ R
+ a weighting parameter for the distribution regularization, Lr and LKL the

reconstruction and KL loss, respectively.

Fig. 4. Classic state-of-the-art VAE architecture [19].

Specifically, for a given batch of inputs vectors x, D being the decoding part of the
VAE model, the reconstruction loss is equal to the mean distance between the input x
and the reconstruction x̃ = D(z). As the sampling operation is not differentiable, the
vector z used by the decoder relies on a reparametrization trick that involves using two
heads after the encoder E, one for the mean vector µ and the other for the standard
deviation vector σ. These vectors have the same dimensionality as z. Based on the input
batch x, we have µ,σ = E(x). Then, using a sampled batch of ε, z is obtained by the
following: z= µ+σε. This error is then averaged over a whole batch, as denoted by E,
leading to, for the general case in Fig. 4:

Lr = E[||x− x̃||] where x̃= D(z) (2)

Next, the KL (Kullback-Leiber) divergence loss incites the model to minimize the
distance between the current distribution of code z, parametrized by the vectors µ and
σ, and a normal distribution centered on the origin with a unit standard deviation:

LKL = KL[N(µ,σ),N(0,I)] = σ+µ2 −1− logσ (3)

In our case, we rely on an alternative VAE architecture designed for assistive con-
trol, introduced in [23] and represented in Fig. 5. In this application, the dataset is com-
posed of sequences of states s and actions a. The architecture task is to reconstruct,
from the code z and the current state s, the target action a from the dataset. Thus, the
reconstruction objective from Eq. 2 becomes:

Lr = E[||a− ã||] where ã= D(z,s) (4)

Conceptually, it is possible to see this setup as a way to embed the expert’s strat-
egy/mind within the code z. Then, conditioned by the current agent state s, it allows the
decoder to adequately reconstruct the action, even though the action dimensionality is
higher than the code size, see Fig. 5. This process results in the creation of an intuitive
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and user-friendly controller for an agent with the same body structure as the expert. On
test phase, the code z is given by the user, allowing him to control a higher DoF agent
with a low-dimensional input, as shown in Fig. 6.

Fig. 5. User-assisted VAE architecture training during training phase.

Fig. 6. User-assisted VAE architecture during usage/testing phase.

The Task-Specific Loss (TSL), the main contribution of this paper, extends the
framework proposed in [23] by allowing the constructed assistive controller to be trans-
ferred to another structurally different robot. Furthermore, our approach is scalable and
can be considered for the transfer of skills between autonomous agents as long as a
differentiable TSL can be defined, as detailed below.

4.2 Transfer in the task specific loss framework

From the expert dataset, an intuitive agent (the teacher) has been created, it is repre-
sented by the decoder DT shown in Fig. 7. The goal is now to create a decoder DS for a
student agent with a body configuration that is distinct from those of the teacher agent,
see Fig. 7. The main motivation here is to leverage the previously trained model and
thus avoid recreating a dataset of expert trajectories for the student agent. Indeed, there
are numerous examples of systems where generating several instances of datasets could
be costly, difficult or even plainly impossible, for instance demonstrations of human
experts on a physical system. However, here lies the main obstacle to the transfer.
Indeed, as the two agents do not share the same body structure, it is unclear how to
force the student to mimic the teacher. The Task-Specific Loss (TSL) offers a concep-
tual answer to this issue by introducing a differentiable task-relative metric as the loss
function. Its goal is to induce a similar state variation, for the student as for the
teacher, given a task-specific metric.

The TSL approach shares features with both Reinforcement Learning (RL)
and Supervised Learning (SL), but also clearly distinguishes itself from these two
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Fig. 7. Distillation process from the teacher to the student agent via TSL.

approaches. Specifically, the process takes place in a Markov Decision Process (MDP),
similarly to RL, but does not rely on a reward function in the classical way. Indeed, the
reward signal from RL is usually delivered from an external process, thus forcing the
agent’s optimization to act on the action probability distribution, not on the action itself
directly. Also, RL relies on exploration to discover suitable policies, while the TSL stu-
dent agent can directly learn from the teacher. The RL exploration process is prone to
lead to very low sample efficiency, whereas the TSL importantly improves this aspect,
as demonstrated in Sect. 6.3. The TSL method also differs from SL methods, because
although it uses a loss function that recalls classical SL methods, it is not necessary to
build a dataset which would defeat the purpose of the transfer from the teacher agent.

The main idea of the TSL approach is to enforce a similar state variation between
both agents. This state variation is the result of the action, which is the decoder’s out-
put and is consequently differentiable. As a result, if the state modification function
can be written in a differentiable fashion, it is then possible to compute directly how
accurate was the student’s action with respect to the teacher’s. This, in turn, allows to
compute the error and apply the backpropagation directly to the student’s weight matri-
ces. Specifically, given a starting position for the teacher and the student agents, we
first compute the value d0, corresponding to the initial distance based on the current
TSL metric, a task-defined state similarity measure.

d0 = || fISV(sS)− fISV(sT )|| (5)

where fISV is the function defined that transforms the agent state into the ISV, and sS,sT
are the student and teacher states, respectively.

Next, a code vector is sampled from a normalized and centered Gaussian distribu-
tion N ∼ (0, I), in order to respect the teacher’s training code distribution. This code z
is used by both agents, along with their current state to produce an action which respec-
tively affects the state of each agents.

s′S = ms(sS,DS(sS,z)) (6)

where s′S the new student state is the output of the differentiable student model ms given
the current student state sS and the student action computed by the student decoder
aS = DS(sS,z). A similar operation is applied to the teacher agent.

From here, it is possible to compute the next metric value d1, that is, the differences
between the new states for both the student and the teacher:

d1 = || fISV(s′S)− fISV(s′T )|| (7)

which finally leads to the TSL loss:
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LTSL = |d0 −d1| (8)

As both distances were obtained using differentiable pipelines, it is possible to
directly determine the gradients based on how close the student action was from the
teacher’s and optimize the student parameters accordingly.

However, it is paramount that the student mimics the teacher only when their initial
states are deemed close enough, task-metric-wise. Hence, before backpropagating the
loss, each element is weighted accordingly to the initial distance between the agents.
Formally, we use the following weighting strategy:

w= exp(−d0 ×αtask) (9)

That is, the importance of each element is exponentially proportional to its initial dis-
tance d0, where αtask is a regularization factor used to take into account the scale of
each environment. Finally, the loss is computed as the mean of each example error and
we have:

LTSL = |d1,i −d0,i|×wi (10)

This process is depicted in Fig. 8.

Fig. 8. TSL penalizes the student when its movement does not preserve the estimated metric at
the previous timestep.

5 Experimental Setup

In this section, two assistive control tasks used to validate the proposed approach are
introduced. Each of them uses two specific serial manipulators controlled by a human
user through the code z. The setup and goal of each task are now detailed.
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5.1 Tasks and Agents

Circle to Circle Contour Displacement. In this task, the objective is to move the end
effector of a 5 rotoid joints (5R) agent between and along two quarter circles of differ-
ent radii. We first create an expert dataset, that consists of sequences of states (joints
angles) and actions (joints speed), using an inverse kinematics based approach to train
the teacher, Fig. 5. The size of the latent space used for the code z is 2, as inspired by the
works in [23]. Next, the task metric is defined as the distance between the between the
teacher and the student end-effectors. Specifically, we developed a custom batch for-
ward kinematic module that computes the end-effector position based on joints angles
and segment lengths. That is, for each batch element:

dcircle,i = dEuc(F(lt ,angi,t),F(ls,angi,s)) (11)

where dEuc is a module that computes the Euclidean distance between two points, F is
the differentiable forward kinematics module, lt is the teacher segments length, angi,t
the teacher joint angles at time i and we use respectively ls and angi,s for the student.
Then, for a whole batch of examples, we have:

Lcircle = E
i∈[0...n]

[wi ×|dcircle,i −dcircle,i+1|] (12)

Afterwards, this task knowledge is distilled within a 4R agent, which total length
equate the 5R, through the TSL Lcircle using this Euclidian distance between end-
effectors as a metric, see Fig. 7.

Tennis Task. In this second environment, designed to evaluate our method in a more
complex setting, the goal is to bounce a ball against a vertical wall as many times as
possible. The task is initially performed by the teacher, a 4R serial manipulator, the
last segment serving as a bat to bounce the ball. The expert dataset is generated by
a custom RL-agent trained on this task with an additional signal to specify the ideal
impact location and a 1D latent space is used for this task. The tennis skill is then
transferred to two students: a 5R and a 3R agent. In this task, all agents have the same
total length. This time, the TSL relies on three terms: the Euclidian distance between
end-effectors positions, the difference in the orientation of the bats and the difference
between the magnitude of the actions (joints speeds):

Ltennis = Lcircle+Lori+ E
i∈[0...n]

[||Ai,t −Ai,s||] (13)

where Lori is the equivalent of Lcircle for the bat orientation differences, Ai,t and Ai,s are
respectively the teacher and student action at time i.

5.2 Models

The VAE model for the teacher agent is composed of an encoder and a decoder and can
be seen in Fig. 5. The encoder part is composed of one 64 units hidden layer followed
by a split leading to the mean and standard deviation heads, having also 64 units each.
These two layers allow generating a code of smaller dimension that is then sent to the
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decoder. This latter model is a feedforward architecture with two hidden layers, with
64 units each. Both the encoder and the decoder use Tanh non-linearities. We initialize
both networks using Xavier initialization [60]. For the transfer case, we remove the
encoding part and train only the decoder using the TSL as explained in Sect. 4.2 and
shown in Fig. 7.

6 Results

6.1 Circle to Circle Contour Displacement

The teacher model has been trained using mini-batches of 4096 examples, an Adam
optimizer [18] with a learning rate of 5× 10−3 and a weight decay value of 10−3.
Figure 9 shows the loss evolution of the training set for the teacher agent and the distri-
bution of the latent representation z of a randomly sampled batch of 4096 examples.

The use of a VAE instead of a vanilla auto-encoder has been motivated by the idea
that the VAE will create a smooth distribution of the latent representation, instead of
having sparse clusters. It is here clearly validated, as can be seen in Fig. 9: in both
directions, the z distribution appears to be dense, without obvious holes or clusters.
Furthermore, VAEs are known for their disentangling capacities [4,23], meaning that
they tend to create statistically independent latent features. As the expert dataset is
composed of trajectories between and along two circles of different radii, we are thus
able to generate a 2D controller whose main axes respectively translate into radial and
axial movements.

Fig. 9. Reconstruction loss along training epochs and 2D code distribution on the test set for the
circle task.

Once the teacher is ready, it becomes possible to create a student agent that mimics
the teacher behavior on the task. For this specific task, we use the TSL described in
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Eq. 12 that penalizes the student when the variation of its states, TSL metric-wise, dif-
fers from the teacher states variation. For similar starting state of the teacher and student
agents and given the exact same sequence of user commands {z0,z1, ...,zt}, the agents
ending states should also be similar, TSL metric-wise.

Fig. 10. Distribution of the distance between effectors for 1000 samples after 10 successive
actions using the same user input z.

The main plot in Fig. 10 shows the resulting distance between both effectors after
10 successive actions, for a given z and a starting position in which both effectors are
located at the same place. It is possible to see most movements result in a distance
inferior to 1% of the total body length, an error that is completely acceptable for the
tasks considered. In the worst cases, with no user adaptation, the difference is still less
than 3% of the total body length, underlining the transfer efficiency.

Additionally, using the experimental conditions described for the distance distribu-
tion, we plot in Fig. 10 a small subset of configurations, for a clearer understanding of
the movement. In these cases, although the student body configuration may not exactly
match the teacher’s, their end-effectors end up in a close configuration, as enforced by
the TSL, even though there was no closed-loop correction coming from the user. Even
though the student has not been taught on a dedicated dataset, it has still been able to
generate movements similar to the teacher’s, demonstrating the transfer efficiency.

6.2 Tennis Task

The Tennis task has been designed to demonstrate that the TSL is suitable for com-
plex environments, involving physics, external perceptions, and world interactions. The
objective is to create an assistive agent to facilitate the control of a serial manipulator
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playing a game of tennis and allow the user to rely on a single latent variable to get
the agent to bounce the ball. This environment is more challenging because it implies
a higher reactivity from the agent. Furthermore, writing an analytical model to solve
this task proves to be challenging. The first step consists in creating an expert player
through RL. To fulfill this step, we used PPO (Proximal Policy Optimization [53]), a
battle-tested policy gradient, actor-critic with trust-region reinforcement learning algo-
rithm. Formally, the Tennis MDP components for a 4R robot are:

– The state s ∈ R
9 = [srobot,sball,Pwall] where:

• srobot ∈ R
4 holds information about the robot’s joints angles

• sball ∈ R
4 describes the relative ball position and its current speed

• Pwall ∈ R is the vertical target position on the wall used to enhance the distri-
bution of impacts and ultimately have more control over the expert trajectories
dataset

– The action a ∈ R
4: angular speed for each joint

– The reward rtennis = α+ c× (β+ γ∗ exp(−d)) where:
• α is a small constant that incites the agent to keep the ball over a height threshold
for as long as possible

• c is the contact flag. Its value ranges from 0 to 1 when a contact between the
ball and the wall is detected, and goes back to 0 at the next step

• β and γ are constant values used to weight the relative importance of accuracy
when touching the wall.

• d is the vertical offset between the ball and the target on the wall

After 105 episodes of training, amounting to 4 h, the 4R agent is effectively able to
play and can center its shots around the expected target. Figure 11 shows the evolution
of the mean reward through training on the left, and the impact distribution of 100 shots
per target for 6 different targets on the right. As we can see, the agent manages to direct
the ball around the target and most of the shots land in the vicinity of the expected
impact point.

Once the expert is available, the process is similar to the Circle task. To train the
teacher agent, a balanced (with respect to the impact points) expert trajectories dataset
is generated. The teacher VAE model optimizes its parameters to be able to recover the
action, while encoding the inputs in a normally-distributed latent representation. In this
specific case, the KL loss weight is halved to ensure a better reconstruction. Figure 12
shows the evolution of the reconstruction loss for the training along the epochs, as well
as the distribution of the latent encodings for a batch of 2048 examples. Eventually,
using the TSL defined by Eq. 13, the task knowledge is distilled within two students: a
5R and a 3R robot.

In this configuration, we assess the controllability and efficiency of the trained stu-
dent by relying on 4 human players. In our setting, each human player plays five games
with each robot in the Tennis environment. For each game, we record the number of
bounces against the wall. The objective is to maximize the number of bounces. The
results of this evaluation are displayed in Fig. 13. As a baseline, we add a plot for the
expert, as well as a randomly initialized student agent, for both the 5R and the 3R,
controlled by the best human player P0. Although a certain variability can be observed
between the players, relative to their personal ability, each of them is able to reach
much higher scores than the random baseline, with both students and the teacher. After
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Fig. 11.Mean Cumulative Reward Evolution and ball impact distribution for 100 shots per target
point [28].

Fig. 12. Tennis Teacher training metrics and code distribution of a randomly sampled batch of
2048 examples.
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Fig. 13. Comparison of assistive performances of several players using both teacher and student
agent with baseline.

switching assistive agents, from teacher to students, most players are able to conserve
their average score, except P0 which average score decreases of approximately 15%.
However, even these lesser scores are still considerably beyond the random baseline.

This illustrates clearly that transfer through the TSL is effective. Additionally, the
three players even decrease the variance of their score when using the student agent,
underlining the robustness of the process. However, as it is difficult to assess these
performances from sheer numerical values, we provide a video of our results at https://
bit.ly/2w4P4e2.

6.3 Training Time and Assistive Aspects

One of the principal appeal in transfer learning is to decrease the time needed to produce
a functional model. The TSL approach clearly fits within this framework, as the effec-
tive transfer process is quite short on a regular i7 CPUwith 64 Gb of RAM. In theCircle
case, as the expert dataset relies on an inverse kinematics approach, the time needed for
generating expert trajectories is negligible. As a result, a user could consider the fact
to create an expert with the student structure as well. However, as the teacher training
time using the expert data is close to 15min, the TSL approach nevertheless yields a
66% time reduction in this environment as the transfer only requires 5min. While it
may appear of limited interest given the overall duration of the process, this simple
environment allowed us to illustrate the TSL capabilities. The transfer significance is
more strongly emphasized within the Tennis environment. In this configuration, the
RL agent interacts during 4 h with the environment before yielding a suitable expert
policy, to which an additional 15min are necessary to train the teacher agent. In this
case, the transfer using the TSL approach can be done in 5min, that is only 7% of the
time initially needed for the teacher, and yet result in performant assistive controllers
as demonstrated by our results. This clearly establishes the transfer value and shows
that the more the expert dataset generation is costly, the more interesting the transfer of
control policies is.

https://bit.ly/2w4P4e2
https://bit.ly/2w4P4e2


Task-Specific Loss: A Teacher-Centered Approach to Transfer Learning 183

From a qualitative standpoint, this approach yields an important ease-of-use
enhancement, particularly in the case of the Tennis task. Indeed, it would be highly chal-
lenging and non-intuitive to design and use a controller to manually pilot each rotoid
joint of the tennis agent. The assistive method, empowered by the TSL method, allows
to easily reach a considerable number of bounces by letting the user focus on a global
plan, instead of managing the low-level inputs.

7 Conclusion

This work proposes a new step by step methodology allowing to systematically trans-
fer knowledge of task achievement between two different structural agents. The intro-
duced concept of Task-Specific Loss (TSL) was evaluated over various tasks, within
the background of assistive robotics. As can be seen in the results, this method offers
considerable time saving compared to state-of-the-art RL methods and can distil the
task knowledge of a teacher agent within a structurally different student agent within
minutes, as opposed to several hours of training for several other proposed techniques
in the literature. Furthermore, our experiments, especially the Tennis task, demonstrate
that the transferred knowledge is robust and that various users are able to generate
stable performances on a task involving physics, planning and consistency. The TSL
application scenarios are numerous: in assistive robotics, as it can be considered to
allow disabled people to seamlessly fit their new robotic platform to behave similarly to
their previous one. In other robotic domains as well, since learning-based transfer tech-
niques for control tasks are not particularly developed. In future works, we expect to
investigate TSL architectures for autonomous control in various complex systems such
as dual-manipulation settings or biped walking configurations.
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