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Abstract: Guaranteeing the reliability of Intelligent Transportation Systems (ITSs) is an
overlapping issue. Not only the in-road risks must be mastered, but also the internal threats
that emerge from the ITS material aspects should be addressed carefully. Most of the safety
verification solutions ignore the limitations issued from the ITS onboard embedded structure,
such as the invehicular communication delays. In this work, a novel Response Time Analysis
(RTA) method is introduced to bridge the gap between the risk/failure management issues and
the material aspects (the invehicular communication delays in particular) for ITSs. Aside of
its simplicity, the suggested RTA reveals all potential latency scenarios by returning an interval
estimation of delays. The interval results enclose certainly the exact delay that may occur in run-
time. As a proof of concept of the introduced RTA algorithm, the Hardware-in-the-Loop (HIL)
validation technique is adopted. The HIL platform is realized thanks to a model of a modern
industrial automotive system. The validation work proves the consistency and efficiency of the
proposed RTA solution to ensure ITS safety assurance.
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1. INTRODUCTION

Over the past decades, several solutions have been in-
troduced by the Intelligent Transportation System (ITS)
community to ensure the autonomous navigation (see Iber-
raken and Adouane (2022) and Ben Lakhal et al. (2022)).
These large varieties of technologies have been integrated
into modern ITSs to increase their autonomy and safety,
e.g., artificial intelligence, data-driven/model-based solu-
tions, as shown by Kolekar et al. (2021) and Nie et al.
(2021). Due to the crucial context of ITSs, great attention
has been paid for the autonomous driving safety/reliability
assurance through various formal verification and risk
management policies, see Liu et al. (2021). These latter are
high-level software solutions that provide decisional safety
guarantees for ITSs. Nonetheless, once these strategies are
well defined, it is important to handle the material issues
(i.e., the communication delays) related to the on-board
equipment, where the high-level navigation algorithms are
deployed, see Fan et al. (2021). Although the high-level
approaches are sufficiently reliable, the ITS safety is still
tightly linked to the proper operation of its embedded
system. This issue is emphasized by the deep complexity
of modern ITSs, where several strict operational timing
requirements must not be violated, as stated by Zhu et al.
(2021).

Nowadays, abundant number of components with com-
pletely distinct timing features are incorporated into mod-
ern ITSs. An arbitrary delay, loss or disorder in the com-
munication packets can happen and may lead to a haz-
ardous irregularity/discontinuity in the ITS functioning,
see Ben Lakhal et al. (2020a). To overcome the reliabil-
ity/safety issues emerging from the increase in the number
of vehicular components, the ITS decision-making layer
must be conscious of any potential communication delay.
Yet, the ITS safety verification policies target only the
in-road threats. However, the intelligent driving is not suf-
ficiently reliable without warranting the ITS appropriate
reaction to the environmental events. The in-vehicle delays
are among factors that can unpredictably emphasize the
risk level of a driving situation. In this sense, a comprehen-
sive knowledge of all possible evolution of the invehicular
latency, to guarantee that relevant decisions are made
in good timing even under data freshness problems, is
required (see Ben Lakhal et al. (June 2019)).

Not only the ITS risk management layer is sensitive to
the onboard data transmission delays. Indeed, ITSs are
enhanced by fault-tolerant control strategies to succeed the
management of critical failures. To handle faults impacting
sensors and perception tools, faulty observations are re-
estimated analytically to carry on the navigation with
reduced sensing capacities, see Zhang et al. (2021). In this



case, the data may be recovered incorrectly if the recon-
struction of the faulty measurement is proceeded with de-
layed data (cf. Section 2). Thus, adaptive and delay-aware
decision making for ITSs will permit to face the aforemen-
tioned invehicular communication-related imperfections.
Correspondingly, efficient methodologies to characterize
the delays occurring in the ITS onboard communication
for risk/failure management purposes are addressed in this
work.

The existing Response Time Analysis (RTA) solutions in
the literature rely generally on an uncertain probabilistic
approximation of the invehicular delays or may estimate
only the worst case values of these latencies. In this paper,
the core of the RTA proposed in our previous work Nasri
et al. (September 2019) (where the RTA was adopted only
for design and schedulability purposes) is improved to
consider the variation in the invehicular communication
latencies. Contrarily to our previous RTA model and to
the existing solutions that are applied as an offline anal-
ysis procedure, the suggested RTA is not limited to the
computation of the worst-case of transmission latencies
to validate the safety requirements. By adding the ability
of assessing lower bounds of delays, an interval-value of
latencies that encloses certainly the exact real delays is
obtained. The interval findings can be exploited in run-
time to report all possible states of data freshness and
validity. In such a manner, the interval-valued RTA has
great capacity to enhance the critical and time-sensitive
components integrated in ITSs, such as the risk/failure
management layers, where knowing the upper bound of
delays is not sufficient (cf. Section 2). A proof of concept
of the suggested RTA algorithm is presented by conducting
experiments on an industrial automotive system within a
diagnosis context. The evaluation of the diagnosis mes-
sages transmission time is indeed crucial, since the vi-
olation of the on-board diagnosis hard deadlines can be
destructive.

The rest of the paper is organized as follows: Section
2 investigates limitations of existing RTA methods. It
presents also the real motivation behind the characteri-
zation of all possible scenarios of the invehicular commu-
nication delays. Section 3 details the different steps from
the suggested RTA model in this paper. Section 4 depicts
the experimental validation work realized to prove the
consistency of the introduced RTA model. Finally, Section
5 concludes this paper and discusses some future works.

2. MOTIVATION AND RELATED WORK

It is noteworthy that the invehicular communications may
be extremely troublesome for ITSs. The freshness of the
run-time data is mandatory to ensure the correctness and
exactness of any navigation task. Indeed, the verification
of the data freshness aims to inspect the data validity
in the time space. All along the ITS functional lifetime,
using expired samples (not corresponding to the current
real-time sampling step) must be strictly avoided. In this
context, recent studies about recognizing the data validity
interval time acquire special relevancy, see Fu et al. (2019).

Several critical decisions made by the ITS depend on the
analysis results of the data collected from the environment
via different sensors. The proceeded data analysis counts

roughly on the appropriate interpretation of the temporal
dependency between the ITS variables and parameters,
see Ben Lakhal et al. (July 2019a) and Ben Lakhal et al.
(2020b). In many applications, such as data fusion, the
invehicular latencies can corrupt the analysis of data that
come especially from different communication pipelines.
In order to evaluate the data freshness and then extract
the correct temporal dependencies between data flows,
knowing the worst case of latencies is not sufficient. Char-
acterizing the minimum bound of latency that may happen
is also needed to meet this goal.

Fault occurrence is another issue that emphasizes the
undesired impacts of the invehicular delays on ITSs. Once
a fault is detected by the diagnosis functions, safety coun-
termeasures should be taken by the ITS through several
predefined functional degradation modes. These modes
play as backup strategies when proceeding the ITS nom-
inal operation is impossible. Such a fault tolerant control
aims to avoid aborting suddenly the navigation task. In
general, the proposed fault tolerant control methods in the
literature exploit the analytical redundancy characterizing
the concerned system to re-estimate the faulty variables,
see Zhang et al. (2020). A sort of temporal reconstruction
of data is proceeded to master the fault-issued risk, as
shown in Lee and Lee (2020). The accomplishment of the
data reconstruction can be erroneous or impossible due
to the communication latencies. Correspondingly, blocks
providing the recovery data must consider all cases of the
delays that may happen.

As explained, delay manifestation into the ITS embed-
ded layout is an alarming issue. Thus, it is primordial
to develop risk management and diagnosis approaches
with great awareness of such latencies in regard to their
role in warranting operational safety. Such delays may
slow down reactions made by the ITS high-level safety
verification techniques. In our previous work Ben Lakhal
et al. (July 2019b), a communication latency-aware risk
management for ITS was presented. However, there was
no clear strategy permitting to quantify and characterize
such invehicular delays. In this view, the present paper is
dedicated to deal explicitly with the invehicular delays in
relation with the risk/failure management context.

To characterize data propagation delays through the ITS
embedded architecture, a large range of RTA models and
professional software tools are used in the automotive
market. CANoe, CANalyzer, SymTA/S and Rubus-ICE
are among the software solutions that may assure latency
analysis and invehicular network simulation, see Sun et al.
(2019). However, the existing approaches and the com-
mercial software do not provide facilities to evaluate all
possible states of data freshness/validity. They assume
that only the worst-case transmission latencies are relevant
for the safety considerations. This may not always hold
true, as explained in this section. As an alternative, inter-
est is given in the sequel to a novel RTA algorithm that
characterizes all possible latency states for the invehicular
communication.

Generally, RTA are analytical models permitting the ap-
proximation of the end-to-end data transmission time
through embedded systems. Indeed, a multitude of sta-
tistical RTA-based approaches were proposed to calculate



a message transmission delays. These methods are efficient
in performing RTA while filling gaps caused by incomplete
information about the configurations and composition of
the considered ITS, see Zeng et al. (2010). In a different
way, several RTA models used probabilities to explore the
system response times, see Gong et al. (2018). From this
perspective, the probabilistic reasoning allowed standard
RTA to predict events such erroneous data exchange, see
Shah et al. (2016). Otherwise, Shuai et al. (2014) have
recourse to Taylor series expansion to cope with RTA
modeling imperfections.

Hereafter, the RTA is exploited for the first time for online
safety verification and in-road risk management purposes.
Conventionally, the RTA models provide reliability guar-
antees during an early design phase of a given embedded
system to prohibit any unacceptable violation of on-board
communication deadlines, see Nasri et al. (September
2019). Unlike the research line that relied on the uncertain
statistical or stochastic RTA models, focus in this work
is put on approaches providing certain thresholds of the
minimum and maximum possible delays that may occur
through the ITS. According to this point of view, RTAmay
serve as an informative support to avoid slow reactions
of the risk management and safety assurance against any
potential hazard in run-time.

3. RTA MODEL FOR INTERVAL TIME
CHARACTERIZATION OF CAN RESPONSES

The RTA introduced in this paper is dedicated for ITSs
where the CAN is the communication support. The ul-
timate concern of the current work is to estimate the
invehicular communication minimum and maximum de-
lays for risk management purposes. The CAN is only a
communication protocol, which is selected to present an
example of particular RTA case of study. Nonetheless,
the proposed approach may be applied on any invehicular
communication protocol.

3.1 Preliminaries

The first step from the proposed RTA is to distinguish all
nodes, tasks and data flows of the ITS. A data flow refers
to elements involved in the data transmission starting
from the transmitter task, up to the recipient task. A
node refers to an Electronic Control Unit (ECU), which
is connected to the communication bus. Multiple tasks
may be implemented on each node. Every task executes
predefined functionalities. The manifestation of specific
events may trigger the transmission of particular series
of messages to a destination task. In this paper, all factors
that may slow down a message transmission are examined.
Contrarily to other methods, even delays that impact the
message instance by the transmitter task are incorporated
into the RTA to obtain precise results.

Consider an ITS, which is constructed from a network of n
nodes. Each single node, denoted Nh=1..n, executes a finite
number of tasks. Similarly, every task associated to Nh is
denoted by Γh,i. Let us note by Sh,j a series of consecutive
messages (i.e., a message stream), which are initiated
by a particular transmitter component/task. Since one
node can include several tasks, the stream message should

be assigned to a specific task instead of a node. In
such a manner, a given flow φc consists of the complete
transmission pathway, which conjoins data streams and
tasks implicated into the end-to-end transmission. The key
elements that should be verified via a deterministic RTA
are:

• Message worst-case broadcast time: It is the
maximum possible duration to transmit a CAN mes-
sage. The calculation of such a period is accomplished
with respect to the communication payload and to
the duration to transmit an individual bit through
the CAN-bus.

• Maximum release jitter: The jitter delays consists
of the time extended between the message generation
instant (due to an event) and the instant of its
queuing.

• Queuing delays: Regarding to its criticality, a spe-
cific priority value is attributed to every possible mes-
sage. Hence, a message can be blocked temporarily
until delivering other higher priority messages. Oth-
erwise, queuing delays may happen due an already
initiated transfer of a lower priority message. As
a consequence, both higher/lower priority messages
that may make the CAN-bus temporarily unavailable
should be considered to estimate latencies.

3.2 Proposed RTA model

To fulfill the RTA modeling, let us assume the following:

• Every task Γh,i has a well-defined maximum execu-
tion time, denoted Ctask

h,i .
• Every message stream Sh,j is featured by a maximum

duration to deliver the message. It is denoted in the
sequel by Cmessage

h,j . The Cmessage
h,j value does not

consider any interference induced from other CAN
messages.

Ctask
h,i and Cmessage

h,j are important to define the final CAN
response time. Let assume that mh,j is a CAN message
initiated by the node Nh. Each CAN message possesses
a unique identifier (ID). There are actually two distinct
types of CAN messages relatively to the number of the ID
bits, which may be 11 or 29 bits. The RTA introduced here
focuses on the total number of bits included in the CAN
frame. Thus, the worst-case broadcast time for a 11 bits
ID frame is given by equation (1):

Cmessage
h,j = (55 + 10× lmh,j)× τbit (1)

Likewise, counting the worst-case broadcast time for a 29
bits ID frame is feasible through equation (2):

Cmessage
h,j = (80 + 10× lmh,j)× τbit (2)

Where lmh,j is the number of data bytes in the frame
and τbit is the period to deliver a unique bit from this
latter. τbit is set according to the CAN network baudrate
and speed. The use of equations (1) and (2) is common in
the literature. The additional bits implied by the stuffing
mechanism should also be considered, see Lange et al.
(2016). Indeed, the CAN frame includes a “Data Bytes”
field that includes the message content. It incorporates
also other fields ensuring the correct transmission of data.
Without counting the content of the “Data Bytes”, the



maximum number of bits in the rest of fields is respectively
55 and 80 for the 11 and 29 bits ID frames as shown in
equations (1) and (2).

Thereafter, a Worst Case Response Time (WCRT) is
calculated for every single message stream to obtain the
end-to-end response-time for the whole flow. Let admit
that Rh,j is the WCRT of a given mh,j belonging to Sh,j .
As already stated, not only the CAN frame transmission
time should be taken into account, but also the maximum
release jitter and the queuing block time. Correspondingly,
equation (3) allows to estimate Rh,j :

Rh,j = Jh,j + Cmessage
h,j +Wh,j (3)

where:

• Jh,j presents the maximum queuing jitter, see Davis
et al. (2007). Jh,j is the main source of variability in
the CAN transmission delays. It is tightly linked to
the processing capacities of the node initiating the
message transmission. In the sequel, every node from
the CAN network is supposed to have a known value
of maximum release jitter.

• Wh,j is the message queuing delay. Davis et al.
(2007) and Lange et al. (2016) presented the required
algorithms to estimate Wh,j by tackling all potential
scenarios of CAN blocking time due to messages’
priority issues.

The priority concept concerns also tasks. In this context,
the WCRT assigned to a task is evaluated as:

Rh,i = Ih,i + Ctask
h,i (4)

Note that Ih,i is the interference time caused by hp(h, i)
the set of tasks with a priority higher than Γh,i. Recursive
algorithms to calculate Ih,i are provided by Lange et al.
(2016). Finally, the complete WCRT of φc consists of the
sum of the response times related to the streams and tasks
of this data flow.

A considerable literature is available on the approximation
of the worst cases of CAN response times. Nonetheless, the
minimum possible data propagation time through CAN
was rarely discussed. With a slight modification in the
proposed model to compute the WCRT of φc, the most
optimistic evaluation of response times may be obtained
as follows:

• Contrarily to equations (1) and (2), used to predict
the maximum transmission time for a CAN frame,
the stuffing bits should be ignored. Therefore, the
shortest transmission time for CAN frame is given
by equations (5) and (6), respectively for 11 and 29
bits ID frames:

Cmessage
h,j = (47 + 8× lmh,j)× τbit (5)

Cmessage
h,j = (67 + 8× lmh,j)× τbit (6)

• Both delays Wh,j and Ih,i, defined in equations
(3) and (4), should be neglected by ignoring the
CAN blocking time due to higher or lower priority
tasks/messages.

Finally, an interval-valued estimation of delays is derived
from the introduced RTA model. The real CAN transmis-
sion time is definitely inside the interval bounds. In con-
trast to the existing methods that only tackle a probabilis-

tic or a worst case of response times, the proposed method
assesses all possible states of data freshness and validity.
This is extremely valuable to make any risk/failure man-
agement scheme aware of all scenarios of the invehicular
communication delays.

4. PROOF OF CONCEPT: APPLICATION ON SDK
SYSTEM

To validate the suggested RTA approach, a high fidelity
model of an industrial anti-crash system is employed.
It simulates modern in-vehicular components and mea-
surement devices. It is indeed developed and validated
according to the industrial specifications (the model was
elaborated by Renault Trucks/Volvo SAS and SERMA
INGENIERIE under the DIAFORE project, see Nasri
et al. (September 2019)).

The provided model has a great portability with the
Hardware-In-the-Loop (HIL) experimental plants. Hence,
a proof of concept for the proposed RTA scheme is pre-
sented thanks to the HIL real invehicular communication
middleware. The functionalities supplied by this automo-
tive system, named Smart Distance Keeping (SDK), are
detailed in the sequel.

4.1 SDK description

The SDK is an Adaptive Cruise Control (ACC) imple-
mented on trucks. The long travel distances emphasize
truck drivers distractions and then accidents. Thus, the
SDK assists drivers in coping with hazardous situations
in motorways. Apart from maintaining a safe distance
from in-front vehicles, the SDK warns the driver in case
of a sudden lane change performed by other vehicles to
the SDK-equipped vehicle lane. Risks of unexpected hard
breaks of other vehicles are also mastered via the SDK.
Especially for night time travels, the SDK detects rough
curvatures via monitoring the road yaw rate. The SDK
deals also with traffic jams by maintaining an optimal
distance from in-front objects. Figure 1 recapitulates all
the SDK facilities.

Likewise, the SDK composition and its tasks are as follows:

• The “SDK controller” is in charge of the decision
making process. A smooth control of the truck while
mastering hazards is ensured by task Γ1,1. Based on
data provided by the rest of components, this task
generates the convenient controls for the truck.

• A radar is mounted on the truck. In particular, the
vehicle relative velocity and the spacing distance
between the vehicle and other road participants are
captured via task Γ2,1. Due to interferences, the radar
is prone to faults. Thus, a diagnosis task Γ2,2 is also
implemented into the radar.

• The SDK is devoted to assist drivers of six-wheel
trucks. Hence, six sensors ensure the angular velocity
measurement of wheels via the “wheel’s ECU”. The
task Γ3,1 checks continuously the difference between
the angular velocities of wheels to estimates the truck
longitudinal speed. To monitor the wheels’ sensors, a
model-based diagnosis task Γ3,2, is executed, see Ben
Lakhel et al. (2016) for details.



Table 1. Description of SDK data flows

Data flow Description

φ1 = {Γ5,2 + S5,1 + Γ1,1} Transfer recovery information and enable/disable the drive assistance

φ2 = {Γ2,2 + S2,1 + Γ5,1} Transfer the diagnosis results of the radar device towards the supervisor

φ3 = {Γ3,2 + S3,1 + Γ5,1} Inform the supervisor by the diagnosis outcomes given by the wheels’ ECU

φ4 = {Γ2,1 + S2,2 + Γ5,2} Inform the supervisor node by the truck velocity given by the radar

φ5 = {Γ2,1 + S2,3 + Γ1,1} Provide the SDK controller with the truck velocity given by the radar

φ6 = {Γ3,1 + S3,2 + Γ5,2} Inform the supervisor by the truck velocity given by the wheels’ ECU

φ7 = {Γ4,1 + S4,1 + Γ5,2} Provide the supervisor with the truck velocity given by the transmission block

(a) Ego-vehicle safety distance maintaining

(b) Other road participants sudden lane change detection

(c) Yaw rate supervision and rough road curvature de-
tection

(d) Ego-vehicle’s velocity control in traffic jam

Fig. 1. SDK capacities in truck drivers assistance

• The “Transmission ECU” determines, via task Γ4,1,
the truck longitudinal speed based on the crankshaft
angular speed. For safety aims, the obtained value
is compared with the one issued from the “wheel’s
ECU”.

• A supervisor node receives diagnosis reports ensured
by the remaining components. In this respect, task
Γ5,1 enables/disables the SDK based on a fault-
tolerant control algorithm. Under faults, task Γ5,2

substitutes if possible the faulty measurements by
recovery data.

Table 1 and Figure 2 provide details about the SDK
nodes, tasks and flows. The description of the SDK priority
assignment of its messages/tasks can be found in Nasri
et al. (September 2019). In the sequel, the response time
intervals of flows φ1, φ2 and φ3 are derived experimentally
and then via the proposed RTA method. Focus is given
for these flows due to the importance of the temporal
dependency between the SDK variables to generate the
diagnosis and recovery data. The obtained intervals of
latencies will be exploited in a future work to present a
recovery data estimation robust against delays.

Fig. 2. SDK system tasks/flows

4.2 Experimental conditions and emulation environment

At this stage, experiments are tackled via a realistic HIL
plan. The code of the supervisor (cf. Subsection 4.1)
is implemented on a real electronic board. Hence, the
CAN enables the communication between the SDK model
and the supervisor. The truck dynamics are virtually
simulated by the employed model. More precisely, a real
electronic board is connected to the computer that runs
the SDK simulated model. Hence, this first electronic node
is responsible for the transmission/reception of messages
to/from the supervisor electronic board. This latter is
linked to an HMI executed on a second computer to keep
the driver aware of emergencies.

The HIL is composed of two ARM Cortex-M4 electronic
boards. The data exchange between both nodes via CAN
is enabled through the SN65HVD230 transceivers. For
all the realized tests, the CAN bit rate was fixed at
500Kbit/s. Besides, all the messages are of 11 bits ID.
Otherwise, the connection between each computer with
its corresponding electronic board is established via an
USART communication instead of using an expensive
CAN emulator. Figure 3 shows the HIL platform.

Tests are tackled by triggering message streams af-
ter injecting faults in the SDK components. Without
doubt, the SDK-truck is prone to fatal risks in case
of important delays of diagnosis messages. In contrast
to standard streams, the diagnosis messages are event-



Fig. 3. HIL platform for realistic experimentation

triggered elements. Increasing the number of injected
faults raises systematically the transmitted messages. The
more overloaded the CAN, the more latency may occur,
which permits to conduct tests under critical situations.
Based on the proposed RTA (see Section 3), the mini-
mum/maximum response times of φ1, φ2 and φ3 (cf. Table
1) are presented in Tables 2, 3 and 4.

Table 2. Lower/upper response times of φ1

Elements in flow φ1 Lower response time (ms) Upper response time (ms)

Γ5,2 6.4 7

S5,1 0.24 0.36

Γ1,1 10.2 11

Total (ms) 16.84 18.36

Table 3. Lower/upper response times of φ2

Elements in flow φ2 Lower response time (ms) Upper response time (ms)

Γ2,2 6.6 7

S2,1 0.21 0.52

Γ5,1 9.3 10

Total (ms) 16.11 17.52

Table 4. Lower/upper response times of φ3

Elements in flow φ3 Lower response time (ms) Upper response time (ms)

Γ3,2 4.7 5

S3,1 0.21 0.68

Γ5,1 9.3 10

Total (ms) 14.21 15.68

To validate the theoretical results, the HIL experiments are
carried out within distinct scenarios of fault injection. For
each scenario, a particular number of diagnosis messages
is transmitted. In such a manner, the number of injected
faults in the predefined following scenarios is gradually
raised and so is the CAN data traffic. As a result, the
elaborated tests involve diverse cases of interferences be-
tween message streams and tasks. For each fault injection
scenario, experiments have been repeated several times
to obtain certain measurements of response times. Table
5 illustrates the timing performances measured from the
HIL, presented by the Mean Response Time (MRT) of the
considered flows.

Table 5. Experimental results

Scenarios MRT of φ1 (ms) MRT of φ2 (ms) MRT of φ3 (ms)

Scenario 1 18.272 17.141 15.176

Scenario 2 18.281 17.356 15.258

Scenario 3 18.309 17.427 15.409

Scenario 4 18.407 17.549 15.639

Scenario 5 18.456 17.670 15.760

Obviously, there is a great convergence between the MRTs
recorded by the HIL and the theoretical RTA. In few oc-
casions, the HIL results exceed slightly the RTA findings.
This is noticed only for scenarios 4 and 5, where the bus-
load is huge. This may be explained by the use of the
USART communication as an interface between computers
and the electronic boards. Although the USART delays are
very small (which is not the main concern of this work),
they are frequent. Therefore, the occasional violation of
the predicted response times does not contradict the RTA
efficiency in providing valuable informative support about
bounds of the invehicular communication latencies.

The number of the SDK components is small compared to
other ITSs. Therefore, the caught variation in latencies
is slight (0.5 ms in φ3 to 0.7 ms in φ1). For larger
scale ITSs, the delay variations would be more noticeable.
Nonetheless, it is important to present a clear and relevant
proof of concept for the proposed RTA. To meet this goal
and ensure a better readability of the paper, the selection
of a case of study with a simple structure (number and
nature of tasks, message streams, flows, etc.) was required.

5. CONCLUSIONS

In this work, the link between the high-level solutions
(risk management, diagnosis or any autonomous naviga-
tion tasks) and the material issues is established. The
high-level software of safety-critical mechanisms, such as
Adaptive Cruise Control (ACC) systems, may suffer from
delayed responses to risks due to invehicular latencies.
Thus, decisions made by the vehicle control/decision mak-
ing layer should be sufficiently aware of such delays. Ac-
cordingly, a simple algorithm based on a Response Time
Analysis (RTA) model is introduced to quantify these
latencies. A proof of concept of the suggested RTA is pre-
sented via experiments on a Smart distance keeping (SDK)
system. The realized experiments proved the proposed
RTA efficiency in estimating precise minimum/maximum
invehicular communication delays. Since it provides an
interval characterization of delays and reports the data
validity/freshness, the suggested RTA has promising per-
spectives in enhancing the recovery strategies in presence
of faults. Besides, the in-road risk management policies can
take advantage of it to make provably quick and reliable
decisions. Topics for future work include the generalization
of the suggested RTA to other automotive communication
protocols. Besides, more advanced experiments must be
realized on a larger-scale vehicular embedded system.
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