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Abstract—Over the last decades, several advanced intersec-
tion control systems are built to alleviate traffic congestion.
Connected Autonomous Vehicles (CAVs) can be more easily
developed for cooperative navigation than regular traffic. Due
to whole uncertainty in a transportation network, the conven-
tional motion planning for local areas may lead to undesirable
consequences in long term. In this context, this paper presents
the Micro-Macro Flow Control (MiMaFC) strategy to explore
CAVs’ global navigation performance in a traffic network. In
prior work, a separate management layer named local supervi-
sor is constructed to control adjacent unsignalized intersections
by considering traffic aggregated velocity and vehicle crossing
priority. This paper extends the problem to multiple interacting
road intersections. Correspondingly, a hybrid control policy
is implemented in local areas to solve CAVs conflicts while
improving the traffic flow. Further, enhanced intersection
navigation protocols are exploited to deal with continued traffic
streams. Simulations including a congested traffic network are
presented to evaluate the proposed MiMaFC strategy. It is
shown in the paper that the mobility in the urban network
can be improved by the proposed motion planning framework
compared to the non-supervised CAVs system in the same
reference conditions.

Keywords-Intersection Control System; CAVs; Cooperative
Navigation; Flow Control

I. INTRODUCTION

Urban transport systems are expected to be enormously
improved thanks to the connected intelligent vehicles [1],
[2]. The efforts made by the academic institutions, car manu-
facturers and Big Tech companies permit to avoid the in-road
hazards through Connected Automated Vehicles (CAVs) [3],
improve fuel economy and reduce emissions [4] by more
efficient cooperative navigation technologies. Under this
circumstance, a review research work presented in [5] inves-
tigated the potential impacts of the automated/autonomous

driving. It classified the implications of the autonomous
navigation on three main levels. In the core-level (first
level) spectrum, the travel cost/choice and traffic capacity
are emphasized for the near future. Obviously, CAVs may
contribute in a better manner to boost the public trans-
portation and the navigation in urban areas [1]. From this
perspective, an important question arises: how can CAVs
help to fulfill the increasing mobility demands in future?
Therefore, developing novel mobility platforms, which are
focusing on improving the arterial traffic performance, is at-
tracting a considerable interest in the transportation systems
community.

Conventionally, motion prediction and planning for road
participants assume a significant role in upgrading the urban
road traffic capacity [6], [7], [8]. In particular, the research
work related to intersection management has received much
attention in the past decade. Interesting and comprehensive
surveys in relation with this issue are reported in [9] and
[10]. Several signal-based control approaches ensured a
successful intersection management and helped to overcome
traffic congestion [11], [12]. Thanks to the new emergent
vehicular communication technologies, a large range of
unsignalized intersection management approaches are also
introduced in the literature [13], [14]. Roughly, those meth-
ods may be classified into: cooperative resource reservation
techniques, trajectory planning approaches and virtual traffic
lights solutions [15]. The authors’ previous works [16], [17]
and [18] also addressed a trajectory-based method for coop-
erative navigation at signalized free intersection. Researchers
in [19] presented a decentralized optimal control framework
for CAVs crossing two urban unsignalized intersections
based on minimizing fuel consumption. A similar work
in [20] proposed a hierarchical distributed control strategy



for multiple CAVs while exploiting Fast Model Predictive
Control (F-MPC). A study, tackled in [21], described a
Cooperative Eco-Driving (CED) in adjacent signalized cor-
ridors while using a role transition protocol. Despite their
efficiency, the aforementioned approaches did not consider
sufficiently several stochastic disturbances that may cor-
respond to various hazards such as unexpected behavior
of other vehicles. Besides, motion planning is crucial to
adapt traffic fluctuation whereas it is constrained by different
control granularity. Therefore, there is still a need for further
investigations in complex intersection environments.

In this paper, a Multi-layer Hybrid Control Policy and
Motion Planning (MHCPMP) framework is developed to
improve traffic efficiency by applying Micro-Macro Flow
Control (MiMaFC) strategy. To address the problem of
unexpected traffic disturbances, a macroscopic flow model
is proposed to compute the aggregated speed to harmonize
the crossing stream. Simultaneously, cooperative CAVs are
assigned with corresponding priority to speed up the leaving
of the considered intersection. To ensure the hybrid control
policy, a local supervisor is designated in this paper for
the overall proposed navigation framework. Furthermore, a
microscopic Autonomous Intersection Management (AIM)
model for a single vehicle, in presence of other CAVs at
an unsignalized intersection, is introduced to optimize its
trajectory with upgraded navigation protocol.

This paper is organized as follows: Section II details
the studied problem while introducing the overall proposed
MHCPMP framework. Section III presents the proposed
macroscopic flow model. Section IV explains the overall
suggested safe and efficient intersection navigation scheme.
The hybrid control policy from the macro-level are im-
plemented in the CAVs optimization. Section V performs
and interprets the obtained simulation results. The paper
contributions and future work are summarized in Section VI.

II. AN OVERVIEW OF TRAFFIC FRAMEWORK

Consider a scenario that only includes CAVs equipped
with Vehicle-to-Vehicle (V2V) communication. Vehicles
coming from different entries of urban network are assigned
with determined paths. A module named local supervisor
SLocA is located at the unsignalized intersection. The SLocA

is assumed to obtain the updated downstream road message
without considering measurement errors and delays.

The proposed two-layer MHCPMP framework is shown
in Fig. 1. For each intersection, two main layers of the
MHCPMP framework are distinguished into macroscopic
flow model and a trajectory-based optimization model for
AIM. Local supervisors SLocA observe the 4-ways down-
stream traffic flow status. Thus, the traffic aggregated speeds
and the rights of passage are then disseminated for up-
stream vehicles in different directions. CAVs are therefore
considered to have on-board system to retrieve the hybrid
control policy from SLocA . It is important to note that all the

Figure 1. Basic schematic of the proposed Multi-layer Hybrid Control
Policy and Motion Planning (MHCPMP) framework

approaching CAVs in the 4-ways upstream are considered
as a distributed cooperative system based on their network
topology structure. Additionally, the microscopic strategies
and optimization solver are addressed by a previously in-
troduced Probability Collective (PC) algorithm [16], [17]
and [18]. In so doing, the CAVs system will guarantee
an optimal (or sub-optimal) trajectories-based planning for
lower control layer. Finally, the cooperative navigation for
multiple CAVs systems is conducted regarding the traffic
flow fluctuation while ensuring locally efficient and safe
navigation. The main idea standing behind the proposed
architecture is to construct a feasible link between the
developed macroscopic flow strategy and the microscopic
motion control as seen in the prior work [22]. In this paper,
a more detailed explanations of the macroscopic flow model
regarding urban network will be provided in Sections III.
Next, the distributed CAVs optimization model for multiple
intersections based on the proposed hybrid control policy is
addressed in Sections IV.

III. MACROSCOPIC FLOW MODEL

The macroscopic flow model interprets the real-time state
of the dynamic transportation network including multiple
intersections. Firstly, a primitive car-following model is by
ordinary difference equations as follows:

ẍi(t +T ) = f (∆xi,i−1(t),∆ẋi,i−1(t), ẋi(t))+ εi(t)
ẋi(t +T ) = ẋi(t)+ ẍi(t +T ) ·T
xi(t +T ) = xi(t)+ ẋi(t) ·T + 1

2 ẍi(t +T ) ·T 2

(1)

In system (1), x(t) is the displacement of the ve-
hicle i at instant t. The acceleration ẍi(t + T ) is ad-
dressed by the deterministic car-following policy function
f (∆xi,i−1(t),∆ẋi,i−1(t), ẋi(t)) after a time interval T . The
corresponding subscript {i, i−1} represents the ego vehicle



and the vehicle ahead. εi(t) is a random disturbance term
that is related to perception and sensing error. By consid-
ering the space difference ∆xi,i−1(t) and speed difference
∆ẋi,i−1(t) between two successive vehicles, the control law
ui(t) (i.e., ui(t) = f (∆xi,i−1(t),∆ẋi,i−1(t), ẋi(t))) is adapted to
the optional Cruise Control (CC) or Adaptive Cruise Control
(ACC) system. For free road vehicles, the CC mode has to
maintain a constant speed vcon. Hence ui(t) is expressed as
(2):

ui(t) =−k0 · (ẋi(t)− vcon) (2)

When CAVs detect other traffic ahead, ui(t) in the ACC
mode is defined as:

ui(t) = k1 · (∆xi,i−1(t)−dre f (t))+ k2 ·∆ẋi,i−1(t) (3)

In equations (2) and (3) {k0,k1,k2} are the positive control
gains. dre f (t) is the reference (bumper-to-bumper) distance
which is linked to the preferred time headway thi of vehicle
i. It is further specified like the following:

dre f = dsa f e + thi · ẋi(t) (4)

Where dsa f e is the preset standstill safe distance. It is
important to remark that the applied time headway thi from
road vehicles affect both: vehicles’ distance headway and
lane density for existing traffic flow. Therefore, the stochas-
tic time headway is introduced to mimic human driving
behaviors to exhibit the influence from time (space) gap
policy which vehicle would like to perform by inconsistent
feedback speed. Moreover, thi is sampled based on a shifted
log-normal distribution (i.e., thi ∼ Log-N(µv,σv)) referring
to previous research [23].

In this study, 9 neighborhood intersections are combined
together as the urban road network such like in Fig. 2. The
whole transportation network contains 48 links and 9 traffic
junctions. The origins and destinations (O-D) are set to
manage the flows in/out at the borders of the traffic network
(see Fig. 2). Clearly, destinations points are located in 12
links which are not belong to any of the internal intersection
areas (bounded by different colors in Fig. 2). In such
neighborhood-sized sections of urban area, it is assumed
that the traffic flow is homogeneously distributed. Further,
the external conditions especially for the time-dependent
traffic flow are supposed to change slowly. Thus, all the
links to intersections may suffer from the congestion in same
external flow rate. In addition, the traffic flow characteristics
linking flow, speed and density can be uniformly defined and
revealed by the Macroscopic Fundamental Diagram (MFD)
existing in the completed road network.

There are many ways to interpret the value of fundamental
traffic flow characteristics (flow, speed and density). Here,
the measured space mean speed V , traffic density K and
calculated travel flow Q are addressed in this paper. Gener-
ally, loop detectors collect vehicle number Ni and real-time

Figure 2. CAVs navigation in transportation network with Multiple
unsignalized intersections

speeds Vi in a short period. Thus, the lane density at every
instant for each link can be defined as follows:

Ki =
Ni

L
(5)

Where L is the length of link. Accordingly, the intersection
density is developed as given in equation (6):

Ks =
∑

nL
1 Ki

nL
(6)

Where nL is the number of the links in local area.
The space mean speed has been proved to be more

accurate to reveal current traffic state than time mean speed
which overestimates the influence of faster vehicles [24].
Hence, the harmonic mean of collected vehicle speed is
used in this study as the space mean speed. Similarly, the
fundamental speed for each lane and intersection area are
respectively defined as:

VL =
Ni

∑
Ni
1 (1/Vi)

Vs =
Ns

∑
Ns
1 (1/Vi)

(7)

Where Ns is the vehicle number in whole intersection area.
In such a manner, the calculated flow rate can be also

addressed as Qi = Ki ·VL (for each lane) and Qs = Ks ·Vs (for
each intersection area) at every instant. In so doing, we avoid
to hourly measure flow rate which reflect the nearly equal
traffic knowledge as calculated flow rate in the experimental
intersection network.

The present work aims to develop proactive vehicle mo-
tion planning regarding the dynamic changes in the motor-
ways between controlled intersections. The aforementioned
traffic characteristics are firstly supposed to periodically



widespread to the preassigned SLocA . Secondly, the obtained
traffic key factors are formulated to the macroscopic funda-
mental diagram by the notable Greenshields model [25] for
every single lane as follows:VL =Vf (1− Ki

K jam
)

Qi =Vf (Ki−
K2

i
K jam

)
(8)

where Vf and K jam are respectively the free-flow speed and
jam density regarding the current researched motorway’s
boundary conditions. [VL,Qi] are the dependents on the
measured traffic density in the proposed traffic fundamental
diagram. It is worth acknowledge that the maximum road
flow Qi is theoretically defined at the vertex of the quadratic
function in (8) when ∂Qi/∂Ki = 0. If the vehicle number
increasing consistently (while ∂Qi/∂Ki ≤ 0) till to the
maximum road capacity, the flow rate will decrease and even
collapse to zero at the jam density K jam.

Ultimately, CAVs are supposed to adopt appropriate ac-
tions to ensure a proper spatial-temporal strategy at inter-
section areas w.r.t the policy info from SLocA (see Fig. 1).
When a car driving at the decision making points (bounds
of a local area), the crossing policy is assigned for each one
including the downstream aggregated speeds [V1,V2,V3,V4]
referring (8) and “road-weights” [Wr1 ,Wr2 ,Wr3 ,Wr4 ] referring
upstream density. An objective function will be presented
subsequently for intersection crossing (cf. Subsection IV-B).
Hence, the “road-weights” Wri for each approaching car from
lane i can be addressed as:

Wri = (
Ki

Ks
)σs ×ϕri (9)

Where:

ϕri =

{
Πe1(t), if ∂Qi/∂Ki > 0
Πe2(t), if ∂Qi/∂Ki ≤ 0

(10)

Note that [σs,Π
e1,Πe2] are independent model parameters.

σs is designed to amplify the “road-weights” impacts in
the crucial intersection. The piecewise-defined function ϕri

indicates the unblocked or congested traffic flow state w.r.t.
the calculated traffic flow-density ratio ∂Qi/∂Ki. Every
function t → Πe is constant whereas Πe1 is significantly
smaller than Πe2. In consequence, the macroscopic flow
model is established and joined to the proposed traffic policy
implied by an intersection supervisor SLocA .

IV. MICROSCOPIC AIM MODEL

The systemic approach is implemented in this study to
deal with consecutive vehicle’s cooperative navigation at
every single intersection. In order to provide a clearer idea
about the microscopic layer of the MHCPMP, this latter
is divided into two main parts in the sequel to highlight
universal navigation protocol and local conflicts processing.

A. Universal intersection navigation protocol

Before entering the intersection decision points, a car
approaching the intersection will decelerate at a specific
distance (e.g., 50m to the bounds of local area). When CAVs
at the decision points, SLocA immediately update the local
active vehicles memory. It should be noted also that if two
or more vehicles accede SLocA at the same time interval, a
random service is applied for the concerned vehicles. The
authors’ previous work [22] addressing a sorting algorithm
of local active CAVs, which calculates a sorting list of
“collaborative agent” and “non-collaborative agent”. The
collaborative vehicles may perform a combined search of
intersection crossing strategies based on a utility-maximizing
decision model (cf. Subsection IV-B). However, the non-
collaborative vehicle only broadcasts its self-interested in-
tersection crossing trajectory without further support. Thus,
other vehicles can only achieve a sub-goal of the navigation
system by optimizing their own behaviors. Note that, SLocA

only conforms the active vehicles in the intersection and
transmits policy messages when a new vehicle enters its area.
As a result, the activated vehicle is organized as a distributed
CAVs system to compute the optimal (sub-optimal) solutions
to cross the intersection. Intuitively, vehicles in such a
distributed system can independently carry out the same
navigation protocol to deal with highly reproducible tasks.
In this paper, an enhanced universal intersection navigation
protocol is addressed like the following:

1) Firstly, a new vehicle added in CAVs system executes
Algorithm 1 to classify the collaborative and non-
collaborative vehicles.

2) Secondly, the collaborative vehicle calculate its min-
imum Time-To-Collision which is a risk indicator to
describe the remaining time for a probable collision
between any two vehicles. The developed 2D TTC in
authors’ prior work [16] is revisited to identify a car
that has potential conflicts with other vehicles. Noting
that, a threshold T TCmin is used to select the violated
2D TTC.

3) If a collaborative vehicle has conflicts with any others,
it will reschedule a new trajectory by the optimal
control model (cf. Subsection IV-B). On the contrary,
the collaborative vehicle will only keep the current
speed if there are no conflicts after 2).

4) If the collaborative vehicles can not find feasible
solutions to avoid a collision after 3), then conflicted
vehicles will be listed as collaborative vehicle to re-
execute the optimization.

5) If the vehicles remain in the intersection or still have
conflicts after 4), it will be labeled as cooperative agent
at 1) during the next time interval.

6) A “congestion mode” is reserved in which all the
vehicles are labelled as collaborative agents to run a
system optimization after 5).



Algorithm 1: Sorting algorithm for collaboration
Input: SV , Vopt , Vcon f lict and Vrem
Output: VCol

1 if vehicle in local area then
2 for all i ∈ SV do
3 if Vopt == 0 then
4 VCol = true;

5 else
6 VCol = f alse;
7 if Vcon f lict==1 then
8 VCol = true;

9 if Vrem==1 then
10 VCol = true;

11 else
12 VCol = f alse

13 return VCol ;

Let us assume that the embedded motion planner of each
vehicle in the distributed CAVs system SV can update the
coordination state at every instant. Then, the Boolean’s
values are correctly assigned for the labeled states such
as: collaboration flag VCol , optimization flag Vopt , conflict
flag Vcon f lict and remain in intersections flag Vrem, etc.
The detailed steps to distinguish between the collaborative
and non-collaborative vehicles are given in Algorithm 1.
Particularly, the “congestion model” in 6) is toggled on
when a conflict is repeatedly detected (more than a specific
threshold Ncon f lict ) between two vehicles after 5).

The synthesized protocol in this paper ensures its safe
(non-conflict scene) and/or optimal (conflict scene) operation
for consecutive vehicles to make decisions in an efficient
way. With regard to the above mentioned, the CAVs system
is required a deliberate effort on approximate optimal solu-
tions integrating the SLocA policy and the cooperative nav-
igation utility. Therefore, the CAVs optimal control model
running in 3) is proposed in the next section.

B. Local conflict processing

The detected conflict (cf. Subsection IV-A) between any
two vehicles will be mastered immediately referring to cur-
rent system states. The designed conflict resolutions process
should provide a low complexity and fast optimization in
the addressed intersection network.

In this paper, a trajectory planning-based optimization
problem for CAVs is formulated. In fact, the vehicle’s
path is supposed to be fixed during the movement in the
local area. Therefore, the only degree of freedom to re-
plan a conflict-free trajectory is the speed for each of the
collaborative agents. As seen in Fig. 3, the vehicles (e.g.,
the green rectangles) have assigned paths (e.g., the blue

Figure 3. Illustration of the possible CAVs trajectories in an isolated
intersection

line) with origins Oi and destination Di before crossing the
intersection. To simplify, a red circle of radius r is defined to
surround the car during movement. Any two circles in the 2D
graph can not violate a center distance less than 2r when a
vehicle follows its path. In so doing, the formulated problem
only uses the information of the displacements in the path
without concerning the path topology. It is worth noting that
the algorithm is also independent of the topology of the
intersection as long as some paths are defined. Our previous
work in [16], [17] and [22] used a version of PC algorithm to
search feasible solutions with sampled speed profiles in such
a single (or adjacent) intersection(s). However, the bounded
conditions (e.g., the initial speed) are quite different for
CAVs system in the proposed road network. Accordingly,
the strategy of sampled speed profiles is refined in this work.

As mentioned before, a car will decelerate until reaching
the decision points (bounds of SLocA ) to identify whether
participation in the optimization process. As illustrated in
Fig 4 upper plot, the collaborative vehicle can firstly choose
the actions at decision points 1. If it can not find any
feasible solution at decision point 1, the vehicle will go
on decelerating regarding previous speed during a specified
interval (a few short seconds). Thus, the vehicle reruns
the optimization at decision point 2 and generate a set of
Ns possible speed profiles in a time horizon Thorizon with
lower initial speed. Generally, as seen in Fig 4, the speed
profiles (blue line) have a constraint (red dotted line) of
the acceptable range and final target speed (red line). The
addressed downstream aggregated speed [V1,V2,V3,V4] are
defined as the final target speed in each direction. Addition-



Figure 4. A representation of sampled speed profiles in searching space

ally, the sampled speed be kept constants when entering the
conflict area to reduce the system complexity. Therefore,
the sampled interval can be counted by different constant
speed vre f within the upper/lower bounds (see the bottom
plot in Fig 4). The generation of the predefined strategies is
inspired by the algorithms given in [26]. Indeed, a usual
minimize quadratic problem can be formulated with the
cost to the reference speed vre f . Consequently, the repeated
solution (i.e., the possible speed profiles) is given under the
demanded sampled intervals.

Considering the search space including the whole obtained
speed profiles for CAVs, the proposed objective function in
this paper for implementing SLocA policy in such a distributed
system can be formulated as:

J =Wsep ∑
iv 6=isel f

max

∑
k=1

1
dk(iv, isel f )2

+Wspeed

max

∑
k=1

(vk− vend,iv)
2 +∑

iv

Wcross,ivTiv

(11)

In equation (11), Wsep, Wspeed and Wcross,iv are respec-
tively characterized as weights for the vehicle’s separation
dk, deviation for reference exit speed vend,iv and local area
crossing time Tiv . k is the interval indicator computed by
the discretization step of a predefined time horizon. vk is
the ego vehicle’s speed at instant k. Moreover, the SLocA

policy is considered by the second term (vend,iv ) and the
third term (Wcross,iv ) in relation with downstream aggregated
speed [V1,V2,V3,V4] and “road-weight” Wri (cf. Section III)
for each vehicle like:

vend,iv = min{VL,vupper}
Wcross,iv =W iv

ri

VL ∈ [V1,V2,V3,V4]

(12)

Where, W iv
r is defined by equation (9) in the lane of vehi-

cle iv and vend,iv is defined corresponding to the aggregated
speed VL in the targeted direction. It is worth noting that
the first term in equation (11) is devoted to guarantee a safe
spacing between vehicles in an isolated intersection. While
the second and third terms are linked to the intersection
policy from SLocA to achieve the proposed MiMaFC strategy.
As a result, the exit speed of the vehicle either towards to
the maximum allowed speed vupper in the intersection or
reach the traffic aggregated speed (if VL < vupper). To do
that, the upstream vehicle can acquire a consensus speed
at the beginning of entering to the downstream traffic flow.
Furthermore, the third term in equation (11) is specified to
alleviate the congestion upstream. W iv

r will be significant
increase if the upstream (the corresponding downstream
of the previous adjacent intersection) traffic flow falls in
unstable state. Under such a situation, the vehicles iv in
higher density road will ensure more efforts to have a short
crossing time. Therefore, the collaborative vehicles in CAVs
will reserve the preferred trajectory making vehicles iv own
priority to cross the intersection. Finally, the density in the
congestion road can be mastered.

V. SIMULATION RESULTS

To demonstrate the efficiency of the proposed two-layer
MHCPMP framework, the simulations in Matlab considering
multiple unsignalized intersections are executed within a
computer of Core i7-10750H, 2.60GHz and 16GB RAM.
The main parameters adopted in the tackled scenario are
summarized in Table I.

Table I
PARAMETERS AND INITIAL STATES

Notation Value Notation Value
Tend 200[s] {k0,k1,k2} {1,1,3}

Tsample 0.2[s] {µv,σv} {0.73,0.52}
R 65[m] dsa f e 6[m]

T TCmin 10[s] Rw 30[m]
r 3[m] Ns 10
L 410[m] Thorizon 10[s]

[vmin,vmax] [0,20][m/s] Wsep 10
[amin,amax] [−3,3]

[
m/s2] Wspeed 0.2

[ jmin, jmax] [−2,2]
[
m/s3] {

σs,Π
e1,Πe2} {1,1,10}

The verified scenario can be seen in Fig. 5. The overall
MHCPMP framework was running in this 4×4 urban road
networks. The unidirectional flows arrive from outside of the
network according to the Poisson distribution with parameter
λ = 1.5veh/s. All the vehicles (safe radius r) were set
up with the initial speed 10m/s in the velocity bounds
[0,20][m/s] (as Table I). Vehicles on the road were provided
with in-vehicle embedded system for running cooperative
navigation algorithm considering hybrid control policy from
SLocA (detection radius R). The Cruise Control (CC) and
Adaptive Cruise Control (ACC) modes (detection range
Rw) were adopted for maintaining a desired time headway



Figure 5. CAVs system navigation in traffic network (simulation video:
https://bit.ly/3yVVLL1)

regarding log normal distribution with predefined {µv,σv}
(see Table I). To highlight the advantages of the proposed
method, this paper performs a baseline model which did
not include SLocA and navigation protocols (cf. Subsection
IV-A).

As seen in Fig. 6, the up-left and up-right velocity diagram
graph give a global view of baseline model and the proposed
method with SLocA . Since there is no I2V communication in
the intersections, the desired maximum speed is fixed to
20m/s for all CAVs to exit the intersection in the baseline
approach. Nevertheless, due to the uncertain traffic flow
speed, the velocity collapsed (0m/s for minimum) when
the vehicles increase. Additionally, the maximum vehicle
to perform cooperative navigation is limited (4 in this case).
Therefore, the remained CAVs in the local area have to slow
down until permit to participate in cooperative optimization.
In contrast, the proposed MHCPMP framework including
SLocA can adopt the I2V technology to improve the average
velocity (blue) comparing with the whole distribute CAVs
system’s average speed (red). In addition, the traffic velocity
can be adjusted for the traffic aggregated speed (green) in the
same traffic congestion environments as shown in the bottom
of Fig. 6. The CAVs protocol also cuts down the vehicle’s
deceleration time in synchronization area when performing
the cooperative navigation at the signal-free intersection. In
brief, it is able to apply consensus cooperation regarding
the dynamic traffic stream fluctuation by the SLocA in the
proposed method.

The corresponding traffic fundamental diagram for each
intersections and the exits of the whole urban network can be
seen in Fig. 7 and Fig. 8. In order to get the boundary values,
the Greenshield’s model [27] is used with calibrated free
flow speed v f = 72km/h and jam density ρm = 133veh/km

Figure 6. Comparison of CAVs velocities between MHCPMP framework
and baseline method

(optimum density ρopt = 26veh/km). Further, the average
flow of the compared two CAVs systems is recorded in
Table II. In general, the proposed approach with local
supervisor SLocA can guarantee relatively high traffic flow
rates comparing the total distribute CAVs system with-
out I2V technology in different intersections. Accordingly,
the average traffic flow rate (around 300Vehs/hr) out of
the network with SLocA is greater than the flow-out rate
(219Vehs/hr) with non-supervised road network. It indicates
that CAVs system in the signal-free intersection with SLocA

has the potential to improve traffic mobility. In addition,
the color bar in scatter graphs Fig. 8 shows the traffic state
shifting by time. It is interesting to note that the proposed
MHCPMP framework can stay at the stable traffic region
to avoid the traffic congestion during an increasing traffic
flow rate and traffic density. Briefly, the designed intelligent
local supervisor SLocA can be beneficial as novel urban
mobility management platforms to handle arterial traffic
transportation.

Table II
AVERAGE FLOW IN LOCAL AREA

Intersection Average flow [Vehs/hr]
Without SLocA With SLocA

1 152.9609 155.4251
2 143.0535 151.8701
3 169.5117 173.3407
4 147.5074 148.6445
5 135.5132 126.5963
6 139.4899 151.8678
7 145.8927 154.1653
8 124.3480 132.0772
9 135.4521 138.3151

flow out 219.0017 300.5002



Figure 7. The traffic flow-density diagram for each intersections in urban
traffic network

Figure 8. The traffic flow-density diagram for whole exits of traffic network

VI. CONCLUSION

In this paper, an overall MHCPMP framework is sched-
uled for efficient CAVs navigation in multiple unsignal-
ized intersections. The proposed Micro-Macro Flow Control
strategy has been tested in 9 neighborhood intersections.
The major advantage of the present control architecture is
improving the comprehensive traffic flow navigation perfor-
mance by implementing the hybrid policy in local coopera-
tive navigation optimization. More precisely, a macroscopic
flow model is introduced to detect the traffic flow fluctuation,
and then address the traffic right of passage with aggregated
speed for CAVs. Hence, the undertaking distributed CAVs
system navigation protocol is constructed for efficient inter-
section crossing. Furthermore, the CAVs optimization model

for autonomous intersection management is augmented with
the macroscopic hybrid control policy. To perform efficient
collision-free trajectory planning for CAVs at an isolated
intersection, the universal intersection navigation protocol
is notably developed. Additionally, the local conflict reso-
lution strategy depicted by sampled speed profiles is better
designed in the optimization procedure. The PC algorithm is
applied to find the optimal solution in the proposed searching
space based on authors’ previous works [16], [17] and [18].
Finally, simulations results show a remarkable improvement
for traffic flow control. The assigned SLocA at unsignalized
intersection could harmonize the CAVs’ average traffic speed
with averaged traffic speed. Further work should extend the
proposed method to involve wider traffic networks in more
dense and complex urban environments.
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