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Abstract
Cooperative navigation (CN) is a widespread technique to have efficient navigation of intelligent vehicles. Nonetheless, the 
CN strategies need to be more consistent in estimating and managing in-road risks. This paper outlines a flexible CN scheme 
for multiple unmanned ground vehicles (MUGVs) system to deal with such critical cooperative system. With its relative 
low execution time, the probability collectives (PC) algorithm has succeeded at generating fast and feasible solutions to 
cross intersections and roundabouts (Philippe et al. 1928–1934, 2019). However, the PC is still sensitive to uncertainty in 
the navigation process, which highlights the need to adopt several safety margins. This work focuses on balancing between 
the high-quality cooperative optimization and acceptable computational speed. Thus, a reliable risk management strategy is 
proposed by introducing a novel ε-constraint PC method. A real-time communication mechanism is suggested for a distrib-
uted system to avoid invalid behavior due to inconsistency. The novel ε-PC based navigation strategy allows the vehicles to 
adapt their dynamics and react to unexpected events while respecting real-time constraints. One finding appears to be well 
substantiated by the typical common-yet-difficult scenarios in intensive simulations. The �-PC method can ensure collision-
free behaviors and reserve at least 1.5s of reaction time for vehicles’ safety insurance.

Keywords  Multi-vehicle coordination · Probability collectives · Risk assessment and management · Real-time constraints · 
�-constraint PC

1  Introduction

Similar to urban transportation systems, specific territories 
like large hospitals, university campus, commercial and 
industrial sites have taken steps to improve their naviga-
tion services in their shipment/transit areas (Hyland and 
Mahmassani 2018). Multi unmanned grounded vehicles 
(MUGVs) system in such restricted areas may help to 
provide more efficient transport services for passengers 
(Adouane 2016; Cordeau and Laporte 2007; Hyland and 

Mahmassani 2018). In the meantime, numerous simultane-
ous requests from multiple delivery locations may invoke 
cross-linked planning routes for MUGVs system. However, 
the inherent trade off between the control scheme quality and 
its computational demands is therefore a crucial issue that 
should be explored for this kind of cooperative navigation 
at intersection points.

1.1 � Background

Before proceeding further, a typical graph of two connected 
UGVs cooperative navigation at an intersection is illustrated 
in Fig. 1. Similar to multi-robot systems (MRS), multiple 
levels of coordination between the different agents take place 
depending on the overall navigation system feed-backs.

In this paper, MUGVs are provided with an enhanced 
autonomy. They may manage the assignment of the navi-
gation tasks by themselves through embedded decisional 
devices and inter-vehicle communication tools. Details 
about other important autonomous vehicle navigation tech-
nical issues, such as cooperative perception and localization, 
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planning and re-planning, control architectures may be found 
in Adouane (2016). Here in Fig. 1, two connected UGVs are 
which exchanging their predicted future motion trajectories. 
Because UGVs can better understand the behavior of each 
other, we consider UGVs more likely to have prosocial (or 
altruistic) behaviors rather than too conservative (or egois-
tic) behaviors (Schwarting et al. 2019). Thus, the two UGVs 
may perform a collaborative search of coordinated actions 
based on a utility-maximizing decision model. In presence 
of a non-collaborative agent (but this agent broadcast its 
estimated behaviors at first), then the UGV can only achieve 
a sub-goal of the navigation system by optimizing its own 
behavior. Let suppose that a priory anticipatory probability 
set is already specified to predict a potential action of the 
other vehicle. Nonetheless, the probability distribution of 
actions need to be updated while the UGVs preform their 
collaborative searching or local optimization process. In that 
respect, the data processed is stored and shared as files in a 
distributed system. Accordingly, a distributed approach is 
applied in a natural way to find out coordinated actions of 
the MUGVs system. Therefore, this paper aims to validate a 
decentralized approach to handle this distributed multi-agent 
optimization problem.

1.2 � Related work

In the field of intersection coordination, the direct vehicle 
control approach has been applied to change the traffic lights 
pattern (Manzinger and Althoff 2018; Suzuki and Marumo 
2018). Slots assignment to vehicles (Hult et al. 2015) is also 

a popular technique which is used in the same context. How-
ever, traditional traffic signal control methods in urban city 
usually cannot be applied directly in above mentioned areas, 
because traffic light is subjected to redundant cost in such a 
inappropriate formed crossing-road and in certain situations 
increase the level of traffic jam (Guo et al. 2019). Automa-
tion and communication have turned the cooperative inter-
section management into a more active research field (Chen 
and Englund 2015). Roughly, distributed and decentralized 
control are becoming a promising way to deal efficiently 
with this multi-scale navigation problem in complex traf-
fic scenarios. Studies reported in Chen and Englund (2015) 
and Gregoire et al. (2014) provide more details about such 
cases. Additionally, a non-signal management of vehicles 
from a shared space is studied in Philippe et al. (2019). A 
distributed and decentralized optimization algorithm, based 
on probability collectives (PC) (Kulkarni and Tai 2010), is 
applied to solve vehicle cooperation problem.

The PC algorithm is an efficient optimization searching 
framework for distributed systems, which was first proposed 
by Bieniawski (2005) and Wolpert (2006). It is a COllective 
INtelligence (COIN) framework that emerged from game 
theory, statistical physics, and optimization theory (Kulkarni 
and Tai 2010; Yang and Wu 2016). A comparative study has 
shown that the PC-based approach is superior to traditional 
genetic algorithm (GA) in both rate of decent and avoiding 
local minima (Huang et al. 2005). Kulkarni and Tai (2010) 
designed a shrink-sampling interval method to improve the 
algorithm performances via benchmark functions. After 
that, a PC-based approach successfully solved various 

Fig. 1   MUGVs system with action probability distribution to predict their behaviors



158	 Z. Zhu et al.

1 3

discrete optimization problem like multiple traveling sales-
men problem (MTSP) and vehicle routing problems (VRP) 
(Kulkarni and Tai 2010a, b). In an effort to solve dynamic 
vehicle coordination problem with low computational time, 
the authors’ previous work addressed a PC-based approach 
to handle intersection coordination (Philippe et al. 2019; 
Zhu et al. 2021). The PC algorithm in Philippe et al. (2019) 
has two important qualities, namely probabilistic nature 
and decentralized nature. Its probabilistic nature allows a 
probability distribution over a vehicle behavior set, guar-
anteeing a risk averse decision strategy. It permits also to 
deal with uncertainty without inducing the deadlock of the 
shared decision process. Its decentralized nature allows it to 
be used without a specific infrastructure. Besides, vehicles 
can significantly benefit from an acceptable computing time 
(around 0.2s ∼ 0.8s in the full optimization cycle). Thus, it 
is an interesting and promising method to process the afore-
mentioned MUGVs navigation problem in restricted areas. 
The formulation of PC has been proposed in the air traffic 
control (Sislak et al. 2010). Although the goal was similar 
(conflict solving), the conflicts significantly increase in the 
cluttered land traffic environment. In the field of intersection 
management, PC algorithm was first proposed in Philippe 
et al. (2019) with the purpose of application to urban road 
transportation.

For a group of homogeneous MUGVs systems, research-
ers have tended to focus on efficient and effective controls to 
cut off with customer waiting time or energy consumption 
(Berbeglia et al. 2010). The existing MUGV dispatch study 
rarely discussed how to simultaneously maintain the optimal 
performance and also avoid risks at intersections. As a mat-
ter of fact, risk minimization has been shown to be consid-
ered as a priority in such a case (Chen and Englund 2015). 
Since sudden changes in the dynamics of ground vehicles 
in a short time are not realistic (Chen et al. 2018; Iberraken 
et al. 2018). There is still considerable ambiguity with regard 
to a risk assessment approach for safe and flexible navigation 
of MUGVs system.

Safe and smooth autonomous navigation technology have 
been widely considered in the intelligent advanced driver 
assistance systems (ADASs) (Nasri et al. 2019). Lane keep-
ing assistance (LKA) and adaptive cruise control (ACC), for 
instance, are effective tools for obstacle avoidance driving 
in single vehicle control (Nasri et al. 2019). However, in 
the view of multi-vehicle cooperative navigation, the road 
accidents are more likely to be regarded as the failures of 
the multi-agents system rather than failures of any single 
vehicle (Milanés et al. 2012). The historical data approach is 
used to identify particular traffic accidents and apply safety 
countermeasures (Lord and Persaud 2004). Due to the sparse 
nature of traffic accidents, the use of such an approach is 
limited to perform safety analyses based on proper accident 
database records (Archer 2005). A more qualified form of 

risk management method is proximal safety indicator, which 
occurs more frequently for safety assessment and requires 
a short time for data collection (Archer 2005). Further-
more, the generally used proximal safety indicators are time 
measured metrics with a form of Time-To-X (e.g., Time-To-
Accident, Time-To-Collision, Time-To-Break, etc.) (Hillen-
brand et al. 2006; Horst 1991; Ward et al. 2014). Indeed, 
safety indicators provide an active approach assessing traffic 
conflicts to road users with reliable results. But these safe 
concerns lack of consistent definition or a robust theoreti-
cal foundation (Chin and Quek 1997). Among those meth-
ods, Time-To-Collision (TTC) is usually viewed as a more 
objective tool for predicting traffic accidents (Archer 2005; 
Ben Lakhal et al. 2019). A TTC based traffic event can be 
always recorded during the entire interactive process. Con-
trollers can decide whether to adopt evasive maneuver in 
advance (with regard to the intention and purpose) rather 
than emergency braking at the last resort (Hydén 1987). The 
threshold for TTC is generally a definition that implies the 
risk-margin for drivers to react in a possible accident (Chin 
and Quek 1997). Arguably, TTC-concept is widely used as 
an important part of traffic conflict technique. However, it 
is more complex to detect the crucial traffic event by TTC 
in a two-dimensional spatial structure. Therefore, a 2D TTC 
is further developed in this paper as a risk-sensitive road 
proximal safety indicator.

To summarize, vehicles collaboration with risk manage-
ment capabilities is a promising way to solve above men-
tioned problem. Additionally, the consideration of the real-
time concerns and the management of several simultaneous 
actions are of utmost importance for such a distributed nav-
igation system. Thereby, distributed real-time cooperative 
systems with a safety constraint (collision avoidance) can be 
generated in our case. Based on the PC theory, the previous 
research in Kulkarni et al. (2016) has investigated several 
off-line PC optimizations with soft constraints (e.g., tension/
compression spring design problem). This paper focuses on 
the analysis of real-time MUGVs intersection coordination, 
by integrating a �-constraint method into the PC algorithm 
to add safety indicator constraints (Haimes 1971; Mavrotas 
2009). A more flexible multi-criteria decision-aids tech-
niques and time consistency in distributed system will be 
furthered discussed in this paper.

1.3 � Contributions and organization

The proposed methodology in this paper aims to provide a 
flexible constraint decision-making approach that depends 
on the safety requirements. The adopted risk management 
strategy considers both the service quality (e.g., a fast cross-
ing strategy) and safety at an intersection. The present paper 
also outlines different mode to handle newly approaching 
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vehicle in context of real-time navigation. Hence, the main 
contributions of this paper can be summarized as follows:

–	 The formulation of �-constraint searching scheme in the 
PC algorithm is first addressed in this paper. The pro-
posed �-PC can offer a risk-sensitive strategy for MUGVs 
system, which has been proven to be Pareto optimal. The 
risk margin management depends on different safety 
demands, which enables flexible and safe coordination 
to improve performances of MUGVs systems.

–	 A time-slot-based (TSB) vehicle communication mecha-
nism is proposed to manage the cooperation of distrib-
uted MUGVs system. This method can cope in a better 
way with the iterative optimization process in the PC 
algorithm. We consider both the time interval for optimi-
zation and a more accurate prediction horizon for assist-
ing vehicle navigation to avoid invalid behaviors related 
to inconsistency.

–	 The computational/communication analysis and navi-
gation performance are analyzed accordingly for the 
dedicated application in both full collaborated mode and 
single optimal mode. The �-PC can guarantee 100% col-
lision free navigation. At the same time, its may play as 
a fast crossing strategy compared to the original PC via 
including some flexible safety requirements. A real-time 
application of the PC method for continuous traffic flow 
is tested. Our experiments prove that vehicles can adopt 
different modes to satisfy the real time constraints.

The rest of the paper is organized as follows: Sect. 2 intro-
duces the development of the already proposed approach 
based on PC algorithm. The MUGVs system with opti-
mal control is shown in Sect. 3. Section 4 presents the �

-constraint method in PC algorithm. A detailed use case 
is given in Sect. 5 to validate the addressed method for 
MUGVs systems. At last, conclusions and some prospects 
are given in Sect. 6.

2 � A conceptual review of the PC application 
to intersection coordination

In order that the proposed paper can be simply read, let us 
sum-up in what follows the already proposed PC formulation 
to deal with the coordination of MUGVs in intersections and 
roundabouts (Philippe et al. 2019).

2.1 � Formulation of searching space

Several vehicles are considered crossing through the inter-
section with fixed known path. Then, the only control 
degree of freedom of the MUGVs are the speed of naviga-
tion. PC treats the vehicles in a coordination problem as 
individual self-interested players iteratively (Wolpert 2006). 
Thus, these agents, in our case of study several vehicles (as 
shown in Fig. 2), should select their actions (velocities in 
our problem) over a particular predefined interval time to 
coordinate their navigation motions. An illustration of the 
possible actions in fixed time windows ( T = 10s ) which is 
long enough leaving an intersection as depicted in Fig. 2a.

Apparently, in Fig. 2a, there are considerable options Ni 
for each vehicle i depending on the initial speed vi(0) . By 
both considering the safety and comfortable requests, inter-
section has a speed limit below 10m/s and vehicles tend to 
restrict acceleration in [−2m∕s2, 2m∕s2] according to a 
restrained speed profile as illustrated in Fig. 2a. A further 

Fig. 2   Example of strategies hypotheses for vehicle actions. a Possible speeds. b Uniform distribution of all the agents’ behaviors
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taken hypothesis is that all the vehicles will get a fixed speed 
vi(T) after a predefined action time tact (such as tact = 3s in 
Fig. 2a). At last, the searching space for vehicle i can be 
summed up as a tuple � i i.e., � i ∼ {vi(T), tact,Ni}, t ∈ [0, T] . 
Then, the admissible member of actions set for the ego-
vehicle can be presented as � i ∈ �

i = {� i
1
,… ,� i

Ni
} . Here, 

�
i can be visualized as the velocity profile in Fig. 2a.
As mentioned before, in the PC theory the expected util-

ity of a given action can be calculated by each vehicle. But 
to do so, it must get (or estimate) the possible actions of the 
other vehicles. It has been used probability distribution to 
m o d e l  r e l a t i ve  a c t i o n s  l i ke  q(� i

k
) ∈ q(� i) =

{q(� i
1
),… , q(� i

Ni

)} . Obviously, the preferred actions (or 
strategy) have a high probability of being cost-effective. The 
driver model used to improve the precision of the predictive 
control with probability distribution is a hot topic, but not 
the main research topic in this paper. Indeed, it is considered 
in the proposed work that this probability distribution is 
given by dedicated algorithm and according to that it is pro-
posed an appropriate strategy to take the most appropriate 
decision making under this initial probability distribution. 
Readers are recommended to read Di Cairano et al. (2013) 
and Schwarting et al. (2019) to get clearer idea about the 
estimation of the probability distribution of other ground 
vehicles. The hypotheses of prosocial (or altruistic) UGVs 
in this paper make us formulating an uniform distribution 
(as shown in Fig. 2b) of all the agents’ behaviors when q(� i) 
is initially loaded for computation.

2.2 � Two steps for re‑acceleration

For various collaborative navigation behaviors, vehicles 
choose a speed profile that allows them to safely cross an 
intersection based on an utility function (see Sect. 2.3). 
However, for the vehicles which have to choose the arbi-
trary low speed (or a complete stop), the proposed algorithm 
allows them to re-accelerate. The re-acceleration permits the 
vehicles to clear the intersection as fast as possible while 
ensuring free collisions. An important point that needs to 
be addressed is that re-acceleration should ensure continuity 
constraints of the speed. An algorithm that enables a con-
tinue speed profile after the action time have been designed 
in the previous work (Philippe et al. 2019).

2.3 � Objective function

In its initial shape, the original PC approach consid-
ers only an unconstrained minimization problem. Such 
a research case generally involves n vehicles, and 
each vehicle i ∈ n possesses a strategies/actions set of 
�

i = {� i
1
,… ,� i

N
}(i = 1,… , n) including an equal amount 

of N options (cf. Sect. 2.1). After performing a local motion 

planning through their on-board embedded devices, each 
vehicle applies a strategy � i

k
∈ �

i(k = 1,… ,N) during time 
interval [0, T]. Here, T refers to the prediction time horizon. 
During the period [0, T], a particular set of combined strate-
gies Y = [�1

k
,�2

k
,… ,�n

k
] is selected (randomly fixed to ini-

tialize the process) to reach at least a minimum system utility 
level J([�1

k
,�2

k
,… ,�n

k
]) . The proposed objective function 

(Philippe et al. 2019) can be formulated as given by Eq. (1):

where dk(iv, iself ) is the distance between the ego vehicle iself  
and the vehicle iv (i.e., all collaborative vehicles) at time step 
tk (a discretization of t ∈ [0, T] ). vmax refers to the maximum 
speed legally allowed on the road. In addition, vavg is the 
average recorded speed of all the vehicles during t ∈ [0, T] . 
Wsep and Wcross are the weights to balance between the dif-
ferent criterion characterizing (1): low separation and slow 
average speed. It should be noted that the proposed J(Y) 
value is updated iteratively during the PC algorithm execu-
tion by the agents taking part in the coordination process. 
Thus, the delicate designed searching space approach must 
ensure a sampling of “good” quality during the first action 
time. Readers are encouraged to read Kulkarni and Tai 
(2010) and Philippe et al. (2019) for further information.

2.4 � The drawbacks of the weighted method 
in MUGVs safes navigation

As mentioned before, Eq. (1) is utilized without explicit 
safety constraints. For several cases, a very high weight 
Wsep may be admitted to penalize low separation distance 
to ensure more safe navigation. This can lead vehicles to 
preferably choose arbitrary low speeds (or a complete stop). 
Such behaviors may be regarded as very conservative. In 
real-time traffic navigation, UGV must have appropriate con-
trol architecture with reliable and real-time risk assessment 
and management strategies (RAMS). These targeted RAMS 
must reduce drastically the navigation risk in order to face 
sudden road hazards and risky situations. Unfortunately, the 
proposed previous work does not provide a fully nil risk of 
collision (Philippe et al. 2019) and explicit risk-sensitive 
strategy. Further, PC running time is inconsistent depending 
on the number of collaborative involved entities. Theoreti-
cally, MUGVs systems should have a certain time interval 
to start executing self-satisfied strategy targeting lower 
navigation risk. Thus, this paper aims to fill this gap and 
provide cycle-accurate description of these mechanisms in 
a systemic way. A method of limiting the time spent for opti-
mizing is suggested at a common-yet-difficult scenario (cf. 
Sect. 3), which can calculate the consistent action execution 

(1)

J(Y) = Wsep

∑
iv≠iself

max∑
tk=1

1

dk(iv, iself )
2
+Wcross(vmax − vavg)

2,
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time before entering a conflict zone. Furthermore, in the lat-
ter case, a constraint PC algorithm is proposed (cf. Sect. 4) 
to compute the corresponding multi-criteria risk manage-
ment strategy to guarantee 100% collision-free navigation 
in an appropriate prediction horizon.

3 � Application of MUGVs system: main 
assumptions and modeling aspects

Our specific objective is to explore PC theory enabling flex-
ible and safe coordination to improve service performance of 
MUGVs system in restrained and complex areas. Therefore, 
we can cast our case in a customer pickup-and-delivery sce-
nario. After routes are scheduled, MUGVs have to decide 
the actions at an intersection with an on-board autonomous 
control system as shown in Fig. 3. While considering the 
real life application, the PC method consists in planning 
motions. These motions (referenced as speed profiles) can 
be used to control a vehicle or to warn/assist the driver to 
avoid dangerous situations. Accordingly, a study of motion 
planning that satisfies real application of MUGVs system 
will be formulated within optimal control in Sect. 3.1. How-
ever, these planning is restricted by system intrinsic dynamic 
limitations and surrounding communication environments. 
As it will be clarified later, the Time-Slot-Based (TSB) com-
munication approach is considered for better predicting how 
the vehicles will interact and collaborate with each others 
(cf. Sect. 3.2). More precisely, based only on every vehicle 
own-observations, the “single mode” addresses each vehi-
cle individual motion planning without any further coopera-
tion with other road participants. Contrarily, the “full mode” 
manages the reactions between all existing vehicles while 
ensuring the motion planning task as seen in Sect. 3.3.

3.1 � Optimal control framework of MUGVs system

Let suppose that our experimental scenario is as the follow-
ing: vehicles track a desired path � , while searching the most 
appropriate velocity. If the chassis of an actual car is defined 
in an x − y reference frame, we can denote the vehicle’s posi-
tion as (x, y), which represent the vehicle. The driving routes 
are identified by a series of way-points (xi, yi) ∈ �i as illus-
trated in Fig. 3. Here, (x0, y0)i correspond to the the initial 
position at the time when the computation time is lunched 
for vehicle i, where (xf , yf )i is its final position. It comes that 
what we want to compute is the correspondence between time 
t ∈ [0(initial registered time),T(vehicle reaches its final position)] . 
In Fig. 3, three positions of vehicles are indicated (at time 
t = 0 ) and the control is related to the speed vi(t) (that 
remains in an interval [0, vmax] ). At any time t, the distance 
between any vehicle i, j ∈ {1, 2, 3} cannot be less than a 2r 
threshold (in order to avoid the collision of the vehicles), 
where r is a safe radius for vehicle i, j as shown in Fig. 3.

Furthermore in Fig. 3, the communication zone is speci-
fied for inter-vehicle communication (IVC). After loading 
the computing at t0 , vehicles in communication zone can 
exchange the state information and priory anticipatory prob-
ability of possible actions before entering the intersection. 
Due to real-time computing environment, it has been given 
a deadline for MUGVs system return the strategies/actions 
for critical applications at the intersection. Here, a negotia-
tion zone is defined w.r.t. action time tapp (data processing 
deadline) for synchronous cooperative navigation. Because 
vehicle’s initial speed is different, the position of the vehicle 
begins to collaborate in negotiation zone will be different 
w.r.t. tapp . The dangerous zone (red block in Fig. 3) is more 
critical area which contains the possible collision points.

It is important to notice that all the vehicles are pro-
vided in this setup with the same kind of control devices 
(or control protocol). Henceforth, vehicles will follow the 
same algorithm logic and share current states when load-
ing computation at t0 . As indicated before, we recommend 
setting a time limit for the solver, which ensures that the 
PC program will terminate in a reasonable period of time 
�tsol (cf. Sect. 3.2). This motion planning can be applied 
at time tapp = t0 + �tsol . Because vehicles in our system is 
rolling without slipping (i.e., Pfaffian constraints), we can 
accurately predict vehicle’s states (i.e., position and speed) 
at tapp when loading the algorithm at t0 . So, it is better to 
plan motions having the predicted horizon time that starts 
at t = tapp for MUGVs system ( [tapp, tapp + T] ), where T is 
the prediction horizon. To do this, we can always pursue an 
optimal solution that guarantee well-coordinated motions in 
time. It is worth noting that the vehicle will precisely execute 
its final desirable actions/strategies (as � i

k
→ vi(t) ) during 

time interval [tapp, tapp + T] . Some additional constraints are 
highlighted below for applying motion planning � i

k
 at tapp:

Fig. 3   Application scenario and main zones characterizing the 
addressed MUGVs systems
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–	 The vehicle that has already entered the intersection is 
not concerned by the optimization process.

–	 Vehicle i keeps constant speed vi(0) (and less than vmax ) 
before executing � i

k
.

–	 If vehicle i will enter the intersection immediately after 
tapp with current speed vi(0) , then treat it as a “non-col-
laborative agent” with maximizing self-utility strategy.

Dynamic constraints (e.g., inertial delay in powertrain) and 
trajectory deviation are not considered in this model. As men-
tioned above, we designed the PC to run in an iterative way. 
When the on-board algorithm is launched, it produces a possi-
ble action plan based on states of the current agents in commu-
nication zone with a prior knowledge of each other (cf. Fig. 3).

The best combined strategies should be saved and updated 
if new feasible optimal solution is obtained by the MUGVs 
system. To address the dynamic nature of the transporta-
tion system, users are permitted to change the action after 
adding any other agent in the MUGVs system. This means 
that the previous plan will be executed with the possibility 
of few changes occurrence when new cooperative actions 
become available.

3.2 � Time‑slot‑based (TSB) inter‑vehicle 
communication mechanism

In the above real life application of MUGVs system, the 
critical issue is the computing of each plan “fast enough” 
during �tsol by PC, in order so that the system can react to 
the changing environment without exceeding its motion 
capability [(defined as maneuverability (Bertolazzi et al. 
2007)]. In our proposed PC implementation, the data 
exchange is aimed to be minimal and a solving time of 
�tsol = 0.2s is targeted [(�tsol = 0.8s have been achieved 
so far for 4 vehicles (Philippe et al. 2019)]. Moreover, a 

reasonable �tsol leaves the system a maneuverability mar-
gin that can be used to move it into a safe configuration 
or state. To address this concern, we use time-slot-based 
(TSB) approach to further explain the vehicle’s sequential 
optimization and communication mechanism in PC (see 
Fig. 4).

In TSB vehicle communication system, the basic time 
interval �tsol is divided into multiple duration. Here, “class 
regions” are highlighted for different message classes. We can 
use different wireless bandwidth for these regions. In class A, 
vehicles transmit the status information to other connected 
agents and exchange possible actions for entering an intersec-
tion. After vehicles get priory anticipatory probability of other 
vehicles’ behaviors, the navigation problem can be formulated 
as an optimization model and the PC will be run in its default 
iterations. All the vehicles successively participate in the opti-
mization with on-board PC algorithm at each iteration. They 
broadcast the updated probability distribution over the set of 
possible strategies for repeated computing reference. The suc-
cessive iterations continues until all the updated probability 
distributions converge to stable distributions. However, long-
running can be time-consuming and difficult to optimize. The 
timeout mechanism in class C helps to limit that time while 
supplying a satisfactory motion planning. Our optimizer trig-
gers timeout when:

–	 All vehicles converge to stable probability distributions.
–	 The algorithm’s running time exceeds timeout limits.

The conduct of timeout setup may lead to complete or to 
incomplete search. We are aware of the fact that vehicles 
do not guarantee convergence to the global optimum in our 
standard solving time �tsol . But the PC algorithm always 
retains the current best results at each iteration. These strat-
egies tend to produce high quality solutions in short time. 

Fig. 4   Time-slot-based (TSB) communication mechanism for applying PC
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The precise timeout limit value is changed depending on the 
running machines and experiment configuration but very 
close to the motion planning applied time tapp . It is interest-
ing to note that the majority of our proposed PC models are 
either completed very quickly or they converge very slowly. 
Therefore, changing the timeout value (not too much) will 
not dramatically influence the computing results.

3.3 � Real‑time motion planning for MUGVs

To the best knowledge of the authors, the PC algorithm has 
not been used yet to perform repeated optimizations to deal 
with a continuous flow of vehicles. The closest application 
(Sislak et al. 2010) for air traffic management, but the algo-
rithm was demonstrated on fixed initial situations. Since a 
repeated full optimization of MUGVs system is time consum-
ing, we already defined two real-time motion planning modes 
of PC for searching feasible solutions in practical application:

–	 Single vehicle optimization (denoted “single” mode).
–	 Full optimization (“full” mode).

As explained, in the single mode, a vehicle runs the PC opti-
mization as soon as it enters the communication zone as 
shown in Fig. 3. All the other vehicles are considered to be 
connected but non-collaborative agents. In this mode, the 
coordination is sequential more than the collaborative case, 
since the vehicles decide what to do one by one. This is an 
important option to reduce calculation time, because ego 
vehicle only needs to pick up the best actions with respect 
to fixed strategies of others. Also, the intersection crossing 
performance with the single mode may be sub-optimal as 
not all the vehicles coordinate with each other.

In the full optimization mode, the PC algorithm will run in 
its default iterative mode where all the vehicles participate in an 
optimization process as shown in Fig. 4. We recommend to per-
form the “full” mode long enough (10s for instance) to ensure 
vehicle exiting the intersection, and it should be triggered by 
a predefined event (such as a threshold number of vehicles at 
intersection). New vehicles entering in the restricted communi-
cation zone are not allowed to rerun the full optimization mode 
until the previous optimization is completed.

Later in this paper, authors focus in Sect. 5.3 to prove 
that the real-time solution of two modes can handle continue 
vehicles waves in practical real-time applications.

4 � Risk assessment and "‑PC constraint 
method for PC algorithm

Due to the probabilistic nature of the decision-making 
problem between vehicles, it is hard and not straightfor-
ward to directly convert the constraints to probability space. 

Therefore, several heuristic repair approaches are applied 
to narrow the optimal solution (Kulkarni and Tai 2010a, 
b). The elevated computational load limits thus the use of 
the PC approach in hard real-time vehicle. Kulkarni and 
Tai et al., then handle the constraints by a penalty func-
tion method (Kulkarni and Tai 2011) while knowing that 
the appropriate weights parameters (between sub-criteria) 
are not easy to be obtained precisely. In the proposed paper, 
the existing �-constraint method (Mavrotas 2009) is used in 
addition to the PC algorithm to solve the real time multi-
criteria safety assignment MUGVs coordination problem. 
The navigation characteristics of MUGVs system and main 
constraints are highlighted in Sect. 3.1. Then, we introduce 
Time-To-Collision (TTC) as a constraint indicator in Sub-
Sect. 4.1. Accordingly, the assumed �-PC will be detailed 
in Sub-Sect. 4.2.

4.1 � TTC as a safety management indicator

The purpose of MUGVs system is to compute a feasible 
solution, which serves all the customer in a flexible and risk-
sensitive manner. The system objective function in Eq. (1) 
can offer a combined solution that penalizes low separation 
and slow average speed. However, as mentioned before, the 
previous work needs a risk assessment approach to succeed 
in the road hazard prediction. Thus, the TTC is used as a 
predictive safety measure of vehicle’s trajectory.

TTC is a risk indicator that describes the remaining time 
for a probable collision (i.e., traffic crash) between two vehi-
cles. It was originally defined by Hayward (1972) in car 
following scenarios. Generally, TTC can measure a road-
user’s time to react (for a critical collision event). The TTC 
at time instant t ∈ [0, T] can be calculated according to the 
first order case (in co-linear navigation case between vehi-
cles) (Ben Lakhal et al. 2020):

where (xlead, ylead), (xi, yi) ∈ �, ylead = yi , and 2r is the vehicle 
real length as Fig. 5a. In Eq. (2), xlead , if exist, can be meas-
ured as the position of leading vehicle for vehicle i at xi with 
speed ẋi(t) > ẋlead(t) . To calculate TTC in two dimensions, 
we simply consider a collision of two circles as shown in 
Fig. 5b.

As one may notice that it is a “collision” of two circles (not 
a real crash of two vehicles). We use these circles to anticipate 
real accident. Here, 2r can be seen as vehicle length l as in Eq. 
(2). In spite of sacrificing some accuracy, the TTC between 
vehicles i, j can be more easily formulated in two dimensions 
as:

(2)TTC =
xlead(t) − xi(t) − 2r

ẋi(t) − ẋlead(t)
,
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In Eq. (3), setting (xi, yi) ∈ �i, (xj, yj) ∈ �j is the position 
of vehicle i, j at time instant t ∈ [0, T] . ẋi(t), ẋj(t), ẏi(t), ẏj(t) 
denote the relative speeds measured in x, y directions. 
Accordingly, we can get a quadratic function of TTCij like:

Equation (4) can be solved by quadratic discriminant. If 
there are real roots in (4), we can take the positive lower 
value as the nearest TTC in the prediction horizon. For cases 
where roots are negative or equal to zero, it represents the 
collision that have happened. To avoid any confusion, we 
defined the solutions in Eq. (4) as “2D TTC” in the follow-
ing of this paper. The objective of MUGVs system is to 
maximize the final agents’ 2D TTC to improve the naviga-
tion safety. Thus, the corresponding objective function is 
defined as:

where min{TTCij(Y)} represents the minimum 2D TTC value 
of the most critical situation between n agents in the predic-
tion horizon t ∈ [0, T] within vehicles’ combined actions/
strategies Y . JTTC aims to maximize the critical 2D TTC 

(3)

[(xi(t) + ẋi(t) ⋅ TTCij) − (xj(t) + ẋj(t) ⋅ TTCij)]
2

+ [(yi(t) + ẏi(t) ⋅ TTCij) − (yj(t) + ẏj(t) ⋅ TTCij)]
2 = (2r)2.

(4)

[(ẋi(t) − ẋj(t))
2 + (ẏi(t) − ẏj(t))

2] ⋅ TTC2
ij

+ 2[(xi(t) − xj(t))(ẋi(t) − ẋj(t)) + (yi(t) − yj(t))(ẏi(t) − ẏj(t))] ⋅ TTCij

+ [(xi(t) − xj(t))
2 + (yi(t) − yj(t))

2 − (2r)2] = 0.

(5)

max JTTC(Y) = min
i,j∈{1,2,…,n}(i≠j)

{TTCij(Y)}

subject to Y = [�1
k
,�2

k
,… ,�n

k
](k = 1,… ,N)

�
i
k
∈ �

i = {� i
1
,… ,� i

N
}(i = 1,… , n),

value for more safety response to the concerned situation. 
Above all, an optimization problem can be formulated by 
considering Eqs. (1) and (5). To handle the TTC constraint, 
�-PC algorithm is addressed in next section (cf. Sect. 4.2).

4.2 � "‑PC algorithm

The original PC algorithm focuses on a straightforward task 
with only one objective function as shown in Eq. (1). Nev-
ertheless, the MUGVs system needs to deal with RAMS as 
suggested by the discussion given in Sect. 2.4. The �-con-
straint method, which was firstly proposed in Haimes (1971), 
can be introduced to handle this trade-off problem. Only one 
objective function is optimized in the method, while others 
are converted into constraints with a permitted value � by 
a limited range. In our case, the objective function JTTC in 
Eq. (5) can be adopted as a constraint during optimizing the 
main objective function J in Eq. (1). Hence, the transformed 
optimization problem is formulated as below:

According to the model, the optimal results could be given 
by the following theorems. The interested readers may con-
sult Miettinen (2012) for more details:

Theorem 1  If objective J and vector � = (�1,… , �m) exist, 
such that Y∗ is an optimal solution to the problem (6), then 
Y
∗ is a weakly Pareto optimal solution.

(6)

min J(Y)

subject to Y = [�1
k
,�2

k
,… ,�n

k
](k = 1,… ,N)

�
i
k
∈ �

i = {� i
1
,… ,� i

N
}(i = 1,… , n)

JTTC(Y) ≥ �.

Fig. 5   A collision of two-vehicle based on circle area. a 2D TTC in co-linear navigation case. b 2D TTC in two dimensions navigation case
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Theorem 2  Y∗ is a strict Pareto optimal solution if and only 
if, for objective J, there exists a vector � = (�1,… , �m) , such 
that Y∗ is the unique objective vector corresponding to the 
optimal solution of the problem given in Eq. (6).

4.2.1 � " selection

An advantage of the �-constraint method, presented in Eq. 
(6), is that we do not need to scale different objective func-
tions by adding weights. The obtained solution, if it exists in 
Eq. (6) with a given parameter � = (�1,… , �m) , is proved to 
a weakly Pareto optimal solution as Theorem 1 and 2. Actu-
ally, the Pareto front can be obtained by varying the vector 
� . To find an efficient solution (that means close to a strict 
Pareto optimal solution) in problem (6), selecting an appro-
priate � is the key. Accordingly, for calculating a more effi-
cient solution, we must have at least the range of constraint 
objective function JTTC . Unfortunately, the calculation of the 
JTTC range in searching space is not a trivial task. The worst 
value is hard to compute, while we can get the best value in 
an individual optimization. Hence, a general selection of �m 
can be provided by Eq. (7):

where Y∗
inf

 is the optimal solution of single optimal problem 
(1) for minimum objective function J without any constraint, 
and Y∗

sup
 is the optimal solution for single optimal problem 

that maximize JTTC in Eq. (5) in a predefined searching 
space. After that, for the bounded value in Eq. (7), we define 
the range of normal JTTC values as JTTC(Y

∗
sup

) − JTTC(Y
∗
inf
) 

in problem (6). Note that, with the �-constraint, we can get 
different efficient solutions close to a strict Pareto optimal 
solution. Therefore, a more rich and flexible solutions are 
favorable in the applied traffic scenario. Thus, we can divide 
the � range into p equal intervals by p + 1 “grids points” 
(Mavrotas 2009) like the following:

Let consider Eq. (8), we can also get efficient solutions by 
properly adjusting the the number of “grid points” gradu-
ally increasing �m by referential signs and linear logic. An 
indicator �(�m) to interpret the linear relationship between J 
and JTTC with different �m is calculated as:

(7)JTTC(Y
∗
inf
) ≤ �m ≤ JTTC(Y

∗
sup

),

(8)

�m = JTTC(Y
∗
inf
) + (JTTC(Y

∗
sup

) − JTTC(Y
∗
inf
)) ⋅

(
m

p

)
, (m = 0, 1,… , p).

(9)�(�m) =

⎧⎪⎨⎪⎩

1 if �m = �p
�m−JTTC(Y

∗
inf
)

JTTC(Y
∗
sup

)−JTTC(Y
∗
inf
)
others

0 if �m = �0,

For the bounded value in Eq. (7), we define the range of 
normal �m by two bound values JTTC with respect to the indi-
vidual optimal problems. As a matter of fact, the proposed 
“ �-Constraint” in the bounds is to correctly estimate the 
trade off between crossing time and risk which we aimed to 
achieve a good trajectory schedule. To guarantee the feasi-
ble solution in the bounds, we divide �m into several equal 
intervals as a constraint in original PC algorithm. Only the 
feasible solutions afford the constraints will be reserved in 
the PC searching procedure as depicted in Fig. 6. It is also 
essential to note that too small bound intervals will lead to 
ineffective 2D TTC constraint for a safety-sensitive solution. 
A simple remedy in order to bypass the difficulty of estimat-
ing lower bound is to define reservation values as shown in 
Mavrotas (2009). We capture minimum 2D TTC threshold 
as 1.5s for a reference in this paper (Coffey and Park 2020). 
Because the strategy hypotheses include full stop actions to 
avoid the extreme situation (i.e., conflict immediately), thus 
�-PC can filter the decision states while remains optimal 
feasible solutions.

To sum up, the advantages of �-constraint method in 
MUGVs system are:

–	 �-constraint method in PC algorithm avoids scaling 
multi-objective function in a complex target function by 
adding too much weights.

–	 we can control the number of efficient vehicle’s actions 
by properly adjusting �m with predefined grid points p. 
A membership function � can indicates the degree of 
optimization in different objective functions.

–	 the feasible solutions obtained after the optimization are 
indeed Pareto optimal solutions.

A simply remedy in order to bypass the difficulty of esti-
mating the worst values of the searching results (e.g., 
JTTC(Y

∗
inf
) with optimal Y∗

inf
 in (1) for minimum J is to 

define reservation values for the objective functions 
(Mavrotas 2009). Thus, we only need to calculate the 
maximum JTTC(Y

∗
sup

) in conventional PC algorithm. In the 
context of the proposed MUGVs system, several approx-
imate block solvers are recommended as initialization 
fast algorithms. For example, adopting max-min resource 
method in Jansen (2004) to calculate JTTC(Y

∗
sup

) . It is also 
essential to note that too small equal intervals will lead 
ineffective 2D TTC constraint for safety sensitive solu-
tion. Therefore, setting 2D TTC constraint indicators are 
expected to regard real-life situations. Furthermore, the 
�-PC algorithm can be explained with detailed flow dia-
gram as shown in Fig. 6.
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4.2.2 � "‑PC framework

In Fig. 6, as the original PC method, vehicle i assigns uniform 
probabilities q(� i

k
) to its strategies/actions set � i (for example, 

q(� i
k
) = 1∕N is a distribution over � i ) at t = 0 . From a van-

tage point of associate a probability for the strategy � i
k
 , vehicle 

i can further compute the N corresponding expected system 
objective function values w.r.t. its strategies set � i . Thus, 

Fig. 6   Flowchart of the pro-
posed �-PC algorithm
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when vehicle i in turn to run its PC algorithm, it can help to 
optimize the distribution q(� i) (for ego-vehicle) in a expecta-
tion function like Eq. (10).

where (i) represents every vehicle other than i, and � (i)

?
 

is the other vehicle’s strategies selected randomly (with 
question marks “?”) depending on its probability q(� (i)

?
) . 

It is important to underline that q(� (i)

?
) is a priory antici-

patory probability of the actions/strategies of all the other 
agents. For vehicle i in turn to minimize expectation func-
tion E(q(� i)) , a combined strategy Yi

k
 include its own 

strategy � i
k
 and other randomly selected strategy � (i)

?
 (i.e., 

Y
i
k
= [�1

?
,�2

?
,… ,� i

k
… ,�n

?
] ). Thus, we can underline 

these the combined probabilities distribution of in Yi
k
 w.r.t. 

each � i
k
 as the following:

Thanks to the cost function in Eq. (10), it is easier to opti-
mize probability than the original problem in (6). Such a 
method is referred as the homotopy approach that converts 
the primal problem into the probability space. Next, a key 
attraction, and most important maximum-entropy (MaxEnt) 
principle in PC algorithm is applied, so that we formulate 
E(q(� i)) into Eq. (12):

The objective function (12) is called MaxEnt Lagrangian 
and is widely used in statistical physics considering free 
energy as Efree (Yang and Wu 2016): a parameter Temp 
called temperature is specific for the simulated annealing 
(SA) process. At the beginning of the �-PC algorithm, the 
parameter Temp ∈ [0, inf) is huge, which weights more the 

(10)

min E(q(� i)) =

N∑
k=1

J(Yi
k
)q(� i

k
)
∏
(i)

q(�
(i)

?
)

subject to (Yi
k
= [�1

?
,�2

?
,… ,� i

k
… ,�n

?
])

q(� i
k
) ∈ q(� i) = {q(� i

1
),… , q(� i

N
)}

N∑
k=1

q(� i
k
) = 1, q(� i

k
) ≥ 0,

(11)

q(Yi
1
) = [q(�1

?
), q(�2

?
),… , q(� i

1
),… , q(�n

?
)]

⋮

q(Yi
k
) = [q(�1

?
), q(�2

?
),… , q(� i

k
),… , q(�n

?
)]

⋮

q(Yi
N
) = [q(�1

?
), q(�2

?
),… , q(� i

N
),… , q(�n

?
)].

(12)

L(q(� i), Temp) = E(q(� i)) − Temp × Efree

=

N∑
k=1

J(Yi
k
)q(� i

k
)
∏
(i)

q(�
(i)

?
) − Temp

×

(
−

N∑
k=1

q(� i
k
) log2 q(�

i
k
)

)
.

entropy term. Then we can always get a uniform probabil-
ities. Since function Efree can stand for the largest uncer-
tainty (highest entropy) at the beginning (this means each 
vehicle’s actions has probability 1/N of being most favora-
ble). Shannon entropy is a general choice for function 
Efree = −

∑N

k=1
q(� i

k
) log2 q(�

i
k
) , where it can be proved 

mathematically that: argmax(Efree) → q(� i
k
) = 1∕N.

The formulation of the Maxent Lagrangian 
Li(q(�

i), Temp) is very appropriate in the original PC the-
ory, since the probability nature may handle the rest of work 
to solve in a convex space of probability distribution. To 
obtain the updated probability, the Broyden–Fletcher–Gold-
farb–Shannon (BFGS) method is used in PC algorithm for 
the reformulated optimization problem in Eq. (13):

In Eq. (13), the expected global utility L(q(� i), Temp) based 
on the combined strategy is calculated under a specific tem-
perature Temp. Vehicle i updates the probabilities q(� i) of 
all the actions after each iteration. However, the adoption 
of BFGS method cannot keep the probability value within 
[0, 1]. Even though standardization may be used to handle 
such case, the interior point method (Yang and Wu 2016) is 
recommended in the proposed �-PC algorithm. Because it 
can be guaranteed that the probability keep within [0, 1] dur-
ing each iteration. Interior point method have been proven 
to efficiently solve linear (or-nonlinear) constraints with less 
iterations.

After that every vehicle runs the �-PC algorithm, the 
probability distribution of its actions will be updated. Com-
bined strategies J(Y∗

cur
) with the minimum value J(Y∗) will 

be saved as current preferred solution. It must be mentioned 
that, the accepted combined strategies Y∗

cur
 as current pre-

ferred solution at an iteration afford JTTC(Y
∗
cur
) ≥ �m . Oth-

erwise, discard J(Y∗
cur
) and retain previous objective func-

tion value with related actions. As last, if any of the three 
criteria listed below is valid, then, accept the current system 
best solution Y∗

cur
 as the final optimal strategy Y∗

opt
 of all the 

vehicle.

–	 if temperature Temp = Tempend → 0

–	 if maximum number of iterations exceeded
–	 if the difference of objective function J(Y∗

cur
) between two 

iterations reaches the prescribed threshold of �

Above all, the main difference between �-PC algorithm and 
the original PC framework can be highlighted as following:

(13)

min L(q(� i), Temp)

subject to

N∑
k=1

q(� i
k
) = 1

q(� i
k
) ≥ 0.
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–	 The process which confirms an available constraints to 
the feasible solutions is considered in the PC framework 
in a randomly improved way with additional calculation 
steps. The proposed method uses accessible individual 
optimization process to define the ranges of constraints 
in advance. The grid points is inserted in the algorithm, 
therefore, a feasible solution can always be calculated in 
due time.

–	 The interior point method is used in the improved PC 
algorithm to guarantee the probability value within [0, 
1]. It is essential to apply the Monte-Carlo sampling 
principle based these probability distribution rather than 
standardization.

–	 The process of narrowing/updating sampling interval is 
excluded in the proposed �-PC algorithm. Because the 
searching space is well-designed before (see Sect. 2.1). 
This fact leads us to the obvious advantage of reducing 
computational time.

The main interest of the proposed �-PC algorithm is a proper 
balance between the high-quality solution and acceptable 
computational speed. The method is flexible and produces 
approximation algorithm solution rather than global optimal 
results. It is supposed to be a good decision support system 
for transportation service and risk assessment. The typical 
MUGVs coordination will be tested in Sect. 5.

5 � Experimental verification of "‑PC

5.1 � Communication characterization 
for the expected data exchange 
between vehicles

In �-PC algorithm, we designed a distributed approach 
in the hypothesis that there are n processors with the ith 
processor (vehicle i) assigned the responsibility of updat-
ing the ith probabilities q(� i

k
) of actions/strategies set 

�
i according to Eq. (13). Processor i inform processor j 

(e.g., vehicle j) to calculate its preferred actions/strategies 

relying information of preceded probabilities q(� i
k
) . All 

the processors repeat the process until the convergence the 
aforementioned iterative sequence (cf. Fig. 4).

Due to the limitations in the measurement and control 
units, it is often impossible to acquire measurements at 
an arbitrarily fast speed and to execute the control inputs 
instantaneously. Thus, the MUGVs system in this paper 
is described in a continuous-time setting while measure-
ments and control inputs are described in a precise con-
stant sampled data Tsample = 0.2s . It is assumed also that 
the messages are received correctly within a finite time 
(but still leave an open way to consider synchronous or 
asynchronous implementations). In our predefined sce-
nario, for example three connected vehicles in Fig. 3, each 
action/strategy is a float vector of size 50 (10s horizon and 
0.2s sampling time) and the set of possible velocity profile 
has 10 strategies as shown in Fig. 2a. That is a total of 
1500 floats—5.86 kB (kilo Bytes)—for three vehicles. It 
is done again at the beginning of the re-acceleration phase 
(cf. Sect. 2.2). Consequently total 11.72kB is prior data 
volume need to be broad cast in the considered case. Then, 
for each iteration the vehicle broadcasts its updated prob-
ability vector q(� i

k
) of 500 floats (10s horizon and 0.2s 

sampling time with 10 strategies). The number of itera-
tion is various in different mode according to experimental 
statistics. So the total broadcast per vehicle is depend on 
the iterations. Accordingly, the communication demand 
in “single” (only one vehicle) and “full” modes (for three 
vehicles) are compared in Table 1 as an instance.

We suppose that the required network throughput for all 
modes will not exceed a magnitude of 0.4 MB/s as shown 
in Table 1. Then, the optimization can be achieved in about 
0.2 ∼ 0.8s . A faster network throughput (e.g., 4 MB/s) is 
physically possible. Therefore, our �-PC method may be 
executed with on-board processors that have a better C++ 
implemented code for a faster running. But it is important 
to note that the experiments in this paper were all run by a 
program developed in MATLAB with a computer of Core 
i5-6300HQ, 2.30 GHz and 8 GB RAM.

Table 1   Data exchange in 
“single” mode and “full” mode 
for three vehicles

Single mode Value Full mode Value

Prior data 11.72 kB Prior data 11.72 kB
Searching strategy 10 Searching strategy 103

Iterations estimation 10 Iterations estimation 20 ∼ 50

Probability broadcast 500 floats (1.95 kB) Probability broadcast 1500 floats (5.86 kB)
Data volume 19.53 kB Data volume 117.19 ∼ 292.97 kB
Total volume 31.25 kB Total volume 128.91 ∼ 304.69 kB
Solver time estimation 0.2 s Solver time estimation 0.8 s
Network request 0.4 MB/s Network request 0.4 MB/s
Physically possible 4 MB/s Physically possible 4 MB/s



169Flexible multi-unmanned ground vehicles (MUGVs) in intersection coordination based on…

1 3

5.2 � Parameter setting and results evaluation for full 
optimization

Indeed, the single and full modes are both processed by �
-PC. The main difference between the two strategies is that 
the single mode only considers its best options w.r.t. the 
fixed strategies of others. It is a special case of full optimi-
zation that vehicles have several actions that may be chosen 
for self-interested behavior. Therefore, it is discussed in what 
follows only full optimization of MUGVs system. To explain 
better the performance of the proposed intersection naviga-
tion scheme for the MUGVs system based on �-PC, let us 
decompose the experiments into several parts to evaluate the 
characteristics of the algorithm.

5.2.1 � Effect of sampled " for cooperative navigation

The main parameters in our proposed algorithm are pre-
sented in Table 2:

To evaluate the proposed method, contract experiments 
between original PC and �-PC are given in the simulation. 
Three vehicles cooperative navigation at an intersection with 
predefined trajectories which include left-turn maneuvers 
for vehicle 1 and vehicle 2 (as shown in Figs. 7a, 8a). One 
of the important property highlighted in the simulation is 
the safety of the proposed navigation strategy and the abil-
ity to avoid collisions. In original PC, the cost function 
considered by MUGVs system includes the average cross-
ing time (altruistic objective) and the separation distance 
as shown in Eq. (1). The simulation results are illustrated 
in Fig. 7b. Because the control effort has been focused on 
the crossing time ( Wcross > Wsep ), the original PC method 
attempted to maintain a fast crossing speed. Thus, there is a 

Table 2   Parameters and initial 
states

Parameter Value Parameter Value Parameter Value Parameter Value

(x1, y1) [−20,−2.5] [m] vmin 0 [m/s] Wsep 1 Nsamples 10
(x2, y2) [20, 2.5] [m] vmax 10 [m/s] Wcross 10 Nvehicles 3
(x3, y3) [2.5,−20] [m] r 1.5 [m] � 0.01 TTCmin 1.5 [s]
v1(0) 6.0 [m/s] Tsample 0.2 [s] �1 1.5 �(�0) 0%

v2(0) 5.0 [m/s] T 10 �2 1.97 �(�1) 33.33%

v3(0) 5.5 [m/s] tact 3 �3 2.43 �(�2) 66.66%

Fig. 7   Three vehicles navigation by original PC. a Critical situation with the original PC. b Performance indicators: distance, velocity and 2D 
TTC in MUGVs system by original PC
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low probability but high impact to choose extreme strategy 
which allows all vehicles to accelerate as shown in Fig. 7b 
(a). Such speed growth had led to a collision as the distance 
indicator exhibited in Fig. 7b (b): the distance between vehi-
cle 2 and 3 (purple line) violated the safety limit of 2r = 3m . 
The 2D TTC profile of this two-vehicle also collapsed to 
zero during the collision as Fig. 7b (c).

In comparison, �-PC made vehicle 1 to maintain current 
speed at the beginning two seconds in order to increase the 
distance between adjacent vehicles as indicated in Fig. 8b 
(a). Due to the threshold constraint of � ≥ TTC = 1.5s with 
respect to Eq. (6), a 100% free collision navigation can be 
guaranteed in the whole time horizon [0s, 10s] as the indi-
cator of distance and 2D TTC underline in Fig. 8b (b), (c).

Several �-constraint values are carried out to high-
light the performance of the proposed method in the pre-
vious scenario in Fig. 8a. The approximated maximum 
JTTC(Y

∗
sup

) = 2.8975 is fixed in predefined MUGVs system 
by initially heuristic searching (cf. Sect. 4.2.1). Here, the 
reservation value JTTC(Y

∗
inf
) = 1.5 for a minimum 2D TTC 

in whole time horizon [0s, 10s]. After that, it is used several 
grids point [cf. Eq. (8)] in the range of 1.5 ≤ �m ≤ 2.8975 to 
get a constraint set �i and membership function �(�i) [cf. Eq. 
(9)] as presented in Table 3.

A comparison of average intersection crossing time (in 
presence of three vehicles) during four trails is shown in 

Table 3. It is instructive to note that the original PC algo-
rithm, which does not use any 2D TTC constraint (i.e., 
� = 0 ), shows a fastest crossing time with as expected a low-
est performances of 2D TTC. Increasing �i with weighting 
more on the membership function �(�i) can generally pro-
vide more better temporal margins of 2D TTC while increas-
ing vehicles average crossing time. However, �-PC can still 
avoid conservative actions/strategies with low crossing time 
in dangerous situation as in trial 4 (about 1.33s late than 
trial 1). Moreover, the increasing iteration numbers implies 
that the convergence of the model needs more execution 
time. Therefore, MUGVs system has potential applications 
in different navigation environments when a proper selective 
�-constraint model is designed.

Fig. 8   Three vehicles navigation by �-PC. a Critical situation with the �-PC. b Performance indicators: distance, velocity and 2D TTC in 
MUGVs system by �-PC

Table 3   Performance comparison of different �i

�i �(�i) Average 
crossing time

Iterations JTTC

Trial 1 0 – 3.60 [s] 20 0.04 [s]
Trial 2 1.5 0% 4.70 [s] 21 2.07 [s]
Trial 3 1.97 33.33% 4.70 [s] 21 2.07 [s]
Trial 4 2.43 66.66% 4.93 [s] 26 2.51 [s]
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5.2.2 � Effect of strategy sample size for executing time

To enable the qualified strategy to fulfill certain specific situ-
ations in MUGVs navigation (the long tail challenge), it is 
important to reserve enough strategies in searching space. In 
order to have a clear picture of the computational demanding 
under such applications, the execution time of varied number 
of strategies for MUGVs system is compared in the Fig. 9.

The results in Fig. 9 show a slight difference in terms of 
the execution time between the original PC and �-PC. More 
importantly and within this small decrease in the execution 
time, the �-PC outperforms the original method by its capac-
ity in avoiding the potential collision. Based on the results in 
Fig. 9, it can be admitted that the �-PC method guarantees 
the no collision between vehicles without any additional 
computational burden to satisfy the minimum safety navi-
gation requests. As a reminder, minimum 2D TTC = 1.5s 
is specifically considered in all these simulations of �-PC. 
Furthermore, it appears that setting Nsamples = 10 improves 
the satisfaction of the computationally demanding. To con-
clude, over-or under-estimated static sampling strategy may 
lead to more execution time to find optimal results that can 
meet the requirements.

5.2.3 � Scalability properties

The complexity of the �-PC algorithm is strongly correlated 
to the scalability properties of the proposed method. So that 
we attempt to run �-PC algorithm with an increasing num-
ber of vehicles. The randomized initial parameters (position 
and speed) are within the same range. Vehicles are gener-
ated with different distance to the intersection. The result 
has further explore the limiting number of vehicles for the 
application of �-PC in more exhaustive navigation states (see 
Fig. 10).Fig. 9   Effect of strategy number on the execution time

Fig. 10   Effect of vehicle number on the performance of �-PC. a Critical situation with �-PC (simulation video https://​bit.​ly/​2PoYf​jQ). b Effect of 
vehicle number on the performance of �-PC

https://bit.ly/2PoYfjQ
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Figure 10 shows results for Nvehicles = 3 to Nvehicles = 6 . 
The execution time of per vehicle show a steady increase for 
both the number of vehicle and the average crossing time. 
The � = 1.5s is fixed in each simulations. This indicates that 
�-PC can guarantee a safe navigation with increasing number 
in MUGVs system. A further analysis of complexity will be 
carried out in further works, and more realistic execution 
time will be measured after an optimization of the produced 
code and its parallelization.

5.3 � Real‑time "‑PC

In the case of the “single mode”, all the vehicles are non-
collaborative. This mode is useful to demonstrate the capa-
bilities of the algorithm to deal with a high number of non-
collaborative connected vehicles. It is demonstrated also that 
the use of the algorithm in the special case of single vehicle 
optimizes the navigation performances. On the other hand, 
the “full” mode shows the exact opposite as it forces all the 
vehicles to run the optimization when triggered by a prede-
fined event. This mode has been used in the previous section 
when an optimization is done on a fixed initial situation with 
all the vehicles. It should be noted that “single mode” has 
been preferred for a fast decision making. While “full mode” 
is more preferred for collaboration in complex environment.

In the tackled simulations, no conflicts did happened 
between any of the present vehicles, even though they did 
the optimization one by one. Fig. 11 illustrates the continu-
ous traffic situation during the simulation.

6 � Conclusion

This paper proposed a distributed optimal approach for 
dynamic MUGVs navigation system with risk-sensitive 
management strategy. A distributed architecture of MUGVs 
system has been formulated. Then, all the vehicles run itera-
tively a real-time on-board �-PC algorithm to find a feasible 
solution for cooperative navigation in a shared area. The 
proposed formulation uses the PC theory, which is a prom-
ising method, to optimize the distributed problem. Further, 
a combinatorial optimization problem is applied under the 
context of convex probability searching space. To this end, 
vehicles in the system only need to update the probability 
distribution of actions set instead of searching best combined 
strategy in a non-linear objective function. Our method 
allows to ensure a competitive solving time ( 0.2s ∼ 0.8s ) 
by approximating optimal solution in real-life application. 
Furthermore, in real-time traffic navigation, the proposed 
approach must have reliable behaviors to afford the demand 
of RAMS system in order to deal with sudden road hazards 
and risky situations. Therefore, a key safety indicator 2D 
TTC was adopted as a risk assessment measure to impact 
vehicle’s decision. We model the 2D TTC in two dimensions 
and assume that the minimum 2D TTC value in MUGVs is 
the corresponding objective function. Such an application 
with the proposed �-PC lead to promising results. Thanks to 
the proposed method, an optimal and feasible solution can 
always be reached to provide risk margin in final actions/
strategies. The proposed �-PC can be applied in trajectories 

Fig. 11   MUGVs navigation in real-time (simulation video https://​bit.​ly/​2PoYf​jQ). a Real time scenario for MUGVs. b Real time speed with the 
�-PC

https://bit.ly/2PoYfjQ
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tracking, maneuvers warning/assisting or directly as feed-
back control law in MPC. Thus, this paper designed two 
modes (“single” vehicle optimization or “full” optimization) 
for real-time �-PC operation.

The proposed �-PC rebalanced between the high-quality 
strategy and acceptable computational speed. In general, 
this method is flexible and may obtain sub-optimal solu-
tions rather than global optimal results. The experiments 
shown in the paper prove the efficiency of the proposed �
-PC, and also the reliability of the 2D TTC as a risk indicator 
to guarantee a 100% no constraint violation even in extreme 
situations. Robustness of the overall �-PC framework for 
real-time traffic management was demonstrated via Matlab 
simulations. For future work, vehicle strategies will be cal-
culated in highly uncertain environments (for instance in 
presence of human drivers). The method of optimization 
for faster execution needs to be further considered w.r.t. the 
vehicles’ communication/perception capabilities.
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