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Abstract: In intelligent traffic management, one of its core challenges lies in Multiple Unmanned
Ground Vehicle (MUGVs) navigation in cluttered and dynamic environments. To be viable, a multi-
criteria navigation scheme is required to deal with several critical situations. With its relative low
execution time , the Probability Collectives (PC) algorithm has succeeded in generating fast and feasible
solutions when applied to manage challenging scenarios, such as in signal-free intersections and round-
about (see Philippe et al. (2019)). Indeed, PC is an interesting decentralized approach for general cases
that enables to manage complex systems under probabilistic hypotheses. However, the PC is sensitive to
uncertainty in the navigation process, which highlights the need to adopt several safety margins. These
margins permit vehicles to adapt their dynamics and to react properly to unexpected events. Accordingly,
the present work aims to integrate a reliable risk management strategy into the PC algorithm by
introducing a novel ε-constraint PC method. With the enhancements integrated into an already existing
approach, the ε-PC based navigation strategy is able to obtain a better fusion strategy with considering
both efficiency and safety. Accordingly, this work aims to develop an appropriate balance develop a
proper balance between the high-quality solution and acceptable computational speed. Further, typical
scenarios of unsignalized intersection have been used intensively in simulation setups to demonstrate the
efficiency of the proposed approach.

Keywords: Intersection navigation, Probability collectives, Risk assessment and management,
ε-constraint PC.

1. INTRODUCTION

Similar to urban transportation systems, specific territories
like large hospitals, university campus, industrial sites have
taken steps to improve their navigation services in their ship-
ment/transit areas. As indicated in Vilca et al. (2013, 2018), re-
liable online obstacle avoidance and control are highly required
for such Multiple Unmanned Ground Vehicles (MUGVs).
However, the inherent trade-off between the control scheme
quality and its computational demands is, therefore, a crucial
issue that should be explored for this kind of navigation.

Obviously, some roads in few restricted areas consist of
private/non-standard and narrow alleyways. This kind of roads
may complicate the access to principle buildings. As shown in
Hyland and Mahmassani (2018), Unmanned Grounded Vehicle
(UGV) in such circumstances can help to provide more efficient
transport services for passengers. In the mean time, numerous
simultaneous requests from multiple delivery locations may
invoke cross-linked planning routes for MUGVs systems. In
such a manner, MUGVs navigation may become difficult to
cope with at intersection points.

In the field of intersection coordination, traffic signal control
system played an important role in solving successfully traffic

congestion problems (Ma et al. (2018)). For UGV based in-
tersection management, there are mainly three types of signal
control methodologies. For instance, Manzinger and Althoff
(2018) proposed a direct vehicle control method that enables
vehicles to achieve certain targets. Suzuki and Marumo (2018)
introduced an approach for optimizing traffic lights phases to
improve the intersection traffic performances. Further, Xu et al.
(2017) developed a signal-vehicle coupled control system for
a better intersection coordination. These three types of inter-
section traffic control methods depend on the availability of
Vehicle-to-everything (V2X) technology, see Guo et al. (2019).
However, traditional traffic signal control methods in urban
cities usually can not be applied directly in above mentioned
areas, because traffic light is subject to redundant cost in such
an inappropriate formed crossing-road and in certain situations
increases the level of traffic jam as illustrated in Guo et al.
(2019). Chen and Englund (2015) indicated that automation and
communication have turned the cooperative intersection man-
agement into a more active research field. Roughly, distributed
and decentralized control are becoming a promising way to deal
efficiently with this multi-scale navigation problem in complex
traffic scenarios. Studies reported in Chen and Englund (2015)
and Gregoire et al. (2014) provided more details about such
cases. Therefore, a non-signal management of vehicles from a



shared space is studied in Philippe et al. (2019). A distributed
and decentralized optimization algorithm, based on Probability
Collectives (PC), is first applied to solve ground vehicle coor-
dination problem.

The PC algorithm is an efficient optimization searching frame-
work for distributed systems, which was first proposed by
Wolpert (2006). It is a COllective INtelligence (COIN) frame-
work that emerged from game theory, statistical physics, and
optimization theory as indicated in Kulkarni and Tai (2010a).
A comparative study in Huang et al. (2005) has showed that
the PC-based approach is superior to traditional Genetic Algo-
rithm (GA) in both rate of decent and avoiding local minima.
Kulkarni and Tai (2010a) designed a perturbation approach to
improve the algorithm performances, which had been tested
and verified by benchmark functions. After that, a PC-based ap-
proach solved successfully various discrete optimization prob-
lem like Multiple Traveling Salesmen Problem (MTSP) and Ve-
hicle Routing Problems (VRP), see Kulkarni and Tai (2010a).
In an effort to solve dynamic vehicle coordination problem with
low computational time, the authors’ previous work addressed
a PC-based approach to handle intersection coordination as pre-
viously mentioned in Philippe et al. (2019). The PC algorithm
in Philippe et al. (2019) has two important qualities, namely
probabilistic nature and decentralized nature. Its probabilistic
nature allows a probability distribution over a vehicle behavior
set, guaranteeing a risk averse decision strategy. It permits also
to deal with uncertainty without inducing the deadlock of the
shared decision process. Its decentralized nature allows it to be
used without a specific infrastructure. Besides, vehicles can sig-
nificantly benefit from an acceptable computing time (around
0.2s ∼ 0.8s for the full optimization cycle). Thus, it is an in-
teresting and promising method to process the aforementioned
MUGVs navigation problem in restricted areas. To the best of
the author’s knowledge, this is the first study that handles PC in
ground traffic.

In this paper, MUGVs are provided with embedded deci-
sional devices and inter-vehicle communication tools to man-
age navigation tasks. For a group of homogeneous MUGVs
systems, most of the studies consider generally several navi-
gation issues without addressing enough risk-sensitive counter-
measures. The MUGVs operators are put forward in an ef-
fort to seek efficient and effective controls to cut off with
customer waiting time or energy consumption, see Berbeglia
et al. (2010). Unfortunately, the evaluation of uncertainties is
not considered sufficiently in these processes. Since sudden
changes in the dynamics of ground vehicles in a short time are
not realistic, Iberraken et al. (2018) and Lakhal et al. (2019)
have applied a risk assessment approach to succeed hazard
prediction for the navigation traffic. As a matter of fact, risk
minimization has been shown to be considered as a priority
in intersection coordination as indicated in Chen and Englund
(2015). Vehicles collaboration with risk management capabil-
ities is a promising way to solve this problem. Therefore, the
proposed methodology in this paper aims to provide a flexible
constraint decision-making approach that depends on the safety
requirements. The adopted risk management strategy considers
both the service quality (e.g., a fast crossing strategy) and safety
at an intersection. For this motive, this paper integrates a ε-
constraint method into the PC algorithm to add safety indicator
constraints. The formulation of ε-constraint searching scheme
in the PC algorithm is first addressed in this paper. Its key
contribution lies in incorporating a more flexible multi-criteria

decision-aids techniques into the collision prediction. Further,
it balances between the high quality strategy and acceptable
computational speed with the proposed method.

The rest of the paper is organized as follows: a conceptual
review of the PC application to intersection coordination is
introduced in Section 2. Section 3 presents the ε-constraint
method in PC algorithm. The integration of MUGVs system
and proposed ε-PC approach is shown in Section 4. A detailed
use case is given in Section 5 to validate the addressed method
for MUGVs systems. At last, conclusions and some prospects
are given in Section 6.

2. A CONCEPTUAL REVIEW OF THE PC APPLICATION
TO INTERSECTION COORDINATION

In order that the proposed paper can be simply read, let us sum-
up in what follows the already proposed PC formulation to deal
with the coordination of MUGVs in signal-free intersections
and round-abouts as shown in Philippe et al. (2019).

2.1 Formulation of searching space

Several vehicles are considered crossing through the intersec-
tion with fixed known path. Then, the only control degree of
freedom left is the speed of navigation. Vehicles should select
their actions (velocities in our problem) over a particular pre-
defined interval time to coordinate their navigation motions.
An illustration of the possible actions in fixed time windows
(T = 10s), which is long enough to permit vehicles to leave the
intersection, is depicted in Fig. 1.

Fig. 1. Example of strategies hypotheses for vehicle actions
according to their initial velocities

Apparently, in Fig. 1, there are considerable options Ni for
each vehicle i depending on the initial speed vi(0). A further
taken hypothesis is that all the vehicles will get a fixed speed
vi(T ) after a predefined action time tact (such as tact = 3s
in Fig. 1). At last, the searching space for vehicle i can be
summed up as a 3-tuple ΠΠΠ

i i.e., ΠΠΠ
i ∼ {vi(T ), tact ,Ni}, t ∈ [0,T ].

Then, the admissible member of actions set for the ego-vehicle



can be presented as Πi ∈ ΠΠΠ
i = {Πi

1, . . . ,Π
i
Ni
}. Here, Πi can

be visualized as the velocity profile in Fig. 1. The generation
of smooth speed profiles was inspired by the algorithm in
Hult et al. (2015). A solver-based optimization problem was
modeled by a quadratic cost function that considers cost on jerk
(as input u ∈ [umin,umax]) and cost on the specified reference
speeds (vi(T ),Ni). Equality constraints are included to achieve
targeted speed after the action time tact .

Vehicles in PC are regarded as individual self-interested players
in an iterative cooperation problem. Thus, the expected utility
of a given action can be calculated by each vehicle. But to
do so, the possible actions of the other vehicles must be got
(or estimated). Therefore, the Probability Distribution (PD)
have been used to model relative Ni actions for vehicle i like
q(Πi

k)∈ q(ΠΠΠi)= {q(Πi
1), . . . ,q(Π

i
Ni
)}. Obviously, the preferred

actions (or strategy) should have a high probability of being
cost-effective. The driver model used to improve the precision
of the predictive control with PD is a very active topic, but not
the main research issue in this paper. Readers are recommended
to read the review of Di Cairano et al. (2013) and Schwarting
et al. (2019) to get clearer idea about the estimation of the
PD of other ground vehicles. The hypotheses of prosocial (or
altruistic) UGVs in this paper make us formulating an uniform
distribution of all the agents’ behaviors when q(ΠΠΠi) is initially
loaded for computation.

2.2 Two steps for re-acceleration

For various collaborative navigation behaviors, vehicles choose
a speed profile that allows them to safely cross an intersection
based on an utility function (cf. Sect. 2.3). However, for vehi-
cles that have to choose the arbitrary low speed (or a complete
stop), the proposed algorithm allows them to re-accelerate. The
re-acceleration permits the vehicles to clear the intersection
as fast as possible while ensuring free collisions. Detailed re-
acceleration algorithms have been designed in the previous
work, see Philippe et al. (2019).

2.3 Objective function

In its initial formulation, the original PC approach considers
only an unconstrained minimization problem. Such a research
case generally involves n vehicles, where each vehicle i ∈ n
possesses a strategies/actions set of ΠΠΠ

i = {Πi
1, . . . ,Π

i
N}(i =

1, . . . ,n) including an equal amount of N options (cf. Sect. 2.1).
After performing a local motion planning through its on-board
embedded devices, each vehicle applies a strategy Πi

k ∈ΠΠΠ
i(k =

1, . . . ,N) during time interval [0,T ]. Here, T refers to the pre-
diction time horizon. During the period [0,T ], a particular set of
combined strategies YYY = [Π1

k ,Π
2
k , . . . ,Π

n
k ] is selected (randomly

fixed to initialise the process) to reach at least a minimum
system utility level J([Π1

k ,Π
2
k , . . . ,Π

n
k ]). The proposed objective

function (by Philippe et al. (2019)) can be formulated as given
by equation (1):

J(YYY ) =Wsep ∑
iv 6=i

max

∑
tk=1

1
dk(iv, isel f )2 +Wcross(vmax− vavg)

2 (1)

where dk(iv, isel f ) is the distance between the ego vehicle isel f
and the vehicle iv at time step tk (a discretization of t ∈ [0,T ]).
vmax refers to the maximum speed legally allowed on the road.

In addition, vavg is the average recorded speed of all the vehicles
during t ∈ [0,T ]. Wsep and Wcross are the weights to balance
between the different criterion characterizing (1): low separa-
tion and slow average intersection crossing speed. It should
be noted that the proposed J(YYY ) value is updated iteratively
during the PC algorithm execution by the agents taking part
in the coordination process. The number of iteration rounds is
about 20 ∼ 50. Thus, the searching space should be carefully
designed via an approach that ensures a sampling of “good”
quality during the first action time. Readers are encouraged to
read Philippe et al. (2019) for further information.

2.4 The draw-backs of the weighted method in original PC

As mentioned before, equation (1) is utilized without explicit
safety constraints. For several cases, a very high weight Wsep
may be admitted to penalize low separation distance to en-
sure more safe navigation. This can lead vehicles to preferably
choose arbitrary low speeds (or a complete stop). Such behav-
iors may be regarded as very conservative. In real-time traffic
navigation, UGV must have appropriate control architecture
with reliable and real-time Risk Assessment and Management
Strategies (RAMS). These targeted RAMS must reduce drasti-
cally the navigation risk in order to face sudden road hazards
and dangerous situations. Unfortunately, the work shown in
Philippe et al. (2019) does not provide a fully nil risk of col-
lision and explicit risk-sensitive strategy. Thus, this paper aims
to fill this gap and provide an ε-constraint PC algorithm (cf.
Sect. 3) to compute the corresponding multi-criteria risk man-
agement strategy to guarantee 100% collision-free navigation
in an appropriate prediction horizon.

3. RISK ASSESSMENT AND ε-CONSTRAINT METHOD
IN PC ALGORITHM

Due to the probabilistic nature of the decision making prob-
lem between vehicles, it is hard and not straightforward to
directly convert the constrains to probability space. Therefore,
several heuristic repair approaches are applied to narrow the
optimal solution, see Kulkarni and Tai (2010b). The elevated
computational load limits thus the use of the PC approach in
real-time environment. Kulkarni and Tai (2011) then handled
these constrains by a penalty function method while knowing
that the appropriate weights parameters (between sub-criteria)
are not easy to be precisely obtained. In the proposed paper,
the existing ε-constraint method inspired by Haimes (1971) is
used in addition to the PC algorithm to solve the multi-criteria
safety assignment MUGVs coordination problem. In this paper,
a 2D Time-To-Collision (TTC) (cf. Sect. 3.1) is introduced as a
constraint indicator in subsection 3.1. Accordingly, the assumed
ε-PC will be detailed in sub-section 3.2.

3.1 2D TTC as a safety management indicator

As mentioned before, the previous work needs a risk assess-
ment approach to succeed in the road hazard prediction. Thus,
the TTC is used as a predictive safety measure of vehicle’s
trajectory. TTC is a risk indicator that describes the remaining
time for a probable collision (i.e., traffic crash) between two
vehicles as shown in Lakhal et al. (2019); Ben Lakhal. et al.
(2020). It was originally defined by Hayward (1972) in car
following scenarios. Generally, TTC can measure a road-user’s
time to react. To calculate TTC in two dimensions, we simply
consider a collision of two circles as shown in Fig. 2.



Fig. 2. Example of 2D TTC in two dimensions navigation

As one may notice that it is a “collision” of two circles (not a
real crash of two vehicles). We use these circles to anticipate
real accident. Here, 2r can be seen as vehicle length. In spite
of sacrificing some accuracy, the 2D TTC between vehicles i, j
can be more easily formulated in two dimensions as:

[(xi(t)+ ẋi(t) ·T TCi j)− (x j(t)+ ẋ j(t) ·T TCi j)]
2

+[(yi(t)+ ẏi(t) ·T TCi j)− (y j(t)+ ẏ j(t) ·T TCi j)]
2

= (2r)2

(2)

In equation (2), (xi,yi) and (x j,y j) are the position of vehicles i
and j at time instant t ∈ [0,T ]. ẋi(t), ẋ j(t), ẏi(t) and ẏ j(t) denote
the relative speeds measured in x,y directions. Accordingly, we
can get a polynomial function of the 2D T TCi j, which can be
solved by a quadratic discriminant. If there are real roots in (2),
we can take the positive lower value as the nearest 2D TTC. For
cases where roots are negative or equal to zero, it represents the
collision that happened or will never happen with this dynamic.

In this paper, the objective of MUGVs system is to maximize
the final agents’ critical 2D TTC to improve the navigation
safety. Thus, the corresponding objective function is defined as:

JT TC(YYY ) = min
i,i∈{1,2,...,n}(i6= j)

{T TCi j(YYY )}

YYY = [Π1
k ,Π

2
k , . . . ,Π

n
k ](k = 1, . . . ,N)

Π
i
k ∈ΠΠΠ

i = {Πi
1, . . . ,Π

i
N}(i = 1, . . . ,n)

(3)

Where min{T TCi j(YYY )} represents the minimum TTC value of
the most critical situation between n agents in the prediction
horizon t ∈ [0,T ] within vehicles’ combined actions/strategies
YYY . It aims to maximize the JT TC for more safety response to the
concerned situation. Above all, an optimization problem can be
formulated by considering equations (1) and (3). To handle the
2D TTC constraint, ε-PC algorithm is addressed in next section.

3.2 ε-constraint method in PC algorithm

The original PC algorithm focuses on a straightforward task
with only one objective function as shown in (1). Nevertheless,
the MUGVs system needs to deal with RAMS as suggested
by the discussion given in Sect. 2.4. The ε-constraint method,

which was firstly proposed by Haimes (1971), can be intro-
duced to handle this trade-off problem. Only one objective
function is optimized in that method, while others are converted
into constraints with a permitted value ε by a limited range. In
our case, the objective function JT TC in (3) can be adopted as
a constraint during optimizing the main objective function J
in (1). Hence, the transformed objective function in PC algo-
rithm is formulated as below:

min J(YYY )

sub ject to YYY = [Π1
k ,Π

2
k , . . . ,Π

n
k ](k = 1, . . . ,N)

Π
i
k ∈ΠΠΠ

i = {Πi
1, . . . ,Π

i
N}(i = 1, . . . ,n)

JT TC(YYY )≥ ε

(4)

We state the following theorems from Miettinen (2012):
Theorem 1. If objective J and vector ε = (ε1, . . . ,εm) exist,
such that YYY ∗ is an optimal solution to the problem (4), then YYY ∗

is a weakly Pareto optimal solution.
Theorem 2. YYY ∗ is a strict Pareto optimal solution if and only if,
for objective J, there exists a vector ε = (ε1, . . . ,εm), such that
YYY ∗ is the unique objective vector corresponding to the optimal
solution of the problem in equation (4).

An advantage of the ε-constraint method, as formulated in
equation (4), is that we do not need to scale different objective
functions by adding weights. The obtained solution, if it exists
in (4) with a given parameter ε = (ε1, . . . ,εm), is proved to
be a weakly Pareto optimal solution as indicated by Theorem
1 and Theorem 2. Actually, the Pareto front can be obtained
by varying the vector ε . To find an efficient solution (that
means close to a strict Pareto optimal solution) in problem
(4), selecting an appropriate ε is the key. Accordingly, for
calculating a more efficient solution, we must have at least the
range of constraint objective function JT TC. Unfortunately, the
calculation of the JT TC range in searching space is not a trivial
task. The worst value is hard to compute, while we can get
the best value in an individual optimization. Hence, a general
selection of εm can be provided by (5):

JT TC(YYY ∗in f )≤ εm ≤ JT TC(YYY ∗sup) (5)

Where YYY ∗in f is the optimal solution of single optimal prob-
lem (1) for minimum objective function J without any con-
straint, and YYY ∗sup is the optimal solution for single optimal prob-
lem that maximizes JT TC in equation (3) in a predefined search-
ing space. After that, for the bounded value in equation (5),
we define the range of normal JT TC values as JT TC(YYY ∗sup)−
JT TC(YYY ∗in f ) in problem (4). Note that, with the ε-constraint,
we can get different efficient solutions close to a strict Pareto
optimal solution. Therefore, more rich and flexible solutions
are preferred in the applied traffic scenario. Mavrotas (2009)
proposed to divide the ε range into p equal intervals by p+ 1
“grids points” like the following:

εm = JT TC(YYY ∗in f )+(JT TC(YYY ∗sup)− JT TC(YYY ∗in f )) · (
m
p
)

(m = 0,1, . . . , p)
(6)

It is also essential to note that too small equal intervals will lead
to ineffective 2D TTC constraint for safety sensitive solution.
Let us consider equation (6), we can also get efficient solutions



by properly adjusting the number of “grid points” gradually
increasing εm by real-life referential signs and linear logic. An
indicator σ(εm) to interpret the linear relationship between J
and JT TC with different εm is calculated as in equation (7):

σ(εm) =


1 if εm = εp

εm− JT TC(YYY ∗in f )

JT TC(YYY ∗sup)− JT TC(YYY ∗in f )
others

0 if εm = ε0

(7)

To sum up, the advantages of ε-constraint method are:

• ε-constraint method in PC algorithm avoids scaling multi-
objective targets by changing too many weights.
• the number of efficient vehicle’s actions can be chosen

by properly adjusting the predefined grid points p. The
membership function σ is designed to be adaptable.
• the feasible solutions obtained after the optimization are

indeed Pareto optimal solutions.

A simple remedy in order to bypass the difficulty of estimating
the worst values of the searching results (e.g., JT TC(YYY ∗in f ) with
optimal YYY ∗in f in (1) for minimum J) is to define reservation
values for the objective functions as shown in Mavrotas (2009).
Thus, we only need to calculate the maximum JT TC(YYY ∗sup) in
conventional PC algorithm. To calculate JT TC(YYY ∗sup), several
approximate methods, as the greedy heuristic search in Talbi
(2009) for example, are recommended as fast initialization al-
gorithms. To have a reference set of normal TTC assumption,
the observed minimum TTC threshold depends on traffic sce-
nario approximating 1.5s ∼ 4.5s, see Coffey and Park (2020).
We capture minimum TTC threshold as 1.5s in our case.

4. MUGVS SYSTEM WITH ε-PC FRAMWORK

For proper analysis of the intersection cooperation, it is as-
sumed that the proposed ε-PC algorithm is iteratively running
on embedded navigation system. Vehicles in MUGVs system
can communicate their actions/strategies (cf. Sect. 2.1) between
each others. Thus, the on-board ε-PC can find sequentially an
approximated optimal solution with respect to problem (4). A
current best joint strategy YYY ∗cur,i will be stored after a compari-
son of all solutions in vehicles i. The basic outline of the ε-PC
algorithm to find YYY ∗cur,i is presented as Algorithm 1 in the view
of the ego-vehicle with the index i.

The proposed ε-PC is supposed to converge to the optimal
results when the algorithm reaches the maximum permitted
iterations or if the optimized results do not change in the prede-
termined number of iteration rounds. In addition, to discover
more PC procedures of updating strategy probability distri-
bution in Algorithm 1, readers are recommended to refer to
Kulkarni and Tai (2010a). Further, the all time best solution
YYY ∗opt will be directly shared and applied in the predefined time
horizon [0,T ] (cf. Sect. 2.1). Additionally, to integrate the risk
constrained (i.e., 2D TTC) motion in MUGVs system, the ε-
PC will identify the best solution YYY ∗opt with a predefined “grid
point” εm as mentioned before. The algorithm is executed out-
side the main PC loop. Considering the decentralized quality in
the supposed case, it is likely to set the same control protocol
for each vehicle. Hence, the accompanying pseudo code is also
shown in Algorithm 2.

Algorithm 1: Vehicle i on-board ε-PC

Input: Possible actions ΠΠΠ
i,(i = 1, . . . ,n)

Input: According probability q(ΠΠΠi)
Output: Current best joint strategy YYY ∗cur,i

Output: Updated self-probability q(ΠΠΠi
sel f )

1 initial uni f ied probabilities q(ΠΠΠi
sel f )

2 while no convergence o f ε-PC optimization do
3 for each Πi

sel f ∈ΠΠΠ
i
sel f do

4 YYY cur,i ← Πi
sel f

5 YYY cur,i ← Randomly sample Πiv , iv 6= i
based on the probabilities q(ΠΠΠiV )

6 Compute expected utility E(YYY cur,i)
w.r.t. equation (4)
EEE(YYY cur)← E(YYY cur,i) Store in a vector

7 q(ΠΠΠi
sel f )← PC Optimization w.r.t. EEE(YYY cur)

8 if J(YYY cur,i)< J(YYY ∗cur,i) then
9 YYY ∗cur,i← YYY cur,i;

10 return YYY ∗cur,i,q(ΠΠΠ
i
sel f );

Algorithm 2: MUGVs system ε-PC framework
Input: Each vehicle i current best joint strategy YYY ∗cur,i
Input: Pre-selected grid point εm
Output: All time best joint strategy YYY ∗opt ,Π

i
opt

1 initial Boolean value BET T ER = 0,SAFE = 0
2 while no convergence o f ε-PC optimization do
3 for each YYY ∗cur,i do
4 if J(YYY ∗cur,i)< J(YYY ∗opt) then
5 BET T ER = 1
6 if JT TC(YYY ∗cur,i)> εm then
7 SAFE = 1
8 if BET T ER & SAFE then
9 YYY ∗opt ← YYY ∗cur,i

10 reset Boolean value BET T ER = 0,SAFE = 0

11 Store YYY ∗opt in all the vehicles
12 if convergence o f ε-PC then
13 Obtain YYY ∗opt as all time best solution;
14 Concatenating YYY ∗opt with optimal strategy Πi

opt ;

15 return YYY ∗opt ,Π
i
opt ;

5. EXPERIMENTAL VERIFICATION OF ε-PC

The experiments were run by a program developed in MAT-
LAB with a computer of Core i5, 2.30GHz and 8GB RAM.
Main parameters considered in the scenario are summarized in
Table 1:

Table 1. Parameters and initial states

Parameters Value Parameters Value
(x1,y1) [−20,−2.5] [m] [vmin,vmax] [0,10] [m/s]
(x2,y2) [20,2.5] [m] Ni 10
(x3,y3) [2.5,−20][m] Wsep 1
v1(0) 6.0 [m/s] Wcross 10
v2(0) 5.0 [m/s] Tsample 0.1 [s]
v3(0) 5.5 [m/s] r 1.5 [m]



Three vehicles including left-turn maneuvers at an intersection
were set in the simulation scenario (see Fig. 3 and Fig. 5 for ex-
ample). To evaluate the proposed method, contrast experiments
between original PC and ε-PC are given in the simulation (see
respectively videos given in https://bit.ly/2PoYfjQ).

We highlight at first that the proposed approach can guarantee
plan collision-free path in experiments. In original PC, the cost
function considered by MUGVs system includes the average
crossing time (altruistic objective) and the separation distance
as shown in equation (1). The simulation results are illustrated
in Fig. 4.

Fig. 3. Critical situation with the original PC

Fig. 4. Performance indicators: distance, velocity and 2D TTC
in MUGVs system with original PC

Because the control effort has been focused on the crossing time
(Wcross >Wsep, see Table 1), the original PC method attempted
to maintain a fast crossing speed when it was applied in the
simple-yet-dangerous scene like Fig. 3. Thus, there is a low
probability but high impact to choose extreme strategy which
allows all vehicles to accelerate as shown in Fig. 4 (a). Such

speed growth had led to a collision as the distance indicator
exhibited in Fig. 4 (b): the distance between vehicle 2 and 3
(purple line) violated the safety limit of 2r = 3m. The 2D TTC
profile of this two-vehicle also collapsed to zero during the
collision as Fig. 4 (c).

In a comparison, ε-PC made vehicle 1 to maintain current speed
at the beginning two seconds in order to increase the distance
between adjacent vehicles as indicated in Fig. 6 (a). Due to the
threshold constraint of ε ≥ T TC = 1.5s with respect to equa-
tion (4), only the feasible solutions respecting the constraints
will be reserved in the ε-PC searching procedure. As a matter
of fact, the proposed ”ε-Constraint” in the bounds is to correctly
estimate the trade off between crossing time and risk which we
aimed to achieve safe and optimal trajectory schedule. Because
the strategy hypotheses include full stop actions to avoid the
extreme situation. Thus, a 100% free collision navigation can be
guaranteed in the whole time horizon [0s,10s] as the indicator
of distance and 2D TTC underline in Fig. 6 (b) and Fig. 6 (c).

Fig. 5. Critical situation with the ε-PC

Fig. 6. Performance indicators: distance, velocity and 2D TTC
in MUGVs system with ε-PC



Secondly, several ε-constraint values are carried out to high-
light the performance of the proposed method in the previous
scenario. The approximated maximum JT TC(YYY ∗sup) = 2.8975 is
fixed for the MUGVs system by initially using the heuristic
searching (detailed in Sec 3.2). Here, the reservation value
JT TC(YYY ∗in f ) is set equal to 1.5s for a minimum 2D TTC in whole
time horizon [0s,10s]. After that, several grids point are used in
the range of 1.5 ≤ εm ≤ 2.8975 to get a constraint set εi and
membership function σ(εi) as presented in Table 2.

Table 2. Parameters and initial states

εi σ(εi) average Tcross iterations JT TC

Trial 1 0 - 3.60 [s] 20 0.04 [s]
Trial 2 1.5 0% 4.70 [s] 21 2.07 [s]
Trial 3 2 36% 4.70 [s] 21 2.07 [s]
Trial 4 2.5 72% 3.93 [s] 26 2.51 [s]

It is instructive to note that the original PC algorithm, which
does not use any 2D TTC constraint (i.e., ε = 0), shows a
fastest crossing time with a lowest performances of 2D TTC
as expected. Increasing εi with weighting more on the mem-
bership function σ(εi) can generally provide more better tem-
poral margins of 2D TTC while increasing vehicles average
crossing time. However, ε-PC can still avoid conservative ac-
tions/strategies with low crossing time in dangerous situation
as in trial 4 (about 1.33s late than trail 1). Moreover, the in-
creasing iteration numbers implies that the convergence of the
model needs more execution time. Therefore, MUGVs system
has potential applications in different navigation environments
when a proper selective ε-constraint model is designed.

Lastly, we investigate the influence of increasing vehicle num-
ber with ε-PC. MUGVs size ranged from three to six members.
The average crossing time and iteration number regarding to the
execution time are depicted in Fig. 7.

Fig. 7. Effect of vehicle number on the performance of ε-PC

The average crossing time shown in Fig. 7 did not decrease
too much (from t = 4.70s to t = 5.22s) after increasing the
vehicle number. However, the outliers observed mean that an
additional intermediate action (decelerate or accelerate) has
been undertaken for individual vehicles. The iteration number
plots show a non-linear increase in execution time with respect
to the number of vehicles involved in the MUGVs system.

To summarize, the proposed method guarantees 100% of non
collision between vehicles. Despite its sensitivity to the number

of vehicles present in the considered intersection, the navigation
still fluid i.e., operational and not too conservative. Notably,
in a real situation at intersections, the maximum number of
vehicles in cooperation will not exceed logically 10 vehicles
for instance. Hence, the obtained results demonstrate that the
proposed method is promising in solving navigation problems
in intersections.

6. CONCLUSION

This paper proposed a distributed optimal approach for dy-
namic MUGVs navigation system with risk-sensitive manage-
ment strategy. The proposed formulation uses the PC theory,
which is a promising convex probability searching method, to
optimize such a distributed problem. Vehicles in the MUGVs
system only need to update the PD of actions set instead of
searching best combined strategy in a non-linear objective func-
tion. Furthermore, in real-time traffic navigation, the proposed
approach must have reliable behaviors to afford the demand of
Risk Assessment and Management Strategies (RAMS) system
in order to deal with sudden road hazards and risky situations.
Therefore, a key safety indicator 2D TTC has been used as
a risk assessment measure to impact vehicle’s decision. We
modeled the TTC in two dimensions and assume that the mini-
mum 2D TTC value in MUGVs is the corresponding objective
function. Such an application with the proposed ε-PC lead to
promising results. Thanks to the proposed method, an approx-
imate optimal and feasible solution can always be reached to
provide risk margin in final actions/strategies. The proposed
ε-PC can be applied in trajectories tracking, maneuvers warn-
ing/assisting or directly as feedback control law in MPC. The
experiments shown in the paper prove the efficiency of the
proposed ε-PC, and also the reliability of the 2D TTC as a risk
indicator to guarantee a 100% no constraint violation even in
extreme situations. Besides, the ε-PC will be implemented in
real vehicles with better C coding for real-time experiments.
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