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Abstract. Driving is a complex task gathering strategic decision-making, ma-
neuver handling and controlling of the vehicle while accounting for external fac-
tors, traffic rules and hazard. The purpose of researchers in this field is to develop
the necessary autonomous system able to: Assess the risk in the surrounding en-
vironment; Take appropriate decision in nominal driving situation; Execute the
decided maneuver; Verify the safety and coherence of the executed maneuver
and plan evasive maneuvers if required. This paper focuses its attention on this
latter task and propose a multi-hypothesis evasive strategy able to cope with any
dangerous traffic situation involving single or multi-risk configurations happen-
ing simultaneously or at different moments. It is based on the combination of a
Bayesian decision network that calculates discrete evasive action maneuver based
on defined situational criteria, an exhaustive evasive trajectory generation that
considers multi-hypothesis kinematic and dynamic configuration and a multi-
criteria optimization (based on evolutionary algorithm, the Covariance Matrix
Adaptation Evolution Strategy (CMA-ES)) that is dedicated for the control part
related to the advised collision-free evasive maneuver under constraints. Several
simulations show the good performance of the overall proposed evasive strategy
and its ability to handle various situations.

Keywords: Autonomous Driving, Bayesian decision-making, Evasive maneu-
ver, Multi-Hypothesis Trajectory Generation, Multi-Risk, Evolutionary optimiza-
tion.

1 Introduction

The need of an efficient decision-making system (is rising as the ultimate challenge in
nowadays research. The main reason is that decision-making is located at the high-
est level of the automotive architecture. Despite several years of developments and
the rich literature in this domain, there is unfortunately not yet a fully generic solu-
tion that deals with all kinds of scenarios. For this reason, guaranteeing the complete
safety of autonomous vehicles is of main importance [1,2], especially in highly dynamic
and uncertain environments/situations. This objective becomes very challenging due to
the uniqueness of every traffic situation/condition. One solution is to always verify the



safety of the decided/planned maneuvers during the vehicle’s navigation. This will give
the ability to the system to abort automatically in case of any unexpected approaching
objects, such as other objects and road users, entering the planned course of the vehicle.
The vehicle must then be able to replan by determining an alternate route, i.e., the emer-
gency trajectory, which the car will pursue instantly to avert an accident and guarantee
safety all the time. This has been called in the literature online safety verification [3] or
formal verification and answers to this challenge. It has been used in many works of the
literature [2–4]. Because maneuvers are verified online while using safety verification
techniques, the ability of the system to re-plan and evade a dangerous situation be-
comes possible. Emergency scenarios may necessitate maneuvering up to the vehicle’s
handling limits in order to avoid collisions [5]. The common used methods [6, 7] and
the one from very early work related to emergency situations is to simultaneously plan
a nominal and an emergency trajectory in order to guarantee the safety of the vehicle
controller. However, generating an emergency maneuver for each time step is compu-
tationally expensive and often not needed, and an evasive strategy that is called as a
last resort is preferable. Unlike other works, our approach proposes to plan evasive ma-
neuver online and guarantee safety with respect to any future motion of obstacles. This
paper presents a single and multi-hypothesis evasive strategy to cope with any dynamic
traffic situation. In the first place, an overall Probabilistic Multi-Controller Architecture
(P-MCA) (initially motivated in [8] and developed in more details in [9]) is presented in
Section 2 for safe automated driving under uncertainties in order to clarify some nomen-
clature used in this work. Then, it is proposed in Section 3 a multi-hypothesis evasive
strategy able to cope with various traffic situation involving consecutive or simultane-
ous unexpected behavior. A Sequential Decision Networks for Maneuver Selection and
Verification(SDN-MSV) first calculates the discrete evasive action maneuver based on
defined situational criteria. Then based on this decision, an exhaustive evasive trajectory
generation is performed that considers multi-hypothesis kinematic and dynamic config-
uration in order to find the adequate configuration. Finally, a multi-criteria optimization
algorithm generates the corresponding low-level control that allows the ego-vehicle to
pursue the advised collision-free evasive maneuver. At the same time, we minimize
jerk, punish high acceleration and curvature rate to provide enhanced comfort for pas-
sengers.

2 Probabilistic Multi-Controller Architecture (P-MCA)

The Probabilistic Multi-Controller Architecture (P-MCA) shown in Fig. 1 has been pro-
posed around several interconnected and complementary modules (detailed in previous
work for some of them [8]) to plan/control and to assess and manage the risks of auto-
mated driving system in dynamic and uncertain environments. It aims at decomposing
the overall complex task into a multitude of sub-tasks to achieve. Once the perceptive
and route planning features are defined, an appropriate decision-making strategy for
safe navigation has to be adopted. The decision-making relies on a data-driven approach
and is modeled as a sequencing of decisions that an autonomous vehicle should take by
the means of a Sequential Decision Networks for Maneuver Selection and Verification
(SDN-MSV) (block 2c in Fig. 1, initiated in [8]). It utilizes multiple complementary



Fig. 1: Probabilistic Multi-Controller Architecture (P-MCA) for AVs.

metrics (block 2a and 2b in Fig. 1) to assess and verify the overall surrounding environ-
ment by evaluating the collision risk with all observed vehicles. This is performed in the
aim of deriving the appropriate maneuvers in a given traffic situation. The SDN-MSV is
composed of three decisions. Decision1 is the choice of action regarding the most suit-
able maneuver (such as lane changing or lane keeping). Decision2 (proposed in [10])
consists in a safety verification mechanism that acts as an anomaly detector and aborts
the maneuver in case of confirmed anomaly. Decision3 is the evasive action decision
(proposed in [11]) where in case the verification procedure from Decision2 advises to
abort the maneuver, the system output the discrete evasive action.

The common task for automated driving system after the decision-making is to ap-
ply the decided maneuver by determining a nominal trajectory. This is performed in
block (3a) and block 5 in Fig. 1 through the shown elementary controller (more details
can be found in [8]). The maneuver must therefore be aborted automatically in case
of any unexpected approaching road users entering the planned course of the vehicle.
The system must define then an evasive strategy to determine an alternate route, i.e.,
the emergency trajectory or low-level control (block 4 in Fig. 1, detailed in section 3)
which the vehicle should adopt instantly to avert the possible accident. Following up on
our previous work [9, 11], the evasive strategy is further developed (cf. section 3), and
is proposed an exhaustive evasive trajectory generation that considers multi-hypothesis
kinematic and dynamic configuration to cope with any dangerous traffic situation in-
volving single or multi-risk configurations happening simultaneously or at different mo-
ments. Furthermore, a multi-criteria optimization is performed that takes into account
the mentioned exhaustive process and is able to generate the corresponding low-level
control that allows the ego-vehicle to pursue the safest and most comfortable advised
collision-free evasive maneuver.



3 Evasive strategy

3.1 Problem statement

During the maneuver achievement, it is necessary to foresee possible refuge maneu-
vers, to deal with sudden detection of anomalies/threats, which can lead to risky situ-
ation. This is performed through the SDN-MSV where Decision3 is proposed in order
to select the evasive maneuver/behavior which should be activated. Decision3 relies
on two observations: the required deceleration areq for emergency braking with regard
to the vehicles’ maximum capacities and on the endangered lanes ELane i.e., the lanes
where the anomaly is detected. The possible outputs are: Emergency Braking, Emer-
gency Lane Change. This allows us to check if a braking maneuver alone is sufficient
to avoid a collision, as this is often considered to be the most comfortable maneuver for
passengers. The diagram given in Fig. 2 illustrates the procedure for computing these
evasive maneuvers. We assume to be known a priori the initial state x, the set of sur-
rounding Obstacle-vehicles SO, the reference trajectory and the lanes’ information as
well as the trajectory predictions. We also assume that the vehicle is at the right most
lane to better exemplify our methodology. Note that motion planning and prediction is
not the focus of this work; readers are referred to [8]. In the case where the evasive
decision is to perform an emergency braking, applying areq on the ego-vehicle is suffi-
cient to guarantee safety. This is feasible since the longitudinal constraints required in
order to reach a desired stopping inter-distance, are already satisfied by the procedure
to deduce the required deceleration areq ≤ amax (the soundness of areq has been shown
in [11]). The lateral constraints are satisfied thanks to the already developed controller
for lane keeping within the global architecture P-MCA (cf. Fig. 1, [8]). Otherwise, a
collision may be avoided by swerving to another lane. This swerve can be performed
either by changing lane to the right or to the left. For these situations, a single hypoth-
esis (nominal trajectory) (cf. section 3.2) is generated to check at first if an evasive
lane change (either to the left or to the right if no left lane is available) is sufficient
to avoid collisions. Otherwise, an exhaustive evasive lane change trajectory generation
over a prediction horizon Tpred is performed with multiple-hypothesis kinematic and
dynamic configuration in order to find the set of possible and feasible trajectories (cf.
section 3.3). In this case study, an Emergency Stopping Lane (ESL) exists explicitly in
the environment and the lane change right leads also to it as last resort. However, the
proposed overall methodology could be applied if any other free space alternative exists
that we call in this paper “refuge zone”.

To better understand the proposed methodology, in what follows it is presented the
case of a single hypothesis (nominal trajectory) evasive prediction profile compared to
the multiple-hypothesis configuration used in this paper in emergency situations.

3.2 Single hypothesis evasive prediction profile

After the SDN-MSV outputs Decisions3 for the emergency lane change evasive de-
cision, it is first checked if a left lane change maneuver is possible with the nominal
configuration of the state and velocity at the time of the anomaly. The ego-vehicle pre-
dicted trajectory for lane change maneuvers are dimensionned to take into account a



longitudinal temporal safety distance ts with respect to the obstacle-ahead, and a min-
imum lateral distance Ldistance with respect to the geometry of the road (more details
can be found in [8]) On the other hand, we suppose that the obstacle-vehicles follow
a global path already defined to be the center-line of the lane. The adequate predicted
trajectories (of the concerned vehicle pair) are generated over the prediction horizon
Tpred based on the above definition while taking the nominal configuration of the ve-
locity and initial state at the time of the anomaly. These predictions are used in order
to define a reference predicted inter-distance profile (called Optimal Predicted Inter-
Distance Profile (OPIDP)) and a reference predicted angular profile (called Optimal
Predicted Angular Profile (OPAP))) to follow (cf. Fig. 3), that allow us (if precisely
followed) to find the best control sequence u(t) (through the use of a multi-criteria
optimization (cf. subsection3.5)) in order to perform the safe evasive action. The refer-
ences are calculated for each endangered vehicle pair (ego/obstacle–vehicle). They are
updated as soon as the used prediction are imprecise, or any other anomaly is detected
through Decision2. Thus, as long as the proposed evasive strategy has enough good pre-
diction of the movement of the obstacle-vehicle, the pertinence of OPIDP and OPAP

 Yes No
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Fig. 2: Overall procedure for computing evasive maneuvers



Fig. 3: Single Hypothesis Prediction Profile.

are completely justified. In summary, the optimal profiles OPIDP and OPAP allows, if
precisely followed, to deduce two properties:

– Property 1 Ensure a safe evasion since the future progress of the OPIDP must
always ensure that the vehicles will never have an inter-distance lower than the
minimal distance dmin.

– Property 2 Constrain the vehicle to stay within the road range.

An example of the resulting profiles is shown in Fig. 3 for a given vehicle configura-
tion. In this two lanes configuration, the ahead obstacle-vehicle in front suddenly brakes
and comes to standstill and the adjacent lane is free. In this case, the single hypothesis
for a lane change left is feasible as the minimal distance thresholds dmin is guaranteed
as we can see it in the figure. However, in another situation, where for example in ad-
dition to the anomaly of the ahead obstacle-vehicle, a fast vehicle is detected coming
from behind in the left lane, the single hypothesis is not sufficient as will be seen in the
simulation results (cf. section 4.2).

3.3 Multi-hypothesis evasive prediction profile

For the case of emergency lane change, an exhaustive evasive lane change trajectory
generation over a prediction horizon is performed with multiple-hypothesis kinematic
and dynamic configuration in order to find the Set of Possible and Feasible Trajectories
(Called SEgo). The resulting set is used in order to compute the feasible set of pre-
dicted inter-distance profile. The predicted inter-distance is calculated between the set
of generated trajectories of the ego-vehicle and the predicted trajectory of the targeted
obstacle-vehicle, following the same principle used in the single hypothesis use case
for each individual trajectory from the set. An additional filtering stage is performed to
remove the profiles that violates a minimal distance requirement dmin in order to keep
the collision-free profiles. These profiles set are called Set of Predicted Inter-Distance
Profile (SPIDP). In what follows, is detailed the lateral and longitudinal parameters used
to generate SEgo.

Lateral motion parameters for trajectory generation Lateral acceleration is caused
by turning or by making lane changes. If the vehicle can maintain an appropriate speed



when approaching the turn of a road, the lateral force will be limited, and passengers
will feel more comfortable. As explained in section 3.2, the used lane change trajectory
generation strategy is based on Elliptic Limit cycles (ELC) [12,13] that have as parame-
ters a longitudinal temporal safety distance ts for the major axis, and a minimum lateral
distance Ldistance for the minor axis [8]. We considered, in this work, the formalization
of the minimal lateral distance proposed in the Responsibility Sensitive Safety (RSS)
framework [1]. This formalization takes into account the maximum and minim lateral
acceleration possible, which is compatible with our reflection.

dlat
min = µ +

[
v1 + v1,ρ

2
ρ +

v2
1,ρ

2alat
min,brake

−

(
v2 + v2,ρ

2
ρ−

v2
2,ρ

2alat
min , brake

)]
+

(1)

v1 and v2 be the lateral velocities of the vehicles c1 and c2. v1,ρ denotes v1 +
ρalat

max , accel and v2,ρ denotes v2 − ρalat
max accel . The reaction time is given by ρ . The

lateral safe distance dmin is then the distance required such that both vehicles can apply
an acceleration alat

max , accel toward each other during the reaction time ρ , then minimally
decelerate with alat

min,brake until zero lateral velocity, while still maintaining at least a µ

distance. Taking the lateral acceleration applied in the literature as reference, the bounds
of this study’s (cf. Table 1) have been fixed based on the baseline values provided by
NHTSA’s definition of a Near-Crash [14]. As a guide, subject vehicle braking greater
than 0.5g or steering input that results in a lateral acceleration greater than 0.4g to avoid
a crash constitutes a rapid maneuver.

Parameters (units) Bounds or value Parameters (units) Bounds or value
amax,accel(m/s2) [3.5,7.84] amin,accel(m/s2) [1,3.5]
amax,brake(m/s2) [−7.84,−3.5] amin,brake(m/s2) [−3.5,−1]
ts(s) [0.5,3.5] alat

min,brake(m/s2) [−2,−1]
alat

max,accel(m/s2) [1,5.88] ρ 0.2
mu 0.2 |δmax| π/6

Table 1: Summary of parameters

Longitudinal motion parameters for trajectory generation As for the longitudinal
motion, the trajectory predictions were varied longitudinally in two ways. By varying
the longitudinal acceleration and by varying the longitudinal temporal safety distance
ts of the defined predicted lane change trajectory. Taking the longitudinal acceleration
applied in the literature as reference [15, 16], the bounds of this study’s (cf. Table 1)
have been fixed while taking into account the standard maximum/minimum comfort-
able acceleration/deceleration used in the literature. We chose amin,accel to represent
accelerations at the limit of comfort, and amax,accel was chosen to represent a hard,
uncomfortable accelerations. The same goes for amin,brake and amax,brake. The predic-
tion are also bounded to a maximal velocity vmax. The standard maximum comfortable
deceleration is usually fixed between -3 to -3.5 m/s2. On the other side, the maximum



deceleration value is obtained from the values of tire friction on dry condition for an au-
tomobile which is µauto = 0.8 which gives amax =−7.84m/s2 by assuming g = 9.8m/s2.
The bounds of the longitudinal temporal safety distance ts was chosen based on the hu-
man driver minimum TTC that is distributed between 0.5 and 3 s in safety-critical event
with regard to kinematic criteria according to the analysis performed on the SH-NDS
data [16].

The choice of reference prediction profiles The resulting overall set of trajectories
SEgo are shown in Fig. 4a and were generated while performing an iterative process
over all the various configuration detailed above. A filtering stage is then performed
to remove the profiles that violates the minimal distance requirement dmin in order to
only keep collision-free profiles. Then, the reference profile is selected as the closest
to the middle of the feasible bounds. This is justified by the fact that we want to fa-
vor smooth and comfortable trajectories, but also maintain a high margin of action to
account for uncertainties and possible future changes in the environment. The result-
ing set of predicted inter-distance profile (SPIDP) is shown in Fig. 4b and highlighted
in purple the Optimal Predicted Inter-distance Profile (OPIDP). In practice, in order to
reduce the processing time induced by the iterative process and to favor comfortable
behavior if possible, we gradually check a combination of longitudinal-lateral motion
from the defined bounds by starting by the most comfortable ones. The Optimal Pre-
dicted Angular Profile (OPAP) is generated afterwards in order to constrain the vehi-
cle to stay within the road range. The OPIDP and OPAP are then used as the refer-
ence set-point to an optimization algorithm based on the Covariance Matrix Adaptation
Evolution Strategy (CMA-ES) that computes the corresponding low-level control se-
quence u(t) = (v(t),δ (t))T in order to achieve the safe evasive action. Indeed, instead
of planning and re-planning the trajectory that must be followed by the ego-vehicle,
it is imposed on the ego-vehicle to stay within the boundaries of the reference SPIDP.
To summarize, in addition to the properties (1 and 2) defined for the single hypothesis

(a)

(b)

Fig. 4: (a) Multi-Hypothesis lane change left evasive trajectories (b) Set of Predicted
Inter-Distance Profile (SPIDP)



use case, the multi-hypothesis optimal profiles ensures that the resulting behavior of the
vehicle: favors comfortable acceleration in the lateral and longitudinal direction, allows
higher maneuverability and smooth changes in the evasion and account for possible
uncertainties in the states. Additional constraints are considered in the multi-criteria
optimization, such as: the jerk and the suppression of high steering rates to guarantee a
further smooth and comfortable trajectory.

3.4 Multi-risk management

The minimal distance requirement along the fact that Decision2 for the safety verifica-
tion is continuously updating during navigation, guarantees the ability to avoid colli-
sions as well as to detect any new dangerous situation. In this latter case, another profile
or space alternative has to be found according to the driving situation. A loop-back from
the old evasive solution is made towards the initialization of the evasive algorithm in
order to find an evasive solution considering this new situation. The references are up-
dated for each new detected endangered vehicle pair (ego/obstacle–vehicle) and a new
evasive maneuver has to be calculated according to flowchart in Fig. 2. Our proposed
approach handles these kinds of situations and some simulation use-cases will be shown
in section 4. However, if it is not possible to find any refuge zone or profile that guar-
antees the above condition, in this case we may consider collision mitigation. Collision
Mitigation is not considered in this work but can be included in the presented archi-
tecture. Otherwise, if the situation is not changed, the vehicle purse its initial evasive
maneuver during the defined prediction horizon Tpred . Once the safety state is reached
(after the defined horizon passes), the vehicle purses its way according to the defined
overall P-MCA (cf. Fig. 1).

3.5 Multi-objective function

The optimal sequence u(t) = (v(t),δ (t))T is defined as the one that minimizes a global
function that combines both the error objective functions related to OPIDP and OPAP
and is defined as the following:

J[u(t)] =

t0+Th∫
t0

F [u(t)]dt (2)

with

F [u(t)] =
nobstacles

∑
i=1

(
wdi fOPIDPi + wai fOPAPi

)
(3)

Where, for the concerned ego/obstacle –vehicle pair:

– fOPIDP is the absolute value of the error between the reference OPIDP and the
expected inter-distance when applying the control sequence u(t) at a given time.

– fOPAP is the absolute value of the error between the reference OPAP and the ex-
pected inter-angle when applying the control sequence u(t) at a given time.



The time t0 is the current time, Th is the time horizon in the interval, [t0, Tpred ] and i
is the obstacle’s ID number. Proper normalization of the objectives has been performed
so that the ranges/values of each objective could be modulated/balanced between them.
wd ∈ R+ and wa ∈ R+ are the weighting coefficients related to the objective functions
fOPIDP and fOPAP. The weighted sum method has been used in order that each objective
has its own weight w.r.t. the other sub-objective.

The formalization of any inter-distance prediction profile, between the concerned
ego/obstacle –vehicle pair, can be defined as the function p(t + h) over the interval
t ∈ [t0,Tpred ]:

p(t +h) =
((

x(t +h)− xobs(t +h)
)2

+
(

y(t +h)− yobs(t +h)
)2
)1/2

=

((
x(t)+h v(t) cos

(
θ(t)+h v(t)

tan(δ (t))
lb

)
− xobs(t)−h2 1

2
axobs(t)−h vxobs(t)

)2

+
(

y(t)+ h v(t) cos
(
θ(t)+ h v(t)

tan(δ (t))
lb

)
− yobs(t)−h2 1

2
ayobs(t)−h vyobs(t)

)2
)1/2

(4)
With (x,y,θ) the ego-vehicle state vector, v and δ represent the velocity and the steering
angle respectively, lb is the wheel-base of the vehicle. (xobs,yobs) the obstacle-vehicle’s
position, (vxobs , vyobs ) the speed components, (axobs , ayobs ) the acceleration components
and with t ∈ [t0,Tpred ] and h the time step. By analyzing the following formalization
given in equation (4), one can see that it highlights the needed sequence u(t). This for-
mulation allows to have convenient way to define for each ego-vehicle/obstacle combi-
nation, an error objective function of the inter-distance between the reference OPIPD
and the prediction p(t + h) when applying the control sequence u(t) at a given time,
and is defined as follows:

fOPIDP(t) =| p(t +h)−OPIDP(t +h) | for t ∈ [t0, Tpred ] (5)

The formalization of an angular prediction profile, defined as a function θ(t + h) over
the interval t ∈ [t0, tpred ], that highlights the concerned control sequence u(t) is then:

θ(t +h) = θ(t)+
h v tan(δ )

lb
−θobs (6)

With θobs the heading of the concerned obstacle-vehicle. The soundness of equation 4
and equation 7 has been shown in [11]. Similarly to the OPIDP, the strategy is to min-
imize the absolute value of the error between the reference OPAP and the prediction
θ(t+h) when applying the control sequence u(t) at a given time. The used error objec-
tive function is defined as:

fOPAP(t) =| θ(t +h)−OPAP(t +h) | for t ∈ [t0, Tpred ] (7)

3.6 Constraints definition

In addition to the longitudinal and lateral parameters used in the generation of the pro-
files, the optimal sequence must minimize the function described by equation (2) and



at the same time obey to a set of defined constraints. These constraints result from the
limits of the vehicle kinematics and dynamics, and also to favor more comfortable and
smooth evasive maneuver. The steering input angle is limited by the steering geometry
of the vehicle concerning the steering lock angle and the steering rate of change as we
aim at minimizing J and punishing high curvature rates to achieve smooth trajectories,
thus:

−δmax ≤ δ (t)≤ δmax

|δ̇ (t)| ≤ δ̇max
(8)

A jerk term is used to further smoothness the trajectory by dampening rapid changes in
acceleration, so:

ȧmin ≤ ȧ(t)≤ ȧmax (9)

3.7 Solving the optimization problem based on CMA-ES

This optimization problem is solved using an evolutionary algorithm called the Covari-
ance Matrix Adaptation Evolution Strategy (CMA-ES) [17] that is able to reach a global
optimum in few generations. Few modifications have been introduced to the original al-
gorithm as the strength of the CMA-ES is that it does not require a tedious parameter
tuning and the choice of internal parameters of the strategy is not left to the user except
for population size. The algorithm takes as input the defined multi-objective function,
the initial velocity/steering configuration, the weights and constraints thresholds.

4 Simulation Results

To evaluate the presented approach in simulation, the authors have developed a simula-
tor using MATLAB/Simulink. For the different simulations shown below, the perceived
scene is constituted of four vehicles in a two-lane highway. On the right lane, the ego-
vehicle and the ahead obstacle-vehicle 1 O1 and on the left lane, obstacle-vehicle 2 O2
in front and obstacle-vehicle 3 O3 behind. The initial velocities of the vehicles are given
by: Vegomax = 35m/s, VO1 = 12m/s, VO2 = 20m/s VO3 = 30m/s.

4.1 Reacting to multiple anomaly happening simultaneously

In the first scenario, we demonstrate how our strategy enables the ego vehicle to han-
dle multiple anomaly happening simultaneously. We have selected a dangerous scenario
where obstacle-vehicle 1 in front suddenly brakes and an accelerating obstacle-vehicle 3
is coming from behind in the left lane. Following the reasoning and procedure for com-
puting the evasive maneuver (cf. Fig. 2), neither the single hypothesis for lane change
left nor the emergency braking is feasible as the obstacle-vehicle 1 is too close. There-
fore the multi-hypothesis is used in this case (cf. Fig. 5) in order to escape the dangerous
situation. Indeed, this kind of situation may necessitate maneuvering up to the vehicle’s
handling limits. A shoulder lane or any other space alternative is not always available
and the only optimal solution in this case is to quickly get into the adjacent lane. The
CMA-ES computes then the appropriate control sequence that allows to follow as ac-
curately as possible the defined profiles.



Fig. 5: Evasive Maneuver following simultaneous anomalies during navigation

4.2 Reacting to multiple anomaly happening at different moments

In what follows, we demonstrate how our strategy enables the ego vehicle to han-
dle multiple anomaly happening at different moments. The ego vehicle’s driveway is
blocked by an ahead obstacle-vehicle 1 strongly braking and coming to standstill (cf.
Fig. 6). In this case, the decision-maker advise for an emergency lane change as the
obstacle is too close and an emergency braking is not possible. The adequate profiles
are generated according to the evasive decision and to the defined strategy. The CMA-
ES then computes the control sequence that allows to follow as accurately as possible
the defined profiles. Meanwhile, the SVDL supervises the procedure by continuously
updating its status during navigation. Later in the navigation, before the end of the first
evasive action, another anomaly is detected from obstacle-vehicle 2 that happens to be
closer than planned. Whether it is due to a bad estimation of the pose of obstacle-vehicle
2 or due to a very sudden change in its dynamic, the ego vehicle finds itself in a situation
where an emergency braking is not any more possible. The only solution in this case is
to swerve to the right lane as shown in Fig. 6.



Fig. 6: Evasive Maneuvers following consecutive anomalies during navigation

5 Conclusion

This paper proposes a multi-hypothesis evasive strategy able to cope with multiple dy-
namic traffic situation. It is based on: a Sequential Decision Networks for Maneuver
Selection and Verification (SDN-MSV) that calculates discrete evasive decision maneu-
ver and an exhaustive evasive trajectory generation that takes into account the evasive
decision and considers multi-hypothesis kinematic and dynamic configuration. Further-
more, a multi-criteria optimization is performed that takes into account the mentioned
exhaustive process and is able to generate the corresponding low-level control that al-
lows the ego-vehicle to pursue the safest and most comfortable advised collision-free
evasive maneuver. At the same time, the algorithm minimize jerk, punish high accelera-
tion and steering rate to provide enhanced comfort for passengers. The overall proposed
strategy allows to increase the degrees of freedom concerning the maneuverability of
the vehicle (ability of the system to generate variable linear velocity and steering an-
gle solutions), ensure smooth changes during the evasive maneuver, and ensuring the
safety of the system and respects as much as possible the passengers’ comfort. Several
simulation results show the good performance of the overall proposed evasive strategy.
An important area of improvement would be to perform quantitative assessment on the
proposed method.
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