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Abstract: Developing high fidelity models to compute the Time-To-Collision (TTC) between vehicles is addressed in this
work. A TTC interval value is over-approximated while considering several uncertainties via interval analysis.
Furthermore, to decrease modeling inaccuracy, a novel second-order set-membership TTC formalization is
introduced by solving a polynomial equation with interval coefficients. This latter is derived from vehicles’
motion equations. Hence, an approach based on correlation analysis is exploited to improve the uncertainty
evaluation. The simulation results applied on an adaptive cruise control system of both high/low-order TTC
formalizations prove that the low-order model inaccuracy is compensated. Thanks to interval analysis and
correlation characterization, a great balance between modeling accuracy and simplicity is reached.

1 INTRODUCTION

Risk management should be inspected carefully to
employ autonomous vehicles in public roads (Nasri
et al., 2019). For the sake of safety, focus is currently
given to provide efficient solutions for in-road risk
identification. Thus, factors that stand behind the reli-
ability and accuracy of safety verification techniques
should be analyzed.

Advanced perception/communication devices and
navigation scene analysis have been used to capture
in-road hazards (Abdi and Meddeb, 2018), (Kasmi
et al., 2019). Nonetheless, these tools are prone to se-
vere uncertainties. To overcome uncertainty impacts,
several methods have been proposed in the literature
(Lakhal et al., 2019a), (Lozenguez et al., 2011). The
uncertainty is propagated into the navigation process
via stochastic models such as the Kalman filter, etc.
A specific probability distribution, as the Gaussian
function, is assumed to describe the uncertainty evo-
lution. This assumption is controversial, and changes
in noise features may occur (Rigatos, 2012). Addi-
tionally, most uncertainty evolution models are sen-
sitive to non-linearity (Wang et al., 2018). On top
of that, an accurate knowledge of the initial states of
the studied system is required, which is not evident
(Nicola and Jaulin, 2018). Hence, it is important to

study alternative approaches that are less sensitive to
these errors.

Otherwise, risk management reliability depends
on the accuracy of models used to derive numer-
ous risk indicators. For instance, the Time To Col-
lision (TTC) has been widely used for risk identifica-
tion (Iberraken et al., 2018), (Iberraken et al., 2019).
Tremendous attempts have been made to improve the
TTC precision. A comparative study between diverse
TTC formalizations could be found in (Hou et al.,
2014). A hidden Markov model has been used to pre-
dict the driving intention of nearby vehicles for more
accurate TTC estimation (Yang et al., 2020). Algo-
rithms computing distances between boxes bounding
vehicles were proposed to calculate TTC for com-
plex traffic scenarios (Wang et al., 2018). A vehicle
motion-based concept, named looming, was exploited
to decrease the TTC false alarms (Ward et al., 2015).

Interval analysis is a reliable way to handle uncer-
tainties/modeling imperfections (Jaulin et al., 2001).
It turns standard data to intervals to bound uncer-
tainty impacting the studied system (Moore et al.,
2009). Correspondingly, interval analysis may con-
tribute strongly in characterizing the uncertainty evo-
lution into intelligent transportation systems. In pre-
vious work, an interval-based model to compute TTC
for a car-following scenario was proposed to handle



uncertainties and communication latencies (Lakhal
et al., 2019b) and (Lakhal et al., 2019c). Moreover,
the interval TTC over-approximation was optimized
via a data-driven characterization of correlation that
would relate the navigation system variables. In this
paper, we build on this previous work to analyze
much comprehensively the performances of the set-
membership modeling. The main contribution of this
work is to introduce a novel second-order interval-
based TTC over-approximation to consider more pa-
rameters intervening in the car-following scenario.
The high-order model consists in a quadratic poly-
nomial with interval coefficients generated from ve-
hicles’ motion equations. Usually dedicated to bound
the rounding errors, interval polynomials have never
been used to build models for uncertainty evolution
into navigation systems. Afterwards, simulation is
elaborated on an Adaptive Cruise Control (ACC). The
performances of the interval high and low-order TTC
in conducting the risk worst-case analysis are com-
pared. The quality of the set-membership modeling
joined with the correlation analysis is evaluated in
terms of accuracy and simplicity.

The rest of this paper is arranged as follows:
Section 2 introduces the first and second-order TTC
interval-based formalizations. Section 3 presents an
algorithm to find roots for an interval polynomial to
approximate the TTC. Section 4 explains the correla-
tion analysis role in ameliorating the findings of the
TTC set-membership models. Section 5 presents the
simulation results. Section 6 concludes the results of
this work and discusses some future work.

2 SECOND ORDER
SET-MEMBERSHIP TTC

For a car-following scenario, the TTC is often ap-
proximated by the ratio between the distance separat-
ing two vehicles and their relative velocity. Instead,
the evolution of the spacing distance between the fol-
lower and the leader is used in this paper to perform
more accurate collision prediction. In this way, all the
interactions between vehicles are taken into account.
Let consider two vehicles i and j, which are respec-
tively the leader and the follower. Vi, Vj, pi and p j are
their respective velocities and vector positions. Ac-
cording to (Ward et al., 2015), the separation evolu-
tion between both vehicles is described at each instant
by:

• The separation distance:

di j =
√
(pi− p j)T (pi− p j) (1)

• The change rate in the separation distance:

ḋi j =
1

di j
(pi− p j)

T (Vi−Vj) (2)

• The variation of the change rate in the separation
distance is governed by the following equation:

d̈i j =
1

di j
(Vi−Vj)

T (Vi−Vj)− ḋ2
i j (3)

Equations (2) and (3) are obtained by the consecutive
differentiation of equation (1). In practice, di j is mea-
sured in run-time thanks to diverse vehicular tools as
a LiDAR or laser scanner. Therefore, the authors in
(Ward et al., 2015) defined T TC1 as a first order TTC:

T TC1 =−
di j

ḋi j
(4)

However, equation (4) neglects parameter d̈i j. Model
simplification is the main source of errors (Khelifi
et al., 2018). In an effort to improve accuracy, the au-
thors in (Ward et al., 2015) upgraded the TTC approx-
imation to a second-order expression. When d̈i j 6= 0,
a second-order TTC, denoted T TC2, is obtained by
solving the following polynomial:

di j + ḋi jT TC2 +
1
2

d̈i jT TC2
2 = 0 (5)

Note that equation (5) is derived from the vehi-
cles’ motion equations. The polynomial roots under-
line at which instants the two vehicles collide, and
the separation between them is zero. Accordingly,
the authors in (Ward et al., 2015) defined the T TC2
value depending on the roots of equation (5). When
d̈i j = 0 or the polynomial has no real roots, the low-
order model is used and T TC2 = T TC1. In the case
of two real positive roots, the lower value is attributed
to T TC2 since it presents the first collision time. If
one of the roots is positive and the other is negative,
the positive one is taken. Both roots can be also neg-
ative. In such a situation, the root with the closest
absolute value to zero is selected because it consists
of the most recent interaction between the motions of
both vehicles.

Despite its accuracy, the high-order TTC is still
sensitive to uncertainty and communication latencies.
To overcome this issue, interval analysis is adopted
in this paper. Data representation is extended to
intervals. Mathematical operations (+,−,∗,/) and
functions (sin,cos,etc.) are extended to handle inter-
vals (Jaulin et al., 2001). Subsequently, the obtained
interval-based models provide over-approximations
of results that definitely enclose the exact outputs.
Henceforth, [x] = [x,x] is a real interval, where x and
x are its lower and upper bounds. The width of [x]



underlines the uncertainty extent. Accordingly, equa-
tions (4) and (5) are represented as:

[T TC1] =−
[di j]

[ḋi j]
(6)

[di j]+ [ḋi j][T TC2]+
1
2
[d̈i j][T TC2]

2 = 0 (7)

Since it describes the real behavior, the second-
order set-membership TTC is expected to be more
accurate than the first-order one. Equation (7) is a
quadratic polynomial with perturbed coefficients. Its
roots are intervals enclosing the collision exact time.
Solving this polynomial is not feasible by standard
analytical approaches. A specific interval polynomial
solver must be used. Before doing so, a methodologi-
cal manner to quantify uncertainties attributed to each
interval measurement is introduced. The environmen-
tal circumstances, where more uncertainties are ex-
pected, are examined. At first, the following assump-
tions, which are based on the confidence intervals of
sensors and communication devices, are admitted:

• The localization inaccuracy is assessed via a sig-
nal strength indicator that considers the signal at-
tenuation in the navigation zone.

• The accumulated error impacting the separation
distance measurement is considered by an uncer-
tainty range of ±1% from the measured di j.

• The follower speed Vj is assumed to be exact, and
no uncertainty is attributed to this parameter.

• The leader speed Vi is assumed to be erroneous
with a range of ±0.5% due to measurement im-
precision.
Afterwards, several latencies can slow down the

automotive system operation and prohibit the quick
management of risks. For that reason, it is advis-
able to consider such latencies by [T TC]. In this
work, the follower car is expected to receive the Vi
value via a Vehicle-to-Vehicle (V2V) communication.
Henceforth, latencies impacting the V2V communi-
cation are characterized through interval [TV 2V ]. The
uncertainty attributed to [TV 2V ] is appraised through
the empirical research work depicted in (Dey et al.,
2016). Min/max values of latencies that may happen
were provided in (Dey et al., 2016). These bounds
were presented as a function of the vehicle speed and
the number of connected vehicles in close proximity
(communication conflicts increase delays). Besides,
[TL] is a constant interval that takes into account laten-
cies due to update time of sensors and the data prop-
agation into the embedded system. Consequently, the
TTC set-membership formalization must consider ex-
plicitly the aforementioned uncertainty sources:

[T TC1] =−
[di j]

[ḋi j]
− [TV 2V ]− [TL] (8)

[T TC2] = [ℜ]− [TV 2V ]− [TL] (9)

where [ℜ] is the polynomial root of equation (7). Sim-
ilar to the deterministic case detailed above (cf. equa-
tion (5)), [ℜ] is the root corresponding to the first col-
lision time. Figure 1 illustrates the main instructions
of the proposed uncertainty quantification strategy to
over-approximate the first/second order TTC.

Figure 1: Interval-based risk management

3 SOLVING QUADRATIC
INTERVAL POLYNOMIAL

Finding roots for interval polynomials has been
widely discussed in the literature. Several numerical
branch and bound algorithms were introduced for this
aim (Fan et al., 2008). Despite their accuracy, the cal-
culation time of these approaches was unpredictable.
One more category of approaches used polynomial
factorization and cumbersome mathematical calcula-
tion as an inverting interval matrix (Zhang and Deng,
2013). Other fast methods were developed (Ferreira
et al., 2001). Nevertheless, these approaches provided
just a prior estimate for the space containing the real
roots. In this work, real roots with sharp bounds of
interval polynomials are obtained by studying the in-
terval polynomial boundary functions.

Let consider a quadratic polynomial with the fol-
lowing shape:

P([x]) = [a]x2 +[b]x+[c] (10)

Intuitively, P([x]) can be expressed within its bound-
ary functions, where: P([x]) = [P([x]),P([x])]. For
such a polynomial, P([x]) and P([x]) may be derived
through all possible combinations between the coef-
ficient bounds. Indeed, eight real single-valued poly-
nomials are given from these combinations:


f1 = ax2 +bx+ c; f2 = ax2 +bx+ c

f3 = ax2 +bx+ c; f4 = ax2 +bx+ c

f5 = ax2 +bx+ c; f6 = ax2 +bx+ c

f7 = ax2 +bx+ c; f8 = ax2 +bx+ c

(11)



By interpreting the dominant term of P([x]), it
is evident that P([x]) and P([x]) are respectively en-
closed between ( f1, f2, f3, f4) and ( f5, f6, f7, f8). It
is clear also that:{

f1 ≤ f2; f3 ≤ f4

f6 ≥ f5; f7 ≥ f8
(12)

Subsequently, we can figure out that:

P(x) =

{
P1 = ax2 +bx+ c, if x≥ 0

P2 = ax2 +bx+ c, if x≤ 0
(13)

and

P(x) =

{
P3 = ax2 +bx+ c, if x≥ 0

P4 = ax2 +bx+ c, if x≤ 0
(14)

Note that Pi=1..4 = (P1, P2, P3, P4) represents non-
interval real boundary functions associated to P([x]).
To illustrate such a notion, Figure 2 presents two ex-
amples of quadratic polynomials with perturbed coef-
ficients.

Figure 2: Examples of interval polynomials

An efficient way to find polynomial roots is to de-
termine sets where: P([x]) ≤ 0 ≤ P([x]). Eventually,
estimating sharp bounds of this intersection should be
accomplished by solving Pi=1..4. Once the roots of the
boundary functions Pi=1..4 are calculated, it remains
to clarify how to join these roots to formulate a pre-
cise enclosure of P([x]) solutions. Contrary to non-
interval polynomials, P([x]) may have at maximum
three distinct interval roots, including semi-infinite in-
tervals (see Figure 2).

In this work, a simple algorithm is presented to ex-
tract P([x]) interval roots using Pi=1..4. It is based on
the theoretical results obtained in (Hansen and Wal-
ster, 2002) and (Hansen and Walster, 2003), where
the P([x]) coefficient bounds are analyzed to figure
out the shape and orientation of P(x) and P(x). Con-
sequently, the right number and values of the interval
roots are appropriately determined.

First, the number of subcases that must be checked
to resolve P([x]) is decreased by admitting a > 0. In
the opposite case, the sign of P([x]) must be simply
reversed. Therefore, each Pi must be solved by inter-
val arithmetic. The readers must distinguish between
solving interval polynomials and isolating real roots
of standard polynomials. Several set-membership al-
gorithms resolve the non-interval polynomials in or-
der to bound rounding errors.

In this work, the real roots of Pi=1..4 are computed
numerically via a specific interval computation pack-
age. The isolated real roots associated to each Pi, in-
cluding multiple roots, are added to list L. Since func-
tions P1 and P2 bound P([x]) only for x≥ 0 (see equa-
tion (13)), any negative root or part of a root must
indefinitely be discarded from L. Seemingly, posi-
tive roots or parts of roots associated to P3 and P4 are
dropped.

Otherwise, there are some particular cases that
must be considered while arranging L. Indeed, a dou-
ble root is obtained at x = 0 for (P1,P2) when c = 0
and respectively for (P3,P4) if c = 0. For both cases,
this root must be entered just one time into the list.
Besides, the infinite interval endpoints ±∞ must be
placed if necessary in L. Referring to (Hansen and
Walster, 2003), once the following cases are satisfied,
a lower endpoint −∞ is added to L :

a < 0 ∨ (a = 0 ∧ b > 0) ∨ (a = 0 ∧ b = 0 ∧ c≤ 0)
(15)

Likewise, +∞ is added to L only if:

a < 0 ∨ (a = 0 ∧ b > 0) ∨ (a = 0 ∧ b = 0 ∧ c≤ 0)
(16)

At this stage, L contains intervals that certainly
present a lower or upper end-point of the final inter-
val roots of P([x]). Thus, it is necessary to recog-
nize which are the lower and upper ones. Let denote
[Si] = [Si,Si] the set of intervals held in L. All intervals
[Si] are sorted such that Si ≤ Si+1. It is worth mention-
ing that the adopted algorithm requires to consider
±∞ as degenerate intervals. Hence, n denotes the
number of intervals included in L (no more than six
roots 0≤ n≤ 6). The final step from the root finding
strategy consists in arranging the solution according
to the obtained n. Table 1 summarizes all probable
shapes of the interval roots associated to P([x]). Fi-



nally, all necessary steps to solve the interval polyno-
mial are recapitulated in Algorithm 1.

Table 1: Interval roots according to n

Interval roots
n = 0 ∅
n = 2 [S1,S2]

n = 4 [S1,S2], [S3,S4]

n = 6 [−∞,S2], [S3,S4], [S5,+∞]

Algorithm 1: Solving interval polynomial
Require: [a], [b] and [c]
Ensure : Solve P([x]) = [a]x2 +[b]x+[c]

1 -Define Pi=1..4 (cf. equations (12) and (13)).
2 -Find interval roots of Pi=1..4.
3 -Put results in L.
4 -Add infinite entries ±∞ to L, if needed (cf.

equations (15) and (16)).
5 -Sort the interval elements in L (Si ≤ Si+1).
6 -Check the length of L to define roots of P([x]).

4 CORRELATION-BASED
OPTIMIZATION STEP

In this work, the interval-based TTC formalizations
are dedicated to ensure safety for a modern ACC sys-
tem. At every sample time, an interval enclosure for
the position of target assigned to the ACC-equipped
vehicle (follower) is defined proportionally to the cur-
rent [T TC], which is calculated via the first or second-
order formalization. Then, a reference distance, de-
noted dre f , is maintained from the in-front vehicle ac-
cording to the worst-case risk indicated by the target
enclosure (cf. Figure 3).

Figure 3: Proposed ACC risk management principle

Nevertheless, the interval over-approximations

obtained through assumptions defined in section 2 are
too conservative. The occurrence of the worst cases of
uncertainties for all parameters considered in the TTC
computation is quite unrealistic. The main task of
ACC systems is to optimize the distance between ve-
hicles to prevent congestion and traffic disturbances.
In this sense, the model developed for risk identifica-
tion must make a trade off between safety and accu-
racy. As an enhancement for the interval-based mod-
els, a data-driven optimization step was introduced in
the previous work of (Lakhal et al., 2019b), (Lakhal
et al., 2019c) and (Ben Lakhel et al., 2016). Accord-
ingly, this approach is joined to the TTC second-order
model to obtain more compact bounds of findings.
In this section, the proposed data-driven optimization
approach is briefly recalled.

Correlation is a relevant statistical parameter to
describe the operation of systems. More focus is
given currently to correlation analysis to study the
performances of autonomous vehicles (Wu et al.,
2020). The main idea behind the proposed data-
driven-optimization step is to examine the correlation
progression over time. During the navigation run-
time, substantial and brutal changes in vehicle dy-
namics are unrealistic in few sampling periods. Based
on this understanding, the evolution of the correlation
states should be smooth. Only uncertainties and erro-
neous measurements may invoke an irregular progres-
sion of correlation. Various data-driven approaches
have relied on this assumption to capture faults or to
regress outliers (Xia et al., 2017), (Chen et al., 2019).

Uncertainties assigned to interval measurements
can be over-estimated. This fact may entail a brutal
variation in the correlation progression between two
successive instants: tk−1 and tk. Hence, the proposed
approach narrows recursively intervals until obtaining
an acceptable progression in the correlation between
variables. Narrowing is interpreted once the corre-
lation relating the new tightened intervals matches
reference values characterized off-line. Let denote
by C([X ],[Y ])|k the correlation relating interval variables
[X ] and [Y ] at instant tk. The overall process to esti-
mate the correlation values for interval variables is de-
tailed in (Lakhal et al., 2019b). Thereafter, the gap in
the correlation between instants tk and tk−1, denoted
γk|k−1, is estimated through equation (17):

γk|k−1 =C([X ],[Y ])|k−C([X ],[Y ])|k−1 (17)

Interval widths must be narrowed in a recursive
way to adapt the value of γk|k−1 in run-time and elim-
inate over-estimated uncertainties. For each couple of
interval-valued variables intervening in the TTC com-
putation, the interval with the largest width is con-
cerned with iterative narrowing. After that, narrowing
is aborted at two conditions:



• Condition 1: When γk|k−1 decreases from one
iteration to another and suddenly starts to raise;
i.e., the interval is narrowed as much as possible.
Extra-narrowing may cause an undesirable modi-
fication in the correlation structure.

• Condition 2: Once γk|k−1 exceeds the minimum
variation of correlation, which is recorded during
the off-line simulation of a normal system opera-
tion.

Algorithm 2: [TTC] optimized estimation
Input : pi, p j, Vi, Vj, di, j,[TV 2V ] and [TL].
Output: [T TC1] and [T TC2].

1 while Navigation process is running do
2 -Define [di, j], [ḋi j], [d̈i j], [Vi], [pi] and [p j].
3 for each couple of variables between

instants tk and tk−1 do
4 repeat
5 -Calculate C([X ],[Y ])|k.
6 -Estimate γk|k−1 (equation (17)).
7 -Narrow the interval, if needed.
8 until Condition 1 or 2 is satisfied
9 end

10 -Evaluate [T TC1] and [T TC2] (see
equations (10) and (11))

11 end

5 SIMULATION RESULTS

In this section, the reliability of the proposed interval-
based models to compute the TTC is demonstrated.
The quantitative results obtained from the conducted
simulation are analyzed to provide a qualitative com-
parison between the performances of the first-order
and second-order TTC formalizations.

5.1 Test Scenario and Simulation Setups

The overall set-membership TTC-based risk manage-
ment is tested under a MATLAB freeway naviga-
tion simulator. Vehicle motions implicated in the test
phase are simulated through the well-known tricycle
kinematic model. The elaborated test scenario con-
sists of a car-following scenario in a highway road.
In addition, a model of a highway-road segment is
selected as the test-scene. Otherwise, a white Gaus-
sian noise is injected in the exact measurements of the
navigation dynamics during simulation.

As already said, the follower vehicle is equipped
with an ACC system. This latter exploits bounds of

the interval TTC (according to the first or second-
order model) to take precaution of the risk worst cases
and adapt the reference distance from the vehicle
ahead. Full details about the ACC operation princi-
ple are available in (Lakhal et al., 2019c).

Technically speaking, the interval computation is
ensured by the reliable computation package INT-
LAB (Rump, 1999). All the simulation work depicted
in this section is carried out under MATLAB on an
Intel i5 Processor with 3.5 GHz and 16 GB memory.
More configurations involved in the established sim-
ulation are recapitulated in Table 2.

Table 2: Simulation setups

Parameter Value
Sampling step 0.1 (s)

Sensors update time 0.01 (s)
Follower embedded system delay 0.025 (s)

Leader maximum velocity 22 (m/s)
Follower maximum velocity 23 (m/s)

5.2 Results and Discussion

At first, the role of the correlation analysis in provid-
ing more sharp bounds of TTC values is inspected.
As shown in Figure 4, the TTC enclosures are effi-
ciently narrowed for both [T TC1] and [T TC2]. For
the first-order set-membership formalization, initial
amounts of uncertainties are minimized with an aver-
age range of 60.3%. Similarly, the average reduction
in the width of [T TC2] due to the correlation-based
optimization step is about 65.79%.

More importantly, the results of the interval high-
order TTC computation model are more conservative
than the low-order one. In average, the widths of
[T TC1] and [T TC2] are respectively about 1.25s and
1.579s. This fact can be explained by the “depen-
dency effect" characterizing the interval arithmetic
(Moore et al., 2009). Indeed, variables occurring sev-
eral times in one expression are assumed as indepen-
dently varying over their enclosures, which may lead
to an additional pessimism in the results. Hence, more
pessimism is entailed by upgrading the first-order-
model to a second-order formalization since the num-
ber of the involved variables is increased.

In a second place, Figure 5 illustrates the evolution
of the exact T TC1 and T TC2. These exact values of
T TC1 and T TC2 are obtained in a deterministic way
(respectively via equations (4) and (5)) without any
noise injection during the simulation. All along the
simulation run-time, the results of the two developed
interval-based formalizations of the TTC enclose per-
fectly the reference values provided by the exact evo-



Figure 4: T TC1 and T TC2 enclosures with/without opti-
mization step

lution of T TC1 and T TC2. Correspondingly, the con-
sistency of the set-membership modeling joined with
the correlation analysis is proven. Even more, the
first-order interval-based TTC is more accurate than
the second-one since it provides sharp bounds and si-
multaneously encompasses the exact and real values
of the TTC. This fact optimizes implicitly the naviga-
tion traffic flow because it decreases the reference dis-
tance maintained between vehicles. Eventually, the
interval-based uncertainty quantification method con-
tributes to compensate the inaccuracy presented by
the first-order TTC resulting from the modeling sim-
plification.

Figure 5: T TC1 and T TC2 enclosures compared with exact
results

Another advantage of the proposed approach is the
reduction in the computational cost of the risk man-
agement of intelligent vehicles. Using simple mod-
els, which handle efficiently all possible uncertainties,
helps to respect the real-time constraints. In our case
of study, solving the interval quadratic polynomial to

compute an over-approximation to the TTC requires
0.09s as an average execution time. Therefore, the
T TC1 is more efficient as a risk indicator than the
T TC2 especially in terms of computational demands.
Additionally, the accuracy-level ensured by the T TC1
is sufficient to guarantee the navigation safety since it
handles properly uncertainties and modeling errors.

6 CONCLUSIONS

The reliability of models employed for the risk man-
agement of intelligent navigation systems is of ut-
most importance. In this work, first and second-order
interval-based models to compute the TTC between
two vehicles are introduced. Set-membership mod-
eling allows considering various uncertainties and la-
tencies that can emphasize collision risks. Moreover,
the evolution of the correlation that relates variables
is characterized to improve the uncertainty evalua-
tion. Then, the performances of both proposed mod-
els are compared. The results of the first-order TTC
are more compact and permit handling efficiently all
uncertainties. Fast risk analysis with the same accu-
racy level of the second-order TTC is ensured via the
simple low-order model. A trade off between accu-
racy and simplicity is ensured by joining the interval-
based computation with correlation analysis. Accord-
ingly, the need for sophisticated models for intelligent
vehicles’ motions to make the risk management suc-
cessful is discarded, while mastering all uncertainty-
induced risks.

Otherwise, the proposed method should be inte-
grated in the future on a real vehicle and applied for
more critical maneuvers such as lane changes.
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