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Abstract. This chapter proposes an intelligent energy management for
hydraulic-electric hybrid vehicle in order to minimize its total energy
consumption while ensuring a better battery life. It proposes first to
model the total energy consumption of the vehicle and investigate the
minimization of an expended energy function, formulated as the sum
of electrical energy provided by on-board batteries and consumed fuel.
More precisely, it is proposed in this chapter an intelligent hierarchical
controller system which shows its capabilities of increasing the overall
vehicle energy efficiency and therefore minimizing total energy consump-
tion, permitting to increase the distance between refueling. The proposed
strategy consists of fuzzy supervisory fault management at the highest
level (third), that can detect and compensate the battery faults, regu-
late all of the possible vehicles operation modes. In the second level, an
optimal controller is developed based on artificial intelligence to manage
power distribution between electric motor and engine. Then, in the first
level, there are local fuzzy tuning proportional-integral-derivative con-
trollers to regulate the set points of each vehicle subsystems to reach the
best operational performance. TruckMaker/MATLAB simulation results
confirm that the proposed architecture can satisfy the power requirement
for any unknown driving cycles and compensate battery faults effects.

Keywords: Artificial intelligence · Battery management system ·
Fuzzy observer · Hybrid electric vehicles ·
Power management strategy · Sensor faults ·
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1 Introduction

Growing environmental concerns coupled to the decreasing of fossil fuel energy
sources stimulate highly research on new vehicle technologies. Electric vehi-
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cles (EVs) and Hybrid Electric Vehicles (HEV) appears to be one of the
most promising technologies for reducing fuel consumption and pollutant emis-
sions [1]. Energy management in vehicles is an important issue because it can
significantly influence the performances of the vehicles. Improving energy man-
agement in vehicles can deliver important benefits such as reducing fuel con-
sumption, decreasing emission, lower running cost, reducing noise pollution, and
improving driving performance and ease of use [2]. Several methods for energy
management and optimization aiming at the minimization of different cost func-
tions have been published [3–8], such as Dynamic Programming (DP) in [3] to
formulate numerically a global optimum for reducing fuel consumption under
the assumption of full knowledge of the future driving conditions. Analytical
optimization methods, on the other hand, use a mathematical problem formu-
lation to find an analytical solution that makes the obtained solution faster
than the purely numerical methods. Within this category, Pontryagin’s Mini-
mum Principle (PMP) based energy management strategy is introduced as an
optimal control solution [4]. This approach can only generate an optimal solu-
tion if implemented offline since in this case the future driving conditions are
supposed to be known in prior. For online implementation Rule Based Strategy
(RBS) from heuristic ideas have been proposed for HEVs [5] and the Hybrid
controller based on rule-based and StateFlow (SF) is given in [6]. The problem
of this method is that it needs highly engineering experience, extensive experi-
mental data, etc. to create these rules. In addition, it gives limited benefits for
fuel economy. To overcome this problem, the fuzzy system is added to RBS [7]
and Artificial Neural Network (ANN) is introduced [8]. One of the main objec-
tives of this chapter is the development and experimental verification of such
control framework to minimize the energy consumption based on the merging
of the two paradigms (ANN and fuzzy system) to benefit from their advantages
and avoids their disadvantages.

Nowadays, there are different blending levels of pure EV and HEV available
on the automobile market. According to the blending level, various size, type
and number of battery cells are mounted in HEVs and EVs [9]. The battery
management system (BMS) is an essential emerging component of both EVs and
HEVs alongside with modern power systems. Recently, Lithium-ion batteries can
drastically improve the technical characteristics of EVs and HEV for various uses.
However, Lithium-ion batteries require very special supervision. Hence, the need
to integrate BMS as a supervision system becomes of great interest. Different
approaches have been proposed to study battery faults [10–16]. Model based
sensor using FDI scheme for a battery pack with a low computational effort is
proposed in [10]. To implement the model-based fault diagnosis, a battery model
is needed to capture the electrochemical properties [10]. Different battery models
were studied by several researchers. The most commonly used models can be
summarized as two kinds: the equivalent circuit models and the electrochemical
models [11–16]. Recently, energy management optimization in consideration of
battery life/degradation for HEV are studied in several works [17–21], in order
to improve the total economy in driving process.
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According to the previous studies, a reliable battery fault tolerant control to
guarantee the battery performance, safety and life while simultaneously mini-
mizing the total energy consumption (summation of electric battery and fuel)
for Hybrid Hydraulic-Electric Vehicle (HHEVs) are addressed in this chapter.
In order to study and develop an efficient and reliable energy management strat-
egy for HHEV, a precise vehicle modelling is desirable based on [4,15–20]. The
studied vehicle is a hybrid bus based on parallel power split hybrid architecture.
This hybrid bus is called BUSINOVA and is developed by SAFRA Company
(cf. Figs. 1 and 2). BUSINOVA is composed of Electric Motor (EM), Internal
Combustion Engine (ICE), Hydraulic Motor (HM), and battery as the propul-
sion powertrain system of the vehicle. The EM and HM motors are both directly
connected to the transmission and can ensure simultaneously or independently
the traction of the bus. On the other hand, the ICE is coupled to a Hydraulic
Pump (HP) for driving the HM. This gives a big number of working models for
the bus which increases the combinations of optimizing its energy management.

In [20], the Energy Management Strategy (EMS) is designed based on two
control levels based on neural network, fuzzy logic and rules based optimization.
Based on the analysis results of the EMS [20], it is proposed in this chapter
an intelligent Robust Hierarchical Hybrid Controller Strategy (IRHHCS), in
order to enhance the bus energy efficiency, leading therefore to minimize the
total energy consumption (summation of electric energy and fuel energy). The
proposed IRHHCS consists of three control levels. An Intelligent Supervisory
Switching Mode and Battery Management Controller (ISSMBMC) based on
fuzzy logic is developed in the third level (the highest level) that is capable of
managing all of the possible bus operation modes, compensate the battery faults,
generating optimal mode and SOC set points for second level. In the second
level, an Intelligent Power Distribution and Optimization Controller (IPDOC)
is proposed. It is based on neural fuzzy logic control to manage and optimize the
power distribution between the two different sources. Then, in the first level (the
lowest one), there are Local Fuzzy tuning Proportional-Integral-Derivative Con-
trollers (LFPIDC) to regulate the set points of each vehicle sub-systems (EM,
battery, ICE, HP, HM) to achieve optimal operational performance. The overall
proposed control and energy management strategy is compared with alternative
frameworks existing in the literature based on PMP [4] in order to demonstrate
the advantages of the proposed methodology (cf. Sect. 4).

The results of this chapter support that the proposed strategy is capable of:
(i) being applied to various types of hybrid vehicles; (ii) detect, isolate and com-
pensate the battery voltage sensor faults and battery currant actuator faults;
(iii) reducing total energy consumption compared with several traditional meth-
ods; (iv) reducing the number of rules needed in fuzzy control; (v) keeping SOC
within the range which promotes battery longevity; (vi) being implemented in
real time; (vii) it does not require beforehand a-priori knowledge of the driv-
ing events. Therefore, this chapter, will provide both a novel model and novel
approach for an advanced energy management system of hybrid vehicles.
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The chapter is organized as follows. The overall HHEV description and mod-
eling is given in Sect. 2. In Sect. 3, the proposed intelligent robust hierarchical
hybrid controller structure is developed. Section 4 shows the experiment model
validation and fault effects analysis. Section 5 is devoted to give a conclusion and
some prospects.

2 Overall HHEV Modeling and Description

This section presents modelling and analysis of the studied HHEV based on [4],
[16,18] with its different operations modes. TruckMaker/MATLAB software is
used to simulate precisely the studied hybrid vehicle.

2.1 HHEV Description and Modelling

The studied vehicle corresponds to BUSINOVA bus shown in Fig. 1 [20]. The
parameters used for the vehicle modeling is presented in [18]. This bus has three
actuations: electric, hydraulic and thermal. The principle source of the propul-
sion in the vehicle is an EM which may be supplemented by the HM via ICE.
The hydraulic system block consists of variable-displacement of HM, and an ICE
driven fixed-displacement of HP. The ICE is directly connected to a fixed dis-
placement pump, which converts engine mechanical power into hydraulic power
as shown in the vehicle configuration and power flow diagram (cf. Fig. 2 [20]). The
BUSINOVA is equipped with electric, hydrostatic and dissipative braking capa-
bilities. The dissipative brake is a mechanical brake which dissipates energy as
heat through friction. Electric and hydrostatic brakes are linked to the hydraulic
motor in a regenerative braking system that is capable of recovering a portion
of the kinetic energy of braking that would otherwise be dissipated. An Elec-
trical Junction (EJ) exists between the battery, accessories (Access) and dual
converter as well as a Mechanical Junction (MJ) between the HM and EM.

Fig. 1. BUSINOVA a Hydraulic-Electric Hybrid bus.
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2.2 Motoring Models

HM model through ICE and the EM models based on [3,4] are given in this
section as the following.

Hydraulic Motor Coupled to Internal Combustion Engine. In this
chapter, ICE torque versus ICE speed is directly derived from the ICE fuel
consumption model. The fuel flow rate ṁf of the ICE is defined based on [20],

ṁf = fICE(TICE , ωICE) (1)

where ωICE is the ICE rotational speed. The function fICE is obtained from
the ICE bench tests. The power consumed by the ICE (PICE) is given by
PICE=ṁf (TICE , ωICE)Q [3], (i.e., PICE is the instantaneous power of the fuel
expressed in terms of ṁf and the lower heating value of the fuel (Q = 43MJ/kg)).
Figure 3 (left) shows the relationship between HM speed, HM torque and HM
consumed power. Developing an accurate fuel consumption model is very impor-
tant for addressing energy consumption optimization problems.

Fig. 2. BUSINOVA bus configuration and power flow. TICE , THM , TEM and PICE ,
PHM , PEM are the produced torque and power for the ICE, HM and EM, respectively.

Electric Motor. The studied hybrid bus uses a 103 KW permanent magnet
synchronous machine as EM. The powers required for the EM were calculated
from the known EM torque and speed by using EM efficiency curve as shown in
Fig. 3 (right). The output torque TEM of the EM is defined based on [20],

TEM = fEM (PEM , ωEM ) (2)

where PEM is the EM input power, ωEM is the EM current speed. The function
fEM is also obtained from the EM bench test. The EM can operate in motor
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or generator mode. In generator mode, the electric motor converts the kinetic
energy from vehicle regenerative braking into electrical energy stored in the
battery. In the motor mode, the electric motor converts electrical energy into
kinetic energy to move the vehicle. The efficiency characteristics data of the EM,
and HM coupled to the ICE given in Fig. 3 are implemented in IPG automotive
TruckMaker software.

Fig. 3. Power consumption mapping; (left) efficiency characteristics of the HM coupled
to ICE; (right) efficiency characteristics of the EM.

2.3 BUSINOVA Lithium-Ion Battery Modeling

The battery model is necessary for its SOC estimation. Different Lithium-ion
battery models are developed in the literatures [11–16]. The equivalent electrical
circuit models and the electrochemical models are the most widely used in EV
studies. The electrical circuit models use equivalent electrical circuits to show
current-voltage characteristics of batteries by using voltage and current sources,
capacitors, and resistors. For the BUSINOVA bus battery, its model is based
on [14,16] (cf. Fig. 4 [20]). Using Kirchhoff’s voltage law, the dynamics of the
nonlinear battery behavior can be characterized by the following equations [20],

ẋ(t) = Ax(t) + Bu(t)
y(t) = C(x)x(t) (3)

Where x(t) =

⎡
⎣

V1(t)
V2(t)
SOC

⎤
⎦, Vbat is the battery terminal voltage, Voc is the battery

open circuit voltage (OCV), Ibat is the battery input current, t is the time
varying, V1, V2 are the voltages across R1//C1 and R2//C2, where R1 and C1 are
the electrochemical polarisation resistance, capacitance, respectively, R2 and C2

are the concentration polarisation resistance, capacitance, respectively and Ro

is the internal resistance which consists to the bulk resistance and surface layer
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impedance, A =

⎡
⎣

1
R1C1

0 0
0 1

R2C2
0

0 0 0

⎤
⎦, B =

⎡
⎣

1
C1
1

C2
η

Cn

⎤
⎦, C(x) =

⎡
⎣

q1(x)
1

q2(x)

⎤
⎦

T

, u(t) = Ibat,

y(t) = Vbat, SOCi is the initial value of the SOC, Cn is the nominal capacity in
Ampere-hours (A−s) and ηco is the efficiency of the Coulombic. The tested cells
are done always between 10% and 95% of the SOC, which corresponds to the
imposed operational work of the bus. In addition, V1 and V2 are assumed to be
not zero conditions.

Fig. 4. BUSINOVA Lithium-ion battery equivalent electrical model.

where q1(x) = (IbatRo+V1(t))
V1(t)

and q2(x) = Voc

SOC . Due to the nonlinearity in Voc,
the output of the battery system is nonlinear.

2.4 HHEV Torque Distribution and Operation Modes

During the bus displacement, its optimal control depends on the accurate knowl-
edge of torque required to propel the bus and charge the battery. One of the
objective of the control strategy is to split the total torque between the HM
via ICE and EM to optimize the efficiency of the main components (cf. section
III.B). Figure 2 shows the torque paths between HM via ICE and the EM as the
following [20]: Mode 1: EM only (path 2); Mode 2: HM via ICE only (path 1);
Mode 3: EM assisted by HM via ICE (path 1 and 2); Mode 4: charging mode
(path 1 and 3); Mode 5: regenerative braking mode (path 3). As far as possible,
each component of the TruckMaker simulator should correspond to an actual
component of the actual studied HHEV.

3 Proposed Intelligent Robust Hierarchical Hybrid
Controller Strategy (IRHHCS)

The aim of this section is to make the focus on the proposed IRHHCS, embedded
in the bus in order to minimize its total energy consumption while maximizing
the global vehicle efficiency and compensate the battery faults. Therefore, in this
section, an IRHHCS structure is proposed which is capable of meeting various
objectives including optimized power flow management, maintaining high oper-
ational efficiency of the ICE, and balancing EM and battery charge to maximize
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the global vehicle efficiency and detect and compensate the effect of the bat-
tery faults. The first block of the proposed IRHHCS (cf. Fig. 5) corresponds to
a driver command interpreter which converts the driver inputs from the brake
and accelerator pedals to required torque to apply at the wheels level in order
to follow, as accurate as possible, the desired velocity profile.

This proposed strategy consists of three control levels (cf. Fig. 5). The third
level has been developed by fuzzy strategy and fuzzy observer which decide
which operating mode or combination of modes would be most efficient based
on a healthy SOC (cf. Sect. 3.1). This level consist of two blocks, the first block
of this level is Battery Management Fuzzy Fault Tolerant Controller (BMFFTC)
to detect and the compensate the battery faults and generate the healthy SOC
(the healthy SOC means SOC value determination without faults) for the Fuzzy
Switching Mode Controller (FSMC) which selects the optimal mode for the sec-
ond level. At the second level (cf. Sect. 3.2), an advanced IPDOC (Intelligent
Power Distribution and Optimization Controller) has been developed for power
splitting which decide the optimal combination of power sharing between dif-
ferent energy sources to maximize the overall vehicle efficiency. In Sect. 3.3, an
LFPIDC (Local Fuzzy tuning Proportional-Integral-Derivative Controllers) is
described and used to track the set points of EM and HM via the ICE generated
at the second level, in order to reach peak performance and acceptable operation
indexes while taken in consideration of the dynamic behavior of EM, ICE and
HM. The proposed strategy can be used for both offline and online scenarios.
Offline scenario implies that the information about the future driving cycle and
the environment (road profile, vehicle weight, etc.) is fully known, whereas for
the online scenarios this information is obtained in real time. In this chapter, we
will focus more on level 3 and level 2 (cf. respectively, Sects. 3.1 and 3.2).

3.1 Intelligent Supervisory Switching Mode and Battery
Management Controller (Level 3: ISSMBMC)

The objective of this section is to optimize the selection mode and detect and
compensate the battery sensor fault (battery terminal voltage sensor) and the
actuator fault (battery input current actuator). This level consists of BMFFTC
and FSMC blocks to generate the selected mode and the SOC set point for the
second level. Figure 6 shows the block diagram of the proposed level 3 block.

Fuzzy Switching Mode Controller (FSMC). As mentioned in Sect. 2.4,
there are five modes of operations. In order to improve the studied HHEV oper-
ation, the proposed FSMC based on fuzzy logic and rule based, has to decide
which operating mode (or combination of them) is appropriate. Many parame-
ters (such as the value of SOC for the battery, required vehicle power, vehicle
speed and maximum power supplied by the battery, etc.) must be considered
to choose the most efficient operation mode to manage and optimize the power
flow. FSMC is formed by replacing Boolean logic and fixed parameters with fuzzy
logic and fuzzy parameters. The basic idea of a fuzzy logic controller is to formu-
late human knowledge and reasoning, which can be represented as conditional
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Fig. 5. Developed IRHHCS for BUSINOVA bus. In this figure the following acronyms
are used: PCVE (Produced and Consumed Vehicle Energy); Tdemand (Torque Demand)
which is required to drive the vehicle and is defined by the global torque set point;
TICE,SP is the ICE torque set point and TEM,SP is the EM torque set point.

statements with broader application than explicitly stated, in a tractable way for
computers. Based on the available output torque, the pedal position is converted
into torque demand (Tdemand). If Tdemand < 0, the driver intends to decelerate
the vehicle therefore regenerative braking mode is chosen. But, if Tdemand > 0,
the requiring torque is split between EM or/and HM via ICE. In the proposed
algorithm, modes 1, 2, 3, and 4 are selected by fuzzy logic and mode 5 is selected
by traditional logic. Fuzzy logic is well suited for selecting between modes 1, 2,
3 and 4. The ISSMBMC input variables are Vehicle Speed (VS), Tdemand and
SOC, and its output variable is the operation mode (Mode). We use Gaussian
Membership Functions (GMF) and Center of Gravity (COG) defuzzification to
calculate the output fuzzy signal, the advantage of this method is its simplicity
in reducing the calculations complexity. The fuzzy rule is constructed from 27
individual fuzzy rules based on [20].

Battery Management Fuzzy Fault Tolerant Controller (BMFFTC).
The main objective for the BMFFTC is to mange and control the battery faults
and generate the healthy SOC point for FSMC and the second level which affects
the studied HHEV power optimization. The general configuration of BMFFTC
is given in Fig. 6. This section presents a systematic fault diagnosis and con-
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Fig. 6. Schematic of the proposed level 3.

trol scheme for a battery cell to detect current and/or voltage sensor faults, and
compensate its effect. For the diagnostic and control scheme implementation,
new Fuzzy Fault Tolerant Control (FFTC) based on fuzzy adaptive observer
is proposed, to estimate and compensate the effect of the battery faults (cur-
rent sensor faults, and/or voltage sensor faults). The concept of PDC (Parallel
Distributed Compensation) [22] is employed to design fuzzy control and fuzzy
adaptive observer from the TS fuzzy models. Sufficient conditions are derived
for robust stabilization in the sense of Lyapunov stability, for voltage sensor
fault, current actuator fault and state variables unavailable for measurements.
The sufficient conditions are formulated in the format of LMI (Linear Matrix
Inequalities).

In this chapter, we consider the sensor faults or the actuator faults can occur
at the same time or only one sensor fault can occur at a time. Most of the
HEV battery sensors (current sensor and voltage sensor) are Hall effect sensors,
which are subject to bias (offset) and gain fault (scaling) [23]. Bias fault is a
constant offset from the nominal statistics of the sensor signal, while gain fault
is a time-varying offset. The current and the voltage sensor are usually abrupt
changes [23]. The bias and gain faults are considered additive faults in industrial
applications and they are modeled as the following [24].

δm = δ + Exfx(t) (4)

where δm is the current or voltage sensor measurement, δ is the battery input
current (Ibat) or terminal voltage (Vbat), fx is the fault value and Ex is the fault
matrix. In order to design BMFFTC, we need to represent the battery model
based on TS fuzzy model, design fault estimation based on the fuzzy adaptive
observer and design FFTC as the following.
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Takagi-Sugenos Fuzzy Plant Model with Sensor and/or Actuator Faults Consider
the overall fuzzy model achieved by fuzzy blending of each individual plant rule
is given by,

ẋ(t) =
p∑

i=1

μi(q(t))[Aix(t) + Biu(t) + Eaifa(t)]

y(t) =
p∑

i=1

μi(q(t))[Cix(t) + Esifs(t)]
(5)

where x(t) is the state vector, u(t) is the control input vector, y(t) is the out-
put vector, (j = 1, 2, . . . , ψ) and hij (i = 1, 2, . . . , p; j = 1, 2, . . . , ψ) are the
premise variable and the fuzzy sets that are characterized by the membership
function, ψ is the number of the premise variable, p is the number of rules of the
TS fuzzy model Ai ∈ κn×n, Bi ∈ κn×m and Ci ∈ κg×n are system, input and
output matrices, respectively, fa(t), fs(t) are the actuator faults, sensor faults,
Esi is the sensor fault matrix, Eai is the actuator fault matrix and q1(t),. . . ,
qψ(t) are assumed measurable variables and do not depend on the sensor faults

and the actuator faults, Qi(q(t)) =
ψ∏

j=1

hij(qj(t)), μi(q(t)) = Qi(q(t))
p∑

i=1
Qi(q(t))

in which

hij(qj(t)) is the grade of membership of qj(t) in hij . Some basic properties of

Qi(q(t)) are given by, Qi(q(t)) ≥ 0,
p∑

i=1

Qi(q(t)) > 0, i = 1, 2, . . . , p. It is known

that μi(q(t)) ≥ 0,
p∑

i=1

μi(q(t)) = 1, writing μi(q(t)) as μi for simplicity. Consid-

ering also the state Z ∈ κg×1 that is a filtered version of the output y(t) [25].
This state is given by:

Ż(t) =
p∑

i=1

μi[−AziZ(t) + AziCix(t) + AziEsifs(t)] (6)

where −Aziκ
r×r is the stable matrix, from the (5) and (6), one can obtain the

augmented system:

Ẋ(t) =
p∑

i=1

μi[ĀiX(t) + B̄iU(t) + Ēif(t)] Y (t) =
p∑

i=1

μiC̄iX(t) (7)

where X(t) =
[
x(t)
Z(t)

]
, U(t) =

[
u(t)
0

]
, f(t) =

[
fa(t)
fs(t)

]
, Āi =

[
Ai 0

AziCi −Azi

]
,

B̄i =
[
Bi 0
0 0

]
, Ēi =

[
Eai 0
0 AziEsi

]
and C̄i =

[
0 I

]
.

Fuzzy Adaptive Observer In order to estimate the state and the fault of the
battery (3), the following fuzzy adaptive observer is proposed based on [26],

˙̂
X(t) =

p∑
i=1

μi[ĀiX(t) + B̄iU(t) + Êif̂(t) + Ki(Y (t) − Ŷ (t))] (8)
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ex(t) = X(t) − X̂(t), ey(t) = Y (t) − Ŷ (t) = C̄iex(t) (9)

˙̂
f(t) =

p∑
i=1

μiLi(ėy(t) + ey(t)) =
p∑

i=1

μiLiC̄i(ėx(t) + ex(t)) (10)

Ŷ (t) =
p∑

i=1

μiC̄iX̂(t) (11)

where X̂(t) is the observer state, Ŷ (t) is the observer output vector, f̂(t) is an
estimation of the sensor and actuator fault f(t), Ki and Li are the observer
gains to be designed.

Proposed Fuzzy Fault Tolerant Control In this section, the FFTC synthesis pro-
cedure is developed to deal with a wide range of sensor faults, and actuator faults
while maintaining the stability of the closed loop battery system. For simplicity,
we make Ēj = B̄jEj , where, Ej are known matrix. For the fuzzy model (5), we
construct the following FFTC via the PDC [22]. It is assumed that the fuzzy
system (5) is locally controllable. A state-feedback with LMIs is used to design
a controller for each subsystem. The final output of the FFTC based on online
fault estimation is defined and is based on [26],

U(t) =
p∑

j=1

μj [GjX̂(t) − Ej f̂(t)] (12)

where, Gi are the controller gain to be designed, the sensor and the actuator fault
vectors are assumed to be bounded. The main result for the global asymptotic
stability of a TS fuzzy model with sensor and actuator faults are summarized
by the following Theorem 1.

Theorem 1: The TS fuzzy system (7) is asymptotically stabilizable if there
exist symmetric and positive definite matrix P (P > 0), some matrices Li, Ki,
and Gj (i=1,2,. . . ,p; j=1,2,. . . ,q), such that the following LMIs are satisfied,

O A
T
i +AiO − (Bi Wj)T − (Bi Wj) < 0 (13)

HT
bi P2 +P2 Hbi −(Di Ci)T − (Di Ci) < 0 (14)

where P = diag(P1, P2), O = P−1
1 , Gj = WjO

−1, K̄i=P−1
2 Di, K̄i =

[
Ki

Li

]
.

Proof. The proof can be given directly from [20].
BUSINOVA Lithium-Ion Battery Model Based on TS Fuzzy Model To design
the FFTC and the fuzzy adaptive Observer, a fuzzy model that represents the
dynamics of the battery is necessary. Therefore, the system is first represented
with a TS fuzzy model. The system (3) is described by a TS fuzzy representation.
Next, calculate the minimum and maximum values of q1(x) and q2(x) under the
constraints q1,min ≤ q1(x) ≤ q1,max and q2,min ≤ q2(x) ≤ q2,max. From the
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maximum and minimum values q1(x) and q2(x), one can obtain the nonlinearity
sector as follows

q1(x) = q1,maxN1(q1(x)) + q1,minN2(q1(x))
q2(x) = q2,maxM1(q2(x)) + q2,minM2(q2(x)) (15)

where N1(q1(x)) + N2(q1(x)) = 1, M1(q1(x)) + M2(q1(x)) = 1 (as commonly
used in the literature [22], [26]), Ni1 and Mi2 are a fuzzy term of rule i, q1(x)
and q2(x) are the premise variables. Referring to (5), the fuzzy plant model given
by

ẋ(t) =
4∑

i=1

μi[Aix(t) + Biu(t) + Eaifa(t)]

y(t) =
4∑

i=1

μi[Cix(t) + Esifs(t)]
(16)

where x(t) ∈ κ3×1, u(t) ∈ κ1×1 and Ci ∈ κ1×3 are the state vectors and the
battery control input, respectively, where

A1 = A2 = A3 = A4 =

⎡
⎣

1
R1C1

0 0
0 1

R2C2
0

0 0 0

⎤
⎦, B1 = B2 = B3 = B4 =

⎡
⎣

1
C1
1

C2
η

Cn

⎤
⎦,

C1 =

⎡
⎣

q1,min

1
q2,min

⎤
⎦

T

, C2 =

⎡
⎣

q1,min

1
q2,max

⎤
⎦

T

, C3 =

⎡
⎣

q1,max

1
q2,min

⎤
⎦

T

and C4 =

⎡
⎣

q1,max

1
q2,max

⎤
⎦

T

.

The choice of Eai and Esi depend on the input and the output of the battery
system. The sensor fault and actuator fault are considered: battery input current
and battery terminal voltage which are modeled up to 25% from the rated value
for the current and the voltage of the battery.

3.2 Intelligent Power Distribution and Optimization Controller
(Level 2: IPDOC)

Once level 3 has selected the appropriate mode and generated the healthy SOC
set point, this level of control manages and optimizes the power distribution
between the two different sources based on new proposed formula to update
the proposed fuzzy controller. Therefore, the mode of operation and healthy
SOC set point are considered as two inputs for the second level of control (cf.
Fig. 7). There are six input variables at this control level: PCVE and actual
vehicle torque for the Learning Adaptive Algorithm (LAA) block and mode
of operation with the same three inputs of the third level (speed of the vehi-
cle, torque demand, SOC) for the Fuzzy Management Controller (FMC) block.
The two output variables of level 2 are TICE,SP and TEM,SP. This level consists
of three blocks. The FMC block splits the required torque between EM or/and
HM via ICE. The proposed LAA block based on a neural network is used to
update FMC parameters. The Global Vehicle Actual and Optimal Efficiency
Calculation Algorithm (GVAOECA) block is used to calculate the total actual
and the optimal efficiency for the vehicle based on the elementary efficiencies
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of the EM, battery, ICE, HP, HM and transmission. The main contributions of
this level are: (i) to find the best combination of power distribution between
different energy sources and maximize hybrid vehicle overall efficiency; (ii) to
tune the optimal parameters of the fuzzy controller based on neural network
optimization; (iii) to generate the set point for the first level.

Fig. 7. Block diagram of the proposed level 2.

The two output variables of level 2 are TICE,SP and TEM,SP. The proposed
fuzzy management controller inferred output for the ICE torque (TICE) and EM
torque (TEM ) are given by [20],

TICE =

∑c
j=1 mICE,jσICE,j1σICE,j2∑n

j=1 mICE,jσICE,j2
(17)

TEM =
∑c

i=1 mEM,iσEM,i1σEM,i2∑c
i=1 mEM,iσEM,i2

(18)

where, σICE,j1 and σEM,i1, σICE,j2 and σEM,i2 are the mean and the standard
deviation of the GMF of the output variable for the ICE and the EM, respec-
tively, which are two adjustable parameter, mICE,j and mEM,i are the inferred
weights of the jth and ith output membership function for the ICE and the
EM, respectively, c is the number of fuzzy rules. The mean and the standard
deviation of the output variable are optimize based on the LAA presented in
the following section. In order to optimize the output of the proposed FMC
based on Artificial Neural Network (ANN). We first identify the parameter sets
involved in the premise and consequence control logic and use the proposed below
Theorem 2 to updates the parameters values.

Theorem 2: The parameters required by the FMC, shown in Eqs. (17) and (18)
are updated by the proposed LAA, if the mean and the standard deviation of
the membership function satisfy the following:
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σk+1
ij1 = σk

ij1 − ζk
t+s∑

k=t+1

N∑
j=1

(
ek
edμtd,ij + ek

effμeff,ij

)
(19)

σk+1
ij2 = σk

ij2 − ζk
t+s∑

k=t+1

N∑
j=1

(
ek
edμtd,ij + ek

effμeff,ij

)
(20)

where, σij1 is σICE,j1 and σEM,i1 for (17) and (18), and σij2 is σICE,j2 and
σEM,i2 for (17) and (18) which are the mean and the standard deviation of the
GMF for ICE and the EM, respectively. etd and eeff are the error functions
for the torque demand and the vehicle total efficiency. μtd,ij and μeff,ij are the
weights of the ith rule for the jth training pattern, ζk is the learning rate, k is
the iteration index, t is the trailing edge of the moving time-window over which
the prediction error is minimized and s is the window of learning. For off-line
learning we select t = 1 and s = P ; where P is the size of the training set,
which is usually much larger than the largest multi-step-ahead prediction hori-
zon needed in practice [27]. The prediction accuracy deteriorates very quickly
with increasing P . For on-line learning, s can be selected to be sufficiently large
so as to include the largest possible prediction horizon [27].

Proof. The proof can be given directly from [18].

3.3 Local Fuzzy Tuning Proportional-Integral-Derivative
Controllers (Level 1: LFPIDC)

The objective at this level is to regulate the set points of EM and HM via ICE,
to give a good control tracking performance. In this level, it is proposed fuzzy
logic tuning PID controller based on [18] for the EM and HM via ICE.

4 Simulation Results and Discussion

In order to develop and to evaluate the performance of the proposed overall
energy management strategy called IRHHCS (cf. Sect. 3), a realistic model of
the studied Hybrid Hydraulic-Electric bus included an accurate battery model is
used (cf. Sect. 2) and implemented. In this section, three simulations and discus-
sions to demonstrate the effectiveness of the proposed IRHHCS are presented.
The first simulation validate the battery model at low and high temperature
during the charging and discharging phases. In the second simulation, the effec-
tiveness of the proposed strategy to detect and compensate the effect of battery
fault and its effect on the SOC estimation are presented. The third simulation
validates the overall control architecture for the complete vehicle to illustrate
the effectiveness of the proposed technique.
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Fig. 8. Battery current profile; (left) battery discharging current profile; (right) battery
charging current profile [20].
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Fig. 9. Comparison of experimental and model output voltages and voltage error at
high temperature (40 oC) and discharge current (80A); (left) experimental and model
output voltages; (right) voltage error.

4.1 Simulation 1: BUSINOVA Battery Model Validation

The objective of this section is to validate BUSINOVA bus battery model
through experimental tests before implementing the diagnostic scheme. BUSI-
NOVA bus battery cell has rated capacity of 80 Ah and nominal voltage of
4.1 V. Figure 8 (left) shows battery discharging and charging current profiles.
Experimental and model output voltage comparison and the voltage error for
discharging at high temperature (40 oC) and low temperature (−40 oC) are given
in Figs. 9 and 10, respectively. Figure 11 shows the comparison of the experimen-
tal and model output voltage and the voltage error at thigh temperature (40 oC)
for the pulsating charging current (cf. Fig. 8 (right)). Output voltage and the
voltage error comparison at low temperature (−40 oC) and constant charging
current (80A) is given in Fig. 12.

From the simulation results it can be seen that, for low and high temperature
the maximum voltage error for discharging and charging are similar to the error
found at reference temperature which permit us to conclude that the proposed
BUSINOVA battery model is more accurate.
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From the Figs. 9, 10, 11 and 12, one can observe that the proposed model of
Lithium-ion battery gives a good modeling performance. For the proposed model,
between 10% and 95% SOC, the terminal voltage error around 0.2% which cor-
responds to lower error compared to voltage error of 1.5% [15].
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Fig. 10. Comparison of experimental and model output voltages and voltage error at
low temperature (−4 0oC) and discharge current (80A); (left) experimental and model
output voltages; (right) voltage error.
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Fig. 11. Comparison of experimental and model output voltages and voltage error at
high temperature (40oC) and charge current (80 A); (left) experimental and model
output voltages; (right) voltage error [20].

4.2 Simulation 2: Fault Detection and Its Effects on Battery SOC
Estimation

The objective of BMFFTC for the Lithium-ion battery presented in Sect. 3.2 is
to ensure that all signals in the closed-loop battery system are bounded during
the battery faults. In this section, the effects of current or voltage sensor faults
on the battery SOC estimations and compensate its effect are investigated. For
the testing purpose, it is required that sensor and/or actuator fail. The current
or voltage sensor faults are injected in the battery test bench. The initial value
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of the fuzzy observer SOC state is 50%. The tested discharging current profile is
given in Fig. 13. Figure 14 (left) and (right) show the current sensor fault (+20
A bias fault) and voltage sensor fault (+0.1 V bias fault) (solid lines) and their
estimations (dashed lines) based on the fuzzy observer, respectively. To prevent
the battery from over-discharge, the lower limit of the battery SOC is taken as
10%. We are considered the ±20 A bias sensor fault occurs at the time 2406
sec. Figure 15 (left) plots the experimental SOC estimation under the current
sensor fault with FFTC and without FFTC, while Fig. 15 (right) shows the SOC
estimation errors. It can be found from Fig. 15 (left) that the computed SOC
in battery management system (observer-estimated SOC) is around 20% at the
time 4812 sec when the current sensor has a +20 A bias fault. According to this
result, the battery suffering from over-discharge. Therefore, this will accelerate
the battery aging and decrease the battery life. For a −20 A bias fault, the
estimated SOC will reach to 10% and the battery cannot release the supposed
energy. Also with ±0.1 V bias fault occurs at the time of 2406 sec, similar
simulation results are obtained in Fig. 16 (left) and (right). The battery may
be over-discharged when the voltage sensor has a +0.1 V fault as shown in
Fig. 16 (left). The estimation errors are up to 22% with the voltage sensor faulty
condition (cf. Fig. 16 (right)). The results show that the battery may be over-
discharged in the faulty sensor cases. The simulation results demonstrate the
effectiveness of the proposed control approach. The proposed control scheme
can guarantee the stability of the closed-loop battery system.
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Fig. 12. Comparison of experimental and model output voltages and voltage error at
low temperature (−40oC) and constant charging current (80A); (left) experimental
and model output voltages; (right) voltage error.

From the simulation results, it can be seen that without the reconfiguration
mechanism, the battery lost performance just after the sensor became faulty,
whereas for the same condition and using the proposed FFTC scheme strategy,
the battery remains stable in the presence of voltage sensor fault and current
actuator fault which demonstrates the effectiveness of the proposed FFTC strat-
egy. In summary, it has been shown that the proposed scheme is able to detect
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Fig. 13. Battery discharging current profile [20].

and compensate voltage sensor faults and current actuator faults, through a
proper and feasible selection of the observed variables.

4.3 Simulation 3: Proposed Overall Strategy Validation

To prove the effectiveness of the proposed overall control architecture for optimal
energy management, IRHHCS is compared with Pontryagin’s Minimum Princi-
ple (PMP) [4] method already existing in the literature. The desired and the
actual bus speed profile for the proposed IRHHCS and PMP strategies are shown
in Fig. 17. Total energy consumed by the vehicle for these controllers is given in
Fig. 18 which shows that the IRHHCS strategy is better w.r.t. to PMP controller
for reducing total energy consumed (fuel consumption and battery discharge),
which increases the efficiency of the vehicle.
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Fig. 14. Battery current and voltage sensor faults and their estimations; (left) battery
current sensor fault and its estimation; (right) battery voltage sensor fault and its
estimation [20].
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Fig. 15. Effects of current fault on battery SOC estimation; (left) SOC estimation
results in the current sensor faulty conditions with FFTC and without FFTC; (right)
SOC estimation errors in the current sensor faulty conditions with FFTC and without
FFTC [20].
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Fig. 16. Effects of voltage fault on battery SOC estimation; (left) SOC estimation
results in the voltage sensor faulty conditions with FFTC and without FFTC; (right)
SOC estimation errors in the voltage sensor faulty conditions with FFTC and without
FFTC [20]
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To have a more specific comparative analysis, the total energy consumption
for a typical driving cycle are shown in Table 1.

Table 1. Comparison of results for proposed IRHHCS and PMP strategies.

Control strategy Total energy consumed [KJ]

PMP 3799.341

IRHHCS 3732.384

From Table 1, with the initial SOC, driving cycle, all other parameters and
constrains conditions are considered the same. It is seen that the proposed
IRHHCS reduces the fuel consumption up to 2% compared to PMP method.
In summary, it can be seen that the BUSINOVA bus follows the trajectory of
the reference input. In addition, the proposed overall control architecture for
optimal energy management is reliable even during current and/or voltage sen-
sor faults (cf. Sect. 4.2). It is amazingly found in Table 1, that the proposed
strategy significantly reduce the total energy consumed (in [KJ]), which shows
the effectiveness of the strategy applied on the BUSINOVA bus.

5 Conclusion

This chapter presented a robust energy management strategy, with battery faults
detection and compensation for the studied hydraulic-electric hybrid vehicle.
The first part of this work is dedicated to the development and validation of the
dynamic model of the BUSINOVA bus, including an accurate battery model. The
obtained results given in Sect. 4 confirm the reliability of the model under a vari-
ety of operating conditions. In the second part, an appropriate design of system-
atic BMFFTC (Battery Management Fuzzy Fault Tolerant Controller) scheme
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is proposed to estimate and compensate the battery faults. Some sufficient
conditions for robust stabilization of the TS fuzzy model were derived for a
Lithium-ion battery and were formulated in an LMI (Linear Matrix Inequal-
ities) format. The third part of the chapter has been focused on minimizing
total energy consumption and thereby on increasing the total distance traversed
between refueling of the studied hybrid vehicle. The proposed method has been
implemented using real time power management strategy, named Intelligent
Robust Hierarchical Hybrid Controller Strategy (IRHHCS). This proposed strat-
egy consists of three control levels. The highest one (the third level) has been
developed using fuzzy strategy and fuzzy observer in order to manage all of the
possible bus operation modes and to generate SOC set point for second level
and compensate the battery faults. At the second level, an advanced IPDOC
(Intelligent Power Distribution and Optimization Controller) has been devel-
oped for power splitting which decides the optimal combination of power sharing
(between different energy sources) to minimize the total bus energy consump-
tion while maximizing the overall vehicle efficiency. In the first level, an LFPIDC
(Local Fuzzy tuning Proportional-Integral- Derivative Controllers) is described
and used to track the set points of EM (Electric Motor) and HM (Hydraulic
Motor) via the ICE (Internal Combustion Engine) generated at the second level,
in order to reach peak performance and acceptable operation indexes while taken
into consideration the dynamic behavior of EM, ICE and HM. The obtained
results confirm that, using the proposed approach: (i) the strategy can be eas-
ily implemented in real time because it does not depend on prior information
about future driving conditions; (ii) battery faults could be accurately detected
and compensated to minimize its aging effects; (iii) minimize total energy con-
sumption. It is planned in near future to implement the overall proposed control
strategy on the actual BUSINOVA platform. Among the main future develop-
ments, it is targeted to ensure the robustness of the overall proposed control
strategy w.r.t. modelling uncertainties.
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