
Abstract— In this paper, a design of a multi-controller
architecture (MCA) is presented. It effectively links model-
based approaches and Artificial Intelligence (AI) developments
for handling intelligent vehicles navigation in highway envi-
ronments. In this MCA, the model-based approach appears
in the path planning (based on analytical target set-points
definition) and the control law (based on a Lyapunov stability
analysis). The AI-based approach appears in the proposed
Two-Sequential Level Bayesian Decision Network (TSLBDN)
for handling lane change maneuvers in uncertain environment
and changing dynamic/behaviors of the surrounding vehicles. In
addition, a combination of both trajectory prediction based on
dynamic target set-points and elliptic limit-cycles and maneuver
recognition based on Dynamic Bayesian Network (DBN) is pro-
posed to infers surrounding vehicles actions. Several simulation
results show the good performance of the overall proposed
control architecture, mainly in terms of efficiency to handle
the appropriate combination of model-driven and data-driven
approach.

I. INTRODUCTION

In recent years, researches and tech companies have been
racing towards self driving cars and hundreds of approaches
have been proposed either using model-driven or data-driven
approach with a unique goal of having a fully automated
vehicle on the road. In this paper, we will discuss a
promising way that combines both approaches as the authors
strongly believe that both formalism present advantages and
limitations and a coherent classification of functions that
can be implemented with typical Artificial Intelligence (AI)
models like machine learning and expert systems or classical
automation may lead to a generic and reliable system. A
well-studied choice between applying the model-based or the
data-driven approach is highly valuable for the navigation
process.

According to Judea Pearl [1], current AI systems only
operates in a model-free mode which in his scientific opinion
entails severe theoretical limits on performances as he states
that such systems cannot have a retrospection reasoning and
cannot thus serve strong basis for AI. For this reason, as the
purpose in the conception of an intelligent system consists in
achieving human level of intellect, model-free learners need
the guidance of a model of reality. He proposed thus to equip
machine learning systems with causal modeling tools through
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graphical representation (for example Bayesian Networks)
that have made model-driving reasoning computationally
possible, and thus represent a good basis for strong AI.
Model-based machine learning (MBML) [2] defines this
combination. Typically, in MBML a model is built auto-
matically based on a set of assumptions that are written
using a specific language or representation (e.g., graphical).
These assumptions represent the variables in the problem
domain, that affect each other. So, to get from the model to
the predictions of theses variables we need to account for
the data and compute those variables values. This process
is know as inference. Among these techniques of inference
there is Bayesian inference.

Bayesian Networks (BNs), falls under the MBML defini-
tion because they are considered as a probabilistic graphical
language suitable for inducing models from data aiming at
knowledge representations and probabilistic reasoning under
uncertainty [3]. In [4], the authors states that BNs possess the
property of being both a machine learning knowledge-based
representation and a model-based formalism as it allows
structuring domain knowledge while accounting for depen-
dencies between variables. BNs are capable of automatically
computing a solution from instances of different types of
models. In other word, they compute an output for each
given input from a model [5]. BNs have been successfully
applied to solve a variety of problems in many different
domains mainly related to modeling and decision-making
under uncertainty [6]. In this paper we are interested in the
use of BNs in order to be applied to autonomous vehicles.

The authors in [7] presented a classification of the tasks
that an autonomous vehicle may do and its modeling from the
AI perspectives and the classical methods but also in terms of
two information processing stage: decision and action. In this
work, we propose a Multi-Controller Architecture (MCA)
that effectively links both formal methods and data-driven
approaches but also this two processing stage. The over-
all MCA combines the Bayesian “decision” making stage
(MBML approach) and the “action” stage: path planning and
the control algorithms (model-based approach) for handling
maneuvers in highway environment while guaranteeing the
safety of maneuvers even in presence of uncertainty [8].

The MBML decision making process is handled by
a Multi-level Bayesian decision-making approach [6]
through a Two-Sequential Level Bayesian Decision Network
(TSLBDN) [8]. The overall network consists of a situation
assessment part which defines the current driving state of
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Fig. 1. Multi-Controller Architecture (MCA) for highway navigation

safety using an Extended Time To Collision (ETTC) [8], [9],
a decision-making strategy that makes the control decision
and a safety verification of the maneuver using a dynamic
predicted inter-distance profile (DPIDP) between vehicles
[10] that allows then to propose an evasive alternative. In
the other side, the path planning and the control relies on
a model-based formalization. The path planning is defined
based on deterministic and homogeneous dynamic target set-
point definition [11] aiming to simplify the design of control
architectures. These set-points are then fed to the nonlinear
control law synthesized for a tricycle model based vehicle
using Lyapunov stability analysis.
In this paper, in addition to the details given about the main
modules (and their interactions) composing the proposed
MCA from a model-based and AI point of view, an important
focus of the paper is made on the dynamic predicted inter-
distance profile (DPIDP) between vehicles (cf. Section III).
The DPIDP is built as the distance between predictions of
all vehicles future pose and investigates trajectory prediction
of other surrounding vehicles as it is the crucial task in
trajectory prediction. Several approaches have been used
in the literature by analyzing maneuvers intention from
a finite set of alternatives [12]–[14]. In [15], the authors
propose a Maneuver Recognition Module (MRM) based
on the comparison of the center lines of the roads lanes
to a local curvilinear model of the path of the vehicle.
Mahalanobis distance is then used to compare the properties
of each trajectory and to select the most likely maneuver
from a predefined set. In our work, the BN formalism is
used to model such prediction system. A combination of
both trajectory prediction based on dynamic target set-points
and elliptic limit-cycles and maneuver intention recognition
based on Dynamic Bayesian Network (DBN) is proposed to
infer surrounding vehicles’ actions (cf. Section III-A).

The rest of the paper is organized as follows. Section II
is dedicated to highlight the used overall multi-controller
architecture and the probabilistic decision-making process.
Section III details the trajectory prediction strategy and
the DPIDP safety criterion. The simulation results will be

presented in Section IV and this paper concludes with a dis-
cussion on advantages and drawbacks of the used techniques.

II. MULTI-CONTROLLER ARCHITECTURE (MCA): LINK
BETWEEN MODEL-BASED AND AI APPROACH

The MCA, shown in Fig. 1, aims at decomposing the
overall complex task into a multitude of sub-tasks to achieve.
Once the path planning is developed, an appropriate decision-
making strategy for autonomous navigation has to be defined
that takes into account several aspects, such as: traffic rules,
passenger safety and measurement uncertainty of perceptive
modules. In this MCA, a probabilistic decision-making block
(detailed in Section II-B) computes the most suitable decision
according to the environment knowledge based on perception
sensors while taking into account the presence of uncertainty
to achieve desired action. Then a selection process, based
on the Task activation, achievement and validation block,
enables the switch between different ADAS modules (block
3 and 4 in Fig. 1) to activate the corresponding ADAS
that generates dynamic target set-points (cf. Section II-A).
These set-points are fed to the nonlinear control law (block
5 represented in Fig. 1) developed in [16] that aims to drive
the vehicle toward specific (static or dynamic) target set-
points. This control law is based on a Lyapunov function
design to ensure the convergence of the vehicle to the target.
The motion of the host vehicle is described by the so-called
tricycle model .

A. Elementary Advanced Driver Assistance Systems (ADAS)

During autonomous navigation in highway, vehicles per-
form either an ACC behavior for driving with desired veloc-
ity while maintaining a safety distance with vehicles ahead,
or LKA or switches to an Auto-Lane Change (ALC) behavior
while guaranteeing the smoothness and the safety of the
trajectory. For these behaviors, a homogeneous target set-
points definition has been proposed in [11], defined by a
pose (xT ,yT ,θT ) and a velocity vT which can be constant or
variable indifferently.



1) Lane Keeping Assist (LKA): For the lane keeping
assist, where a global path is already defined to be the
center-line of the lane to follow, it is enough for the vehicle
to follow this path as precisely as possible without any
modification. The dynamic target set-points are extracted
then using a Frenet reference frame [17] (cf. Fig. 2(a)).
They correspond to the closest position (xT ,yT ) in the path
with an offset curvilinear distance, w.r.t to the origin of the
vehicle reference frame, and to an orientation θT tangent to
the defined path at (xT ,yT ).

(a) LKA and ACC based Frenet ref-
erence frame

(b) ALC based ELC

Fig. 2. Homogeneous set-points definition based on dynamic target tracking

2) Adaptive Cruise Control (ACC): The adaptive cruise
control follows the same homogeneous reasoning (in terms
of used set-points and control law). Dynamic target set-
points are extracted using a Frenet reference frame. A desired
velocity, that insures maintaining a temporal safety distance
with vehicles ahead, is generated using the predefined control
law.

3) Auto-Lane Change (ALC): The auto-lane change con-
troller in the other hand, is based on generated elliptic limit-
cycles trajectories which are defined in the literature accord-
ing to an elliptic periodic orbit [11] corresponding to an el-
lipse of influence. These periodic orbits if well-dimensioned
and accurately followed guarantee the avoidance of any given
obstacle. An adaptation to the highway case of elliptic limit-
cycles (ELC) techniques has been carried out in [8], to
perform the lane change maneuver, while taking into account
vehicle speeds and traffic rules.

As for the navigation, because the vehicle is already on
the defined path, the ELC takes as initial parameters the
current vehicle configuration. The extraction of set-points in
this case, is based on a heuristic defined in [17].

B. Multi-level Decision Network for a lane-change assis-
tance

It is proposed in this paper a more effective way to take
decisions under uncertain conditions, while taking advantage
of the dynamic of progression of the inter-distance between
vehicles, in order to define better the level of dangerousness
of the current maneuver.
The purpose of the overall network is to conform to the driver
perception of safety and judgment for dangerous situations
and infer the drivers action.

The TSLBDN is presented in Fig. 3, it illustrates the
sequencing of decisions and the overall safety verification
mechanism for all the obstacles present in the environment.

The first decision is a part of the Maneuver Decision Level
(MDL) where at each control horizon Tch, the choice of ac-
tion regarding the most suitable maneuver is made. The prob-
abilistic decision process is based on the current situation
assessment, using the Extended Time To Collision (ETTC)
[8] while taking measurement uncertainty into account. The
possible output maneuvers are: Lane Change Left, Lane
Change Right, Keep Lane with Adaptive Cruise Control,
Maintain Velocity with Cruise Control. The second decision
is a part of the Safety Verification Decision Level (SVDL)
where for each time step Ts, while the maneuver execution
starts, a safety-checking regarding the action chosen in the
MDL and a verification of the coherence of the maneu-
ver with the predicted pre-planned trajectory is performed
through an improved definition of Dynamic Predicted Inter-
Distance Profile (DPIDP) [10] (cf. Section III), used to detect
and compensate for possible failure of the perceptive module
or unexpected behaviors. The possible output are: Abort
Maneuver, Warning Be Careful and Maneuver is Safe.

Since the presented method has a short response time
given that Bayesian Networks (BNs) are computationally
tractable (due to the exploitation of conditional independence
relationships) [6], [18], integrating safety verification in the
decision-making process makes safety retrospection over
the current maneuver risk and real time evasive decisions
possible. In addition, Bayes Theory allows uncertainties to
be incorporated into calculations and provides a way of
combining uncertain data.
A most suitable decision is then obtained by maximizing a
utility function over the possible alternatives of the action
nodes, given the available evidence [6]. We choose discrete
actions, instead of low-level controls like steering or ac-
celerating, since modularized systems have been reported
to perform better in autonomous driving than end-to-end
systems [19].

To identify the most suitable decision, we compute the
Expected Utility (EU) for each decision state and the final
decision is the alternative maximizing this EU. A Multi-
Level Decision Network (MLDN) is a representation of a
joint expected utility function due to the chain rule:

EU(UD) = ∏
X∈UC

P(X |parent(X)) ∑
w∈UV

U(Xparent(w)) (1)

UC represents the set of situation assessment variables
variables (X1,X2, ..,Xn) and their conditional probabilistic

Maneuver Decision Level (MDL) Safety Verification Decision Level (SVDL)

Decision 1: Lane Change Maneuver

Lane Change Left
Keep Lane ACC
Lane Change Right
Maintain Velocity

Utility_Safety

Extended Time To Collision (ETTC)

Decision 2: Maneuver Safety Checking

Abort Maneuver
Warning Be careful
Maneuver is Safe

Utility_Check

Dynamic Predicted Inter-Distance Profile (DPIDP)

Fig. 3. Two-Sequential Level Bayesian Decision Network (TSLBDN)
Architecture (developed while using Netica software)



dependencies [6]. UV defines utility nodes that is the cost
related to the decision [20] The ultimate goal of the pro-
posed cascade decision-making strategy is deriving the most
suitable decisions given the available evidence following the
temporal order of the set of decision nodes UD (the action
chosen for decision Dn−1 is part of the information available
at decision Dn).

III. DYNAMIC PREDICTED INTER-DISTANCE PROFILE
(DPIDP) AND TRAJECTORY PREDICTION

DPIDP is a safety criterion to estimate the maneuvers
risks during the whole navigation task [10]. The assumption
considered is that if nothing changes in the initial expected
dynamic of all the surrounding dynamic obstacles, the pre-
dicted evolution of the inter-distance between vehicles is
not supposed to change [8]. The DPIDP is built based on
predictions of all vehicles future pose (cf. Fig 4).

A. Dynamic Bayesian Network for Maneuver Recognition
(DBNMR) and Trajectory Prediction

For instance, this work relies on the MBML formalization
to establish a reliable decision making for the ego-vehicle
(cf. Section II-B). In this case, all the vehicle dynamics
are observable with high precision. Therefore, trajectory
prediction for the ego vehicle is directly defined by the
mathematical models of the trajectories. Obviously, the both
of categories are efficiently complimentary. In this case, the
two alternatives among the four decisions (cf. Section II-
B) constitute the baseline for the trajectory prediction of
the ego vehicle: Lane change trajectory and Lane Keeping.
In the first alternative, the overall lane change trajectory
is constructed using elliptic limit-cycles trajectories (ELC)
used in the Automatic Lane Change (ALC) controller (cf.
Fig.1, [10]). These ELC trajectories are defined according to
a set of differential equations (given in [8]). The solution of
these differential equations gives the pre-planned trajectory,
where the ego vehicle’s position is considered at each sample
time as initial configuration of these ELC trajectories. An
estimation of the time prediction horizon Tpred [s] is then
calculated by estimating the required time for the vehicle,
given a constant velocity to travel the curvilinear distance of
a lane change trajectory.
On the other hand, the lane keeping is defined according to a
global path already defined to be the center-line of the lane
and the prediction trajectories are constructed for Tpred [s]
based on their expected behaviors.

Fig. 4. Predicted Trajectories during lane change maneuver

Fig. 5. Dynamic Bayesian Network for Maneuver Recognition (DBNMR)

Nevertheless, predicting behaviors of other road partici-
pants is not a simple task and finding a model that is able to
infer the drivers’ intention is quite difficult since it depends
on external factors that is complex to model (eg. the driving
habits). For this reason, we orientate this problem solving to
a MBML approach through Bayesian Networks that allow
us to induce a model from data while computing a possible
solution.

The proposed idea in this paper is to evaluate the predicted
evolution of the surrounding obstacle in the lane one step
ahead. To do so, the following state vector is used to
track the change in behaviors S(O) = [dl ,dr,X ]T . dl and dr
are respectively the lateral distance between the considered
vehicle and the left or the right boundaries of the considered
lane (cf. Fig 4). X = {x,y,θ} is the state vector with (x,y)
the vehicle’s position and θ its orientation.

An EKF is used to predict surrounding vehicles state
vector from uncertain sensor measurements. It is assumed
that target tracking system embedded in the ego vehicle
provides these sensor measurements. It is also supposed that
the Perception module (cf. Fig. 1) provides the lane marking
and the center-line of each lane.

The vehicles motion is described in this paper by the
following discretized car-like vehicle evolution model :{

Xk+1 = f (Xk, vk, ωk)+ εX ,k

Yk = g(Xk)+αY,k
(2)

where εX ,k is zero-mean Gaussian noise representing the
process noise and αY,k is the measurement noise. v and ω

are the linear and angular velocity respectively.
dl and dr are then estimated as the distance between the

predicted pose and the closest position to the boundaries (left
and right) w.r.t the origin of the vehicle reference frame. (cf.
Fig 2(a)).

Given that every Kalman filter model can be represented in
a Dynamic Bayesian Network, which is a BN that represents
a temporal probability model [20], the resulting DBNMR
is represented in Figure 5 with S(O) = [dl ,dr,X ]T the state
variables, Z the noisy measurements and MI the resulting
maneuver intention with the following states: Lane Keeping,
Lane Change Left, Lane Change Right.

Based on the output of the DBNMR, the predicted tra-
jectory is generated based on the same strategy as for



(a) Lane Change of the Obstacle-Vehicle

(b) Lane Keeping of the Obstacle-Vehicle

Fig. 6. Resulting maneuver intention and trajectory prediction for a left
lane change

the ego vehicle and are shown in Figure ??. Once the
trajectories are generated, for each vehicle pair (ego vehicle
and obstacle-vehicle) trajectories, we define a control horizon
Nch (number of control moves) to compute the DPIDP as a
function of Tch. The control time horizon is chosen to be:
Tch[s] = max(tpred)/M, where M is a constant value chosen
accordingly based on a simple estimation of human reaction
time [21].

For each number of control moves Nch, the DPIDP (p(t) in
Fig. 7) will be evaluated between the predicted trajectory of
respectively the ego vehicle and the chosen obstacle-vehicle
(cf. Fig. 6) and compared to the evolution of the Actual Inter-
Distance Profile (AIDP) (d(t) in Fig. 7). An EKF is used to
estimate and predict the ego vehicle and surrounding vehicles
state vector from the uncertain sensor measurements, in order
to estimate d(t). A Predicted Lower Safety Boundary l(t) is
constructed as the projection (parallel curve) of p(t) with an
offset shift Do f f set denoting a possible authorized degree of

Fig. 7. DPIDP between ego vehicle and surrounding obstacle-vehicle

freedom over the vehicles mutual velocities (cf. Fig. 7). The
profiles DPIPD and the PLSB are recalculated each (t0+Tch).

This way of reasoning gives the system an average time
(Tch) to confirm or not the dangerousness of the situa-
tion assessment (given by anomaly criteria given by the
lateral distance errors (Err1 between AIDP and DPIDP,
Err2 between DPIDP and PLSB [10]), to act accordingly
or to reconfigure otherwise. This way of reasoning under
uncertainty will eventually help ADAS reduce false alarm
and improve performance.

A detailed formalization of the above methodology have
been made but will not be detailed further, as it is not the
main focus of this paper.

IV. SIMULATION RESULTS

The simulation results based on experiments performed on
a MATLAB/Simulink car simulator has been implemented to
test the developed algorithms. To demonstrate the robustness
of the proposed approach for handling safe highway ma-
neuvers, let us show in what follows a simulation example
(See. Simulation Video https://goo.gl/bkqAyk). The
properties we seek to highlight in this work are: the ability to
handle lane change maneuvers, the safety retrospection over
the current performed maneuver and the ability to reconfigure
and adapt to the change. It is considered in what follows that:
• The scene is constituted of four vehicles in a two-

lane highway: two vehicles on the right lane including
the ego-vehicle (named respectively ego-vehicle and
obstacle-vehicle 1) and two vehicles on the left lane
(named respectively obstacle-vehicle 2 and obstacle-
vehicle 3).

• The initial velocities of the vehicles are given by:
Vegomax = 23m/s, VO1 = 12m/s, VO2 = 25m/s VO3 =
5m/s.

We have selected a dangerous scenario that can occur in a
highway environment where the obstacle-vehicle 1 in front
suddenly brake, while the ego vehicle is trying to perform a
lane change maneuver. In this case, we can see in Fig. 8(c)
that the AIDP crosses the PLSB generating consequently the
SVDL to advise aborting the maneuver (cf. Fig. 8(b)). In this
case, given that the left lane is free and given the ability of
the system to reconfigure and adapt to the change (thanks
to the properties of the ELC [10] and to the DPIDP) the
system continues the lane change maneuver followed by a
reconfiguration of the DPIDP to the new setting.

V. CONCLUSION AND DISCUSSION

In this paper, a multi-controller architecture (MCA) that
links model-based approaches and Artificial Intelligence (AI)
developments is presented, for handling intelligent vehicles
navigation in highway environments. The model-based ap-
proach appears in the path planning (based on analytical
target set-points definition) and the control law (based on a
Lyapunov stability analysis). The AI-based approach appears
in the proposed Two-Sequential Level Bayesian Decision
Network (TSLBDN) for handling lane change maneuvers in
uncertain environment and changing dynamic/behaviors of



(a) Decision 1: MDL (b) Decision 2: SVDL (c) DPIDP during emergency situations

Fig. 8. Scenario 1: MCA during emergency situations

the surrounding vehicles. Moreover, a combination of both
trajectory prediction (based on dynamic target set-points and
elliptic limit-cycles) and maneuver recognition (based on
Dynamic Bayesian Network (DBN)) is proposed to infer
surrounding vehicles’ actions. The resulting prediction tra-
jectories are used in the evaluation of the Dynamic Predicted
Inter-Distance Profile (DPIDP) between vehicles used as
a baseline for the safety verification. This overall model-
driven/data-driven approach constitutes a good deal for han-
dling numerous scenarios configuration, multiple decision
criteria while taking uncertainty into account. The graphical
representation of the Bayesian Network (BN) eases the con-
nection between the situation assessment level (observations
level) using the collision risk measure and the decision-
making level (in case of Decision Networks). The structure
captures causal and independence relationships which is
easiest to construct compared to a model-based technique
where a full understanding of the system behavior is needed.

Several simulation results show the good performance of
the overall proposed control architecture, mainly in terms of
efficiency to handle the combination of model-driven and
data-driven approach. Future work will be carried out to
evaluate the overall proposed approach in real-time exper-
imentation.
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