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Abstract— In this work, a novel interval-based/data-
driven safety verification technique is introduced for Intelli-
gent/Autonomous Vehicles (I/AV). The interval arithmetic is
adopted to enhance the reliability of the analytical models used
for the autonomous navigation. Furthermore, a data-driven
technique, which monitors the correlation relating variables of
the modeled system, is adopted to ameliorate the uncertainty as-
sessment. In such a manner, tight bounds of safety margins are
obtained. To provide reliable safety verification, the proposed
risk management approach has been integrated on an Adaptive
Cruise Control (ACC) system. It permits to detect erroneous
uncertainty estimation of an Extended Kalman Filter (EKF).
Simulation results prove the overall risk management efficiency
and its ability to handle uncertainties.

I. INTRODUCTION

Aiming to improve mobility, efforts have been drastically
spent during the past decades to develop a new generation
of Intelligent/Autonomous Vehicles (I/AV) [1]. However,
the reliability of these establishments remains an impor-
tant challenge [2]. To avoid serious damages and handle
the situational/environmental risk, the I/AV community has
focalized more attention on the safety verification and risk
management techniques [3]. Accordingly, the hazard assess-
ment level acquires data from the environment to capture
risks. In such a way, the intelligent vehicle connectivity
with its environment has been enhanced. The I/AVs have
been equipped with plenty of advanced perception and
communication tools. Smart cameras, Light Detection And
Ranging (LiDAR), Dedicated Short Range Communications
(DSRC) and Internet of Things (IOT) are concrete instances
of these systems [4]–[7]. Nevertheless, the performances of
such processes are prone to important uncertainties. Indeed,
the navigation environment is an over-changing scene, where
it is very hard to predict the road participant behaviors.
Ignoring the uncertainties in measurements and other vehicle
potential dangerous motions leads to unavoidable fail of the
risk management and safety verification levels.

In this context, two distinct categories of uncertainty
assessment and risk management approaches have been
widely developed in the literature. A first part from the
I/AV community has recourse to a set of model-based
techniques to ensure a reliable navigation. This class of
approaches relies on a deep understanding of the system
behavior. Based on this understanding, vehicle’s motions and
the uncertainty evolution have been described analytically
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through mathematical models [8]. In general, these models
are joined with a probabilistic forecasting to estimate event’s
occurrence and behaviors of nearby cars in the short term
horizon [9]. The constructed model permits easily to verify
and validate continuously the monitored system with a
high robustness to uncertainties. A difference between the
established model outputs and the real system performances
pinpoints erroneous behaviors. However, elaborating high
fidelity models to ensure reliable navigation is not so easy.
Foremost, when dealing with multi-operational mode sys-
tems, applying model-based approaches is unrealistic [10].
Models are hopeless in reporting unpredictable and over-
changing systems behaviors. Moreover, the cost imposed
by the precise modeling in terms of time and effort is
unacceptable.

Trying to adapt the safety verification techniques to the
practical challenges, the interest has been intensively focal-
ized on free-model approaches [11]. Data-driven methods
have been introduced to characterize systems while skipping
models formalization [12]. Instead of modeling the system
behavior and its outputs under several conditions, more at-
tention is given to the system historical properties. Compared
to the model-based one, performances of the data-driven
methods are in general more accurate. During the system
modeling phase, formal methods apply frequently several
simplifications for technical reasons. Especially in case of
non-linear behaviors, such simplifications endanger the IA/V
risk management level reliability [13]. Correspondingly, Ma-
chine Learning approaches, Bayesian Networks and Neural
Artificial Networks have been successfully proceeded in this
context [14]–[16]. The data-driven methodology extracts use-
ful and relevant information by interpreting data structures
and its statistical features. In that way, future trajectories of
road participants have been efficiently predicted. Despite its
simplicity and consistency, the data-driven methodology is
useless when it is applied based on highly uncertain data. In
that case, erroneous deductions may be reached.

As seen from the literature, the stated categories, applied in
order to ensure reliable navigation, have various advantages
and limitations. In this regard, a mutual execution of model-
based and data-driven approaches can be useful to gather
the best of their features. The main contribution of the
present work is constructing a strong link between the data-
driven and model-based techniques to provide a reliable,
safe and flexible autonomous navigation. The robustness of
the model-based techniques against uncertainty is improved
through an interval-based representation of data. Therefore,
the interval analysis ensures more accuracy for the estab-



lished analytical models. In the meanwhile, a data-driven
process is utilized to boost the uncertainty characterization
by the statistical examination of the correlation relating
variables. As a consequence, tight bounds of min/max safety
thresholds are obtained. Once performances of formal model-
based approaches (as Kalman filter) are not any more en-
closed inside these bounds, safety is not guaranteed and
countermeasures must be taken. An application of the entire
interval-based/data-driven approach is detailed for a modern
Adaptive Cruise Control system [17].

The rest of this paper is organized as follows: Section
II details the proposed interval-based uncertainty assessment
policy, which is dedicated to I/AV. Section III explains the
introduced statistical correlation-based step in enhancing the
set-membership estimation of uncertainties. Section IV de-
scribes the integration of the interval-based/data-driven safety
verification technique into the risk management associated to
an ACC architecture. Section V summarizes this work main
contributions and discusses future work.

II. IMPROVEMENT OF ANALYTICAL MODELS WITH AN
INTERVAL-BASED QUANTIFICATION OF UNCERTAINTIES

As already mentioned, the majority of the model-based
approaches are joined with a probabilistic prediction of the
uncertainty propagation into the studied process [18]. How-
ever, probability consists in an approximative guess, which
is based on estimating the chance of an event occurrence.
Especially when it is estimated based on false assumptions,
this guess may not be compliant with the reality [19].
Another vulnerability of the probabilistic reasoning lies in
admitting a particular distribution of probability. In reality, a
sudden and unpredictable change in the noise features may
take place.

In this paper, the interval arithmetic is adopted to play as a
cut off with the probabilistic estimation of uncertainties [20].
Several research studies have been dedicated to exploit the
set-membership methodology in coping with issues related to
the autonomous navigation. Several interval-based contribu-
tions have been depicted in the literature to ensure accurate
localisation and positioning for vehicles [21], [22]. Multi-
variate diagnosis methods have been extended to handle
interval-data in the aim to monitor modern vehicular systems
[23]. The interval analysis has allowed the determination of
reachable sets and future occupancy regions of smart vehicles
[24]. A comprehensive comparison between probabilistic
methods and the interval analysis-based uncertainty handling
approaches for reliable navigation can be found in [25].

Indeed, the set-membership computation (representing
data as intervals) is based on determining upper and lower
bounds for the measurement’s real values. The data stan-
dard representation has been extended to intervals [26].
The mathematical operations (+,−,∗,/) and the elementary
functions (sin,cos, log, ...) have been also extended to handle
interval-valued arguments [20]. Advanced algorithms have
been developed to ensure numerical integration and differ-
entiation of interval equations and to solve polynomials with
interval coefficients [26]. In such a manner, the uncertainty

evolution is easily evaluated all along any algorithm of a
given analytical model. The set-membership computation is
assumed as guaranteed and reliable since the exact value of
data is enclosed inside an interval bounds. To summarize,
interval analysis has provided a strong enhancement for the
constructed model’s reliability. Augmented precision models
have been obtained thanks to the set-theory. It helps to over-
come limitations entailed by modeling imperfections. Even
more, unlike existent uncertainty assessment approaches, the
interval-based uncertainty characterization method does not
require any linearization.

In the sequel, [a] = [a,a] designates a real interval. a
and a are its lower and upper bounds. The interval’s width
underlines the uncertainty extent associated to [a]. Notably,
it is important to adopt a relevant procedure to appropriately
define bounds of each interval-measurement. A prior knowl-
edge of the uncertainty bounds may be acquired through
confidence intervals associated to sensor’s measurements
[24]. Otherwise, interval widths may be correlated with the
environmental conditions, which emphasize the increase in
uncertainty. The communication delays and any uncertainty
source must be taken into account too. Consider a system
of n inputs and m outputs, denoted respectively by xi=1..n
and y j=1..m. Figure 1 illustrates the set-membership modeling
principle for this system.

Fig. 1: Interval-based system modeling

Certainly, models accuracy is enhanced thanks to the in-
terval arithmetic. The set-membership model provides over-
approximations of findings that include without doubt exact
values of outputs. For the safety and risk management levels,
the interval-based modeling provides an efficient manner to
perform the risk worst-case analysis. However, the obtained
over-approximations are in general too conservative. To avoid
degrading the autonomous navigation performances, the risk-
management must balance between the safety and the accu-
racy requirements. To overstep this limitation, a data-driven
optimization step is joined to the interval-based modeling.
More tight and compact enclosers of the interval-based
model outputs are reached by monitoring the correlation
evolution.

III. DATA-DRIVEN OPTIMIZATION STEP

For optimality goals, the present section presents a data-
driven optimization step, which is integrated into the interval-
modeling phase. This step lays on a statistical characteriza-
tion of the measurements. Dependencies between variables



are exploited to characterize the navigation process and
discard the over-estimated uncertainties. In statistics, the
correlation coefficient is a common metric used to analyze
the relationship between variables [27]. It is expressed as:

CX ,Y |k =
COVX ,Y |k

σX σY
(1)

Where CX ,Y |k is the correlation coefficient assigned to vari-
ables X and Y at instant tk. It is a real number, varying
between [−1,1]. It reflects the strength of the linear relation-
ship between X and Y . COVX ,Y |k is the covariance associated
to X and Y . σX and σY are respectively their variances.

Plenty of reliability approaches and diagnosis processes
are built based on monitoring the correlation [27]. The run-
time characterization of system variable’s dependencies is
extremely efficient in this context.

A great part from the literature considers that a sys-
tem correct behavior is validated through a smooth and
progressive transition in the correlation states. Notably, in
a very short sampling-time step, only the occurrence of
abnormalities leads to a sudden important change in the
correlation behavior [28]. Outliers, faulty measurements and
radical change in the control system can entail such erro-
neous evolution of the correlation. This is the case for I/AVs
studied in the present work. Mostly, a deep change in the
navigation dynamics or in the surrounding circumstances is
generally unrealistic in a short time horizon. In this sense,
the run-time supervision of the correlation is adopted to
refine results of the interval-based modeling of systems. Cer-
tainly, uncertainties attributed to each interval-measurement
entail a deviation in the correlation compared to its original
structure. Correspondingly, a more realistic prediction of the
uncertainty evolution must ensure a minor fluctuation on the
correlation between successive instants tk−1 and tk. Based
on this assumption, interval widths are recursively narrowed
to guarantee an appropriate evolution of correlation between
each couple of variables describing the behavior of a given
system.

Basically, the correlation serves to perform dependency
analysis of single-valued variables. In this work, a symbolic
representation of intervals, namely the vertices transforma-
tion, is employed. It allows to calculate the correlation
relating interval-valued variables and examine the uncertainty
propagation into a given process. Let denote by X I an
interval data matrix, which is constructed by N observations
describing M interval-valued variables [xi|i=1..M]:

X I =


[
x1(1),x1(1)

]
· · ·

[
xM(1),xM(1)

]
...

. . .
...[

x1(N),x1(N)
]
· · ·

[
xM(N),xM(N)

]
 (2)

Indeed, the structure of a given interval observations of
variables, can be geometrically interpreted as hyper-rectangle
with a 2M vertices (min/max bounds of intervals). Based
on this idea, the vertices technique develops an equiva-
lent single-valued matrix for X I with the same initial data

structure. The obtained single-valued matrix XH , containing
all the vertices and constructed from N× 2M rows and M
columns, is presented in the following shape:

XH =




x1(1) · · · xM(1)

...
. . .

...

x1(1) · · · xM(1)


...

x1(N) · · · xM(N)

...
. . .

...

x1(N) · · · xM(N)




(3)

It is important to notice that the vertices transformation does
not impose any additionally computational complexity to the
elaborated model. It depends exponentially on the value of
the number M and linearly on the observations number N. In
our case of study, M is always equal to 2 since the correlation
coefficient evaluates the dependency between two distinct
variables.

Once the equivalent single-valued data are obtained, it is
possible to proceed to the correlation assessment for each
couple of variables. Accordingly, the uncertainty minimiza-
tion in the width of each measurement interval is done.
With each newly incoming set of interval observations, the
correlation assessment is done with previous measurements
samples. The interval, having the largest width, is targeted
by the minimization. After that, the vertices transformations
is applied and the gap in the correlation between instants
tk and tk−1, denoted γ , is estimated through the following
equation:

γ =CX ,Y |k−CX ,Y |k−1 (4)

Notice that the uncertainty reduction is aborted at two
conditions:
Condition 1: When the gap in the correlation between two
instants tk−1 and tk decreases from an iteration to another
and suddenly it begins to increase. This fact means that
the concerned interval was tightened as much as possible.
More reduction in the interval width will entail undesired
modification in the data proper distribution.
Condition 2: When the gap in the correlation between
two instants tk−1 and tk exceeds the minimum variation of
correlation noticed in the system nominal behavior. This
latter is characterized through off-line simulations.

Conditions 1 and 2 prohibit an over-narrowing of the
interval-measurements. Without these conditions, the uncer-
tainty amounts, affecting the navigation dynamics, may be
under-estimated. Finally, the flow chart presented in Figure
2 recapitulates all the required steps to optimize results of
the interval-based model. Together, the interval arithmetic
and the data-driven characterization of uncertainties through
the correlation construct a strong enhancement for the an-
alytical formal navigation approaches. It should be noted
that the obtained bounds are neither too conservative, nor
optimistic thanks to the correlation supervision step. As it



Fig. 2: Flow chart of interval-based/data-driven uncertainty
modeling

will be explained in the next section, the obtained-bounds
can play also as upper/lower safety margins. These margins
are extremely useful in validating and verifying performances
of the I/AVs risk management level. Aside from its reliability,
the proposed strategy guarantee flexibility. Contrarily to the
existing approaches, a specific point of the obtained interval
may be selected by the risk management level based on a
particular criterion.

IV. APPLICATION TO AN ACC SYSTEM

As a proof of concept, the proposed interval-based/data-
driven navigation approach is tested on an ACC system. It
has as a main task to maintain a reference distance, denoted
dre f , from the in-front vehicle. dre f is calculated in run-time
in order to determine an appropriate target set-point for the
ACC-equipped vehicle. The selected dynamic target must be
characterized with a safe and acceptable Time To Collision
(TTC) [29]. Indeed, the employment of the TTC as risk
indicator is widespread for the autonomous transportation
systems [14]. Using the interval arithmetic, [T TC], [dre f ] as
well as an enclosure of the ACC-equiped vehicle target set
point are determined in a set-membership manner.

In this case, a precise TTC formalization is given by the

standard equation of motion, describing the displacements
between the ACC-equiped vehicle and the in-front car.
Consider two vehicles i and j with vector positions and
velocities of: pi, p j, Vi and Vj respectively. Here, i and j
indexes correspond respectively to the in-front vehicle and
the ACC-equipped vehicle (cf. Figure 3). Hence, the study
depicted in [30] has proved that the rate of change in the
separation between i and j, denoted ḋi j, is expressed as:

ḋi j =
1

di j
(pi− p j)

T (Vi−Vj) (5)

Where di j is the measured inter-distance separating i and j.
Starting from equation (5) and by assuming a constant clo-
sure rate between vehicles, the TTC value may be obtained
as follows [30]:

T TC =−
di j

ḋi j
(6)

As already explained, a model, which handles interval
data, is built based on equations (5) and (6). The obtained
bounds of the established model findings will play an im-
portant role in validating the performances of an Extended
Kalman Filter (EKF). For its reliability and efficiency the
EKF, which is a stochastic model-based approach, is largely
used to estimate and predict the vehicle’s real states from sen-
sor measurements. Despite its reliability, the EKF presents
poor performances when the system is not properly condi-
tioned [25]. Besides, the EKF outputs may converge to faulty
estimations because of a sudden change in the statistical
features of the noise affecting the navigation process. Hence,
safety is guaranteed while the EKF outputs are enclosed
between the tight bounds provided by the interval/data-driven
based model. In the other case, the EKF model must be
reconditioned and the system initial states have imperatively
to be redefined. Figure 3 illustrates the principle of the
suggested safety verification strategy for the ACC.

Fig. 3: Suggested ACC safety verification principle

To ensure the above explained strategy of the target set-
point selection, a particular architecture with a risk manage-
ment module, is designed. As shown in Figure 4, the ACC ac-
quires the required information by the V2V communication
and the localization tools. At this moment, the “uncertainty
assessment block” checks the measurement conditions and



transforms all the data to intervals. Once interval measure-
ments are obtained, the correlation supervision step begins.
The initial interval measurements are tightened to permit a
more compact [TTC] estimation. In the meantime, an EKF
is used simultaneously with the set-membership blocks in
order to filter the measurements and compute the TTC in a
stochastic way. According to the finding of the EKF as well
the interval enclosures, instants where the EKF predictions
diverge are detected. Finally, a control unit allows reaching
the selected target with a desired orientation and velocity.
Figure 4 illustrates the adopted architecture of the elaborated
ACC.

Fig. 4: Architecture of an interval-based/data-driven ACC

In the aim to validate the uncertainty assessment policy as
well as the risk management, a freeway navigation Matlab
simulator has been elaborated. The interval computation
has been provided through the INTLAB package [31]. The
simulated vehicles are modeled by the mean of tricycle
kinematics.

A first test scenario is dedicated to evaluate the role of
the correlation-based step in improving the risk management
optimality. Figure 5 exhibits results of the set-membership
modeling with/without proceeding the data-driven optimiza-
tion step.

Fig. 5: TTC enclosures with/without the data-driven opti-
mization step

As shown in Figure 5, the examination of the correlation
has drastically reduced the width of the interval-valued TTC.
Thanks to this optimization, the initial TTC enclosure has
been reduced with an average range of 60.4%. For sure, a

more realistic risk prediction has been ensured compared
to the initial TTC over-approximation. Afterward, Figure
6 presents the evolution of the exact TTC. This latter
underlines the TTC calculated in a deterministic manner (by
equation (6) without injecting any noise in the simulation
dynamics. The exact TTC is taken here as a reference to
assess the consistency of the obtained results.

Fig. 6: TTC enclosures compared with exact results

Otherwise, Figure 6 demonstrates that the exact TTC val-
ues are perfectly enclosed between the introduced interval-
based/data-driven TTC bounds. The upper/lower safety mar-
gins have been appropriately defined by the risk management
approach. Finally, Figure 7 illustrates the safety verification
process. The risk has been highlighted by red frames.

Fig. 7: Monitoring the EKF-based TTC through the interval-
based/data driven margins

The obtained results prove the efficiency of the proposed
risk management strategy. The risk has been entirely mas-
tered through the detection of the EKF divergence instants.
Contrarily to existent approaches, the proposed interval-
based uncertainty characterization method does not require
any linearization. It allows also the risk management level
to appropriately define min/max safety thresholds.

V. CONCLUSION

The reliability and flexibility of the autonomous navigation
approaches have been addressed in this work. In particular,
a novel risk management/safety verification technique is
introduced. Several uncertainties that may emphasize risks
affecting the navigation process are characterized through
the interval arithmetic. Accordingly, an over-approximation
of variables, describing the navigation dynamics, is obtained.
Inspired from data-driven techniques, the evolution of the
correlation relating variables is characterized in the aim to
refine the uncertainty assessment. As a result, tight bounds of



the interval-valued dynamics leads to define min/max safety
thresholds. The introduced interval-based/data-driven method
has been joined with an EKF model to handle uncertainties
into the navigation process. As a reliable safety verification
technique, precautions must be taken once the EKF model-
based approach diverges from the obtained bounds. Our
suggestion ensures flexibility and optimality, since the safety
set-points are represented by intervals. A selection of the
most optimal setpoint, which is enclosed between the interval
bounds may take place. The proposed risk management
technique is applied on an Adaptive Cruise Control system.
Simulation results prove the established risk management
efficiency and its aptitude in handling uncertainties.

Even after proceeding the optimization step, the safety
margins provided via the suggested method, may still a bit
conservative. This issue will be handled in our future work.
Otherwise, the proposed method should be integrated on a
real intelligent vehicle.
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