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Abstract— The transportation systems reliability is addressed
in this work. A comprehensive comparison between the proba-
bilistic and the interval-based uncertainty handling approaches
for autonomous navigation has been detailed. Based on this
comparative study, a set-membership safety verification tech-
nique that monitors the correlation between variables has been
proposed to achieve an optimal uncertainty assessment. Further,
a Principle Component Analysis (PCA) diagnosis process has
been extended to handle interval-data. Finally, a strong link be-
tween the proposed automotive diagnosis and risk management
has been constructed to ensure a high robustness to uncertainty.
The proposed interval-based solutions have been integrated on
an Adaptive Cruise Control (ACC) system. Simulation results
prove the proposed diagnosis and risk management efficiency
in handling uncertainties and faults.

I. INTRODUCTION

The past few decades have witnessed a tremendous in-
crease in autonomy for modern navigation systems. For the
sake of safety and comfort, numerous advanced navigation
approaches have been introduced to improve the Intelligent
Autonomous Vehicles (IAV) capacities [1]. The need for
a reliable operation of IAVs is the most important result
of the increase in autonomy. Multitude of risk manage-
ment strategies have been developed for this context. Safety
verification and risk involvement into the decision-making
level of IAVs have become an active research field [2].
A proper risk-awareness requires an appropriate perception
of road participants and a quick interaction with changes
in the navigation environment. In this regard, the IAV
community has boosted vehicle’s connectivity to deal with
safety anxieties [3]. Subsequently, a considerable literature
is available for the research work related to accurate and
efficient in-road obstacles detection [4]. In addition, several
studies have been tackled to characterize the Vehicle-to-
Vehicle (V2V) communication latencies and analyze their
effects on the in-road safety [5]. Afterward, data captured by
the perception-level need absolutely to be well-interpreted
to succeed the situational risk assessment. In this context,
focus has been given to formalize analytical metrics to ensure
hazard analysis. The Time To Collision (TTC), the Distance
To Collision (DTC) and the Time To React (TTR) are among
the commonly utilized threat indicators [6].

Otherwise, the risk management strategies are hopeless
in dealing with in-road threats in case of fault occurrence.
Accordingly, it is crucial to provide any automotive system
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with Fault Detection and Isolation (FDI) components [7]. The
diagnosis includes conventionally two main phases. Faults
must be detected first in run-time. Besides, the deficiency
source must be localized to make a final decision about
the concerned system aptitudes in carrying its operation [8].
Nevertheless, the IAV diagnosis and risk management full
reliability is not reached for yet. A considerable limitation
of these methods is being sensitive to the modeling and the
evaluation of uncertainties. Usually, the uncertainty prop-
agation into the navigation system are estimated through
stochastic/statistical approaches. Despite their widespread
employment, it has been proven that performances of the
probabilistic/statistical approaches are not guaranteed [9].
As a new emergent alternative, the interval analysis has
been lately adopted to overcome inaccuracy threatening the
IAV safety. Several contributions have been depicted in the
literature from this perspective (cf. section II-B).

In this work, a comprehensive comparison between the
interval and non-interval-based approaches in handling un-
certainty has been detailed. Based on the state-of-the-art
analysis, the interval analysis is efficient in providing robust-
ness against uncertainty even though being too conservative.
Accordingly, an optimal interval-based method to generate
safety margins for intelligent vehicles is proposed. Besides,
a statistical diagnosis approach, named Vertices Principle
Component Analysis (VPCA), has been extended to handle
interval-data [10]. Together the interval-based safety verifi-
cation and diagnosis build a sound risk management level.
Thanks to the interval analysis, a guaranteed estimation of
uncertainty is provided. Moreover, contrarily to the existent
literature and our previous work [11], [12], the proposed risk
management ensures a fault-aware hazard situational assess-
ment to reach a reliable navigation. A great complementary
between the safety verification and the diagnosis has been
created to better react against uncertainties and faults. The
overall suggested risk management approach has been tested
on an Adaptive Cruise Control (ACC) system [13].

The remaining of this work is arranged as follows: Section
II exhibits the state-of-the-art and analyzes the interval-
based approach performances. Section III introduces a sta-
tistical correlation-based step that aims to improve the set-
membership estimation of uncertainties. Section IV describes
the required steps to establish the adopted diagnosis process.
Section V details the integration of the proposed interval-
based solutions into the risk management level of an ACC
system. Section VI recapitulates this work principle contri-
butions and discusses future work.



II. INTERVAL VS. STOCHASTIC UNCERTAINTY HANDLING

The current section details the related work in coping
with uncertainty in measurements and vehicle’s dynamics. A
concise comparison between the stochastic and the interval-
based approaches, applied for this purpose, is delivered.

A. Formal stochastic techniques

The uncertainty handling has been carried frequently by
a probabilistic model-based prediction of the uncertainty
propagation into the navigation system [14]. In this case,
a deep knowledge of the studied system and its all-potential
futuristic constraints are required. The application of such
methods requires to linearize the concerned system behavior
to ensure that the noise process is still Gaussian. However,
the linearization-related error inhibits ensuring a long term
horizon prediction [15]. Besides, the elaborated forecasting is
appreciated as non-deterministic since it is based on a chance
estimation of an event manifestation. Numerous extensions
of Kalman filters are concrete examples of these prediction-
based approaches. A careful conditioning of the system
initial states is mandatory to avoid poor performances [9].
Even in that condition, a sudden change in the noise features
may happen [16].

Recently, more attention is given to the multi-simulation
approaches in handling uncertainties and predicting vehicle’s
motions. The use of Monte Carlo is the most widespread
in this context [17]. To reach a more relevant probabilistic
guess, multiple simulations are simultaneously executed to
take into account the variability in the system inputs and all
probable states [18]. According to the density of simulation
findings, a final decision about the prediction is taken.
Chances to proceed a prediction that matches the reality is
stronger. Remarkably, proceeding such a large number of
simulations is costly in term of calculation time. Moreover,
results differs from simulation execution to another even
with identical configurations. These approaches remain time
consuming, non-deterministic and sensitive to linearization.

To overstep imperfections entailed by linearization, other
studies have recourse to a set of model-free and learning-
based methods such as neural or Bayesian networks and deep
learning [19], [20]. The major drawback of these approaches
is their heuristic nature. One technique to improve these
approaches reliability is taking in consideration more of
details about the navigation environment such as weather
conditions and the vehicle stability constraints.

B. Interval-based techniques

A great progress has been made lately to develop the inter-
val analysis aptitudes in dealing with uncertainties [21], [22].
In such a manner, the uncertainty evolution is easily eval-
uated all along any algorithm. Hence, the set-membership
computation is assumed as guaranteed and reliable since the
exact value of data is enclosed inside interval bounds. In
the prospect of guarantying a satisfactory level of accuracy,
plenty of set-membership filtering techniques, which are
based on an “prediction-correction” steps, have been intro-
duced [23]. These filters present important opportunities to

provide a guaranteed state estimation for navigation systems.
Instead of using probability, these estimators exploit for
instance the system observable dynamics and set-inversion
to estimate a given system real states [24]. Accordingly, the
interval filters are highly deterministic.

The interval-based reachability analysis is an another way
to ensure prediction for vehicle motions. As outlined in
[25], the uncertainty attributed to the interval-valued vari-
ables allows to capture all potential reachable sets of road
participants for several control cycles. It has been proven also
that with an appropriate characterization of interval widths,
error issued from linearization and modeling imperfection
can be mastered [25]. Afterward, there is an increasing trend
of tackling trajectory computation of autonomous systems in
a constraint satisfaction context [26]. In this respect, interval
analysis permits to accurately define optimal and feasible
control set points. Contrarily to the non-interval approaches,
flexibility is guaranteed, since specific points from intervals,
which are utilized to describe the navigation process, may
be selected based on a particular criterion.

All the stated interval-based contributions can be catego-
rized into two distinct classes. A first class of these methods
consists in a numeric “branch and bound” computation [27].
Starting from initial domains, set-inversion techniques per-
mit, in an iterative way, to bound exact solutions of a given
analytical problem. Despite the accuracy presented by these
algorithms, they are featured by an unpredictable calculation
time. One more category of interval-based methods relies
only on a prior knowledge of the uncertainty bounds. This
knowledge is generally acquired through confidence intervals
attributed to sensor’s measurements [25]. It is important to
notice that the uncertainty prior knowledge-based approaches
provide usually over-approximations for a given algorithm
findings. These interval-valued results enclose the outputs
exact values. However, the obtained over-approximations are
in general too conservative. A highly careful consideration
of the uncertainty influencing factors is required at this stage.

It has been demonstrated also that proceeding diagno-
sis in a bounded error context, to consider variability in
measurements, improves drastically the diagnosis accuracy
[28]. It enhances the sensitivity to faults [29]. Accuracy and
high sensitivity to faults are primordial key requirements
for the automotive diagnosis. In the light of the already
investigated literature, Table I illustrates a comparison be-
tween performances of the reviewed approaches. Aspects
considered in the depicted comparison are the most important
components from today’s IAV requirements. Obviously, the
interval-based approaches can deal with limitations raised
from the probabilistic and/or heuristic nature of the formal
non-interval methods. Despite their contribution in ensuring
safety, the set-membership techniques are a bit conservative.
Accordingly, the next section introduces an optimization step
for the interval computation to deal with this issue.

III. INTERVAL-BASED SAFETY VERIFICATION TECHNIQUE

The interval analysis offers new opportunities to enhance
the autonomous navigation performances. Especially for the



TABLE I: Comparison between uncertainty handling approaches for IAVs

Navigation Accuracy Handling modeling Safety Optimality Determinism Low computational Long horizon
requirement imperfection complexity prediction

Probabilistic linear abstraction approaches - - - - - - + + - ++ - -
Probabilistic multi-simulation approaches - - - + + - - - - -

Probabilistic free-model/learning approaches - - + + - - + + - + -
Branch and bound interval-based approaches + + + + + + - + + - - + +

Uncertainty prior knowledge interval approaches + + + + + + - - + + - +

safety-verification and risk assessment, interval computation
is a valuable tool to carry out the worst-case analysis
of hazards. Nevertheless, the pessimism characterizing the
conservative over-approximations proceeded by the interval
analysis may lead to weak performances of the IAVs. A
tight balance between safety and optimality is highly needed
at this stage. In the current section, an optimization step
is introduced to enhance the interval-based computation for
the autonomous navigation. More tight enclosures of inter-
val outputs are obtained thanks to the proposed approach.
Dependencies between interval variables are employed to
eliminate the over-estimated uncertainty affecting measure-
ments. In particular, the correlation factor is a widely utilized
statistical metric for assessing the relationship between vari-
ables [30]. Indeed, the correlation coefficient CX ,Y |k between
variables X and Y at instant tk is expressed as follows:

CX ,Y |k =
COVX ,Y |k

σX σY
(1)

Note that COVX ,Y |k is the covariance associated to X and
Y . σX and σY are respectively their variances. Different
reliability verification techniques and diagnosis systems are
developed based on the idea of monitoring the correlation
progress [30]. A system appropriate operation is noticed
in general through a smooth evolution of the correlation
states. During a single sampling step, alone a high level of
uncertainty or fault occurrence can invoke a radical brutal
change in the correlation [31]. This fact fits perfectly the
autonomous navigation systems. In most of cases, a sudden
change in the navigation dynamics is roughly unrealistic in a
very short time horizon. Correspondingly, the real-time mon-
itoring of the correlation is exploited in this work to discard
additional uncertainties attributed to interval-measurements.
In such a way, an unpredictable deviation in the correla-
tion initial structure is avoided during the interval-based
uncertainty characterization. Based on this understanding, an
adequate prediction of the uncertainty progress must ensure
a minimum of variation on the correlation between conse-
quent instants tk−1 and tk. Accordingly, interval widths are
iteratively diminished to guarantee the adopted assumption.

The first step of the proposed method consist in giving an
initial estimation of the uncertainty affecting variables. For
the safety-critical autonomous driving, a consistent method-
ology to define bounds of each interval-measurement is of
utmost importance. One possible idea to meet this require-
ment is to create a strong link between interval widths and
the measurement environmental circumstances. Any factor,
which may emphasize the raise in uncertainty, must be taken
into account. For instance, the communication delays should

be imperatively considered in this respect. In what follows,
[a] = [a,a] presents a real interval. a and a are its lower and
upper bounds. The width of an interval, noted w([a]) and
w([a]) = a−a, is the uncertainty extent assigned to a.

Conventionally, the correlation evaluates dependency
relation-ship between single-valued variables. To make it
handel interval data, a symbolic transformation of interval-
data is proceeded before the beginning of the correlation
calculation process. Since it uses all the min/max bounds of
the interval-measurements, this transformation is called the
vertices transformation. Consider X I an interval data-matrix,
which is built through N observations describing M interval-
valued variables [xi|i=1..M]:

X I =


[
x1(1),x1(1)

]
· · ·

[
xM(1),xM(1)

]
...

. . .
...[

x1(N),x1(N)
]
· · ·

[
xM(N),xM(N)

]
 (2)

The vertices method provides an equivalent single-valued
matrix for X I with the same data structure. All the vertices
(min/max bounds of intervals) are implied to define a new
single-valued matrix, denoted XH . Geometrically, all M
intervals and N observations represent a hyper-rectangle of
2M vertices. Thus, XH is constructed from N×2M rows and
M columns:

XH =




x1(1) · · · xM(1)

...
. . .

...

x1(1) · · · xM(1)


...

x1(N) · · · xM(N)

...
. . .

...

x1(N) · · · xM(N)




(3)

Noticeably, there is no additionally computational complex-
ity resulting from the vertices transformation. This latter
depends exponentially on M and linearly on N. In our case of
study, M is always equal to 2 since the correlation estimation
incorporates only two distinct variables.

As soon as the equivalent matrix is arranged, the cor-
relation assessment is proceeded for each couple from the
variables. Thereafter, the interval widths reduction of each
measurement takes place. The interval with the largest width
is concerned by the iterative narrowing. After that, the ver-
tices transformation is practiced and the gap in the correlation



between instants tk and tk−1, denoted γk|k−1, is estimated
through the following equation:

γk|k−1 =CX ,Y |k−CX ,Y |k−1 (4)

The uncertainty reduction is aborted at two conditions:
• Condition 1: When γk|k−1 decreases from an iteration

to another and suddenly it begins to increase. This
fact means that the concerned interval was tightened as
much as possible. More narrowing will entail undesired
modification in the data proper distribution.

• Condition 2: When γk|k−1 exceeds the minimum varia-
tion of correlation noticed in the system nominal behav-
ior. This latter is characterized via off-line simulations.

It is important to notice that the picked-up bounds are nei-
ther too conservative, nor optimistic thanks to the correlation
examination. Essentially, the produced bounds may play as
inferior/superior safety margins. These margins are hugely
convenient to validate the operational performances of IAVs.

IV. INTERVAL-BASED DIAGNOSIS

Due to its privileges, the automotive industry pay more
attention currently to the free-model diagnosis [32]. In partic-
ular, the Principle Component Analysis (PCA) is a diagnosis
method, which relies only on monitoring the system in-
puts/outputs to detect abnormalities [33]. More interestingly,
the PCA reduces wisely the dimensionality of the data
representation space i.e, data are classified into principle and
residual components [34]. In such a manner, only the most
meaningful information can be held to report the system
state. It is well known that constructing models for the
complicated new IAVs is highly challenging. Since it drops
the system modeling and exploits data in intelligent way,
the PCA is appreciated as suitable for intelligent vehicles.
Nevertheless, the accuracy is the most important requirement
for the safety critical systems such as IAVs. Likely to the
majority of the data-driven approaches, the PCA remains a
noise-sensitive method. Accordingly, the PCA is extended
in this work to handle interval data. Unlike the generalized
PCA, VPCA ensures an enhanced fault sensitivity and ro-
bustness against imprecisions. In the sequel, a brief reminder
about the VPCA steps is provided.

A. Implicit model extraction from interval-data
Consider an interval-data matrix that contains N samples

of m interval-valued data. This initial data-set must be
transformed, thanks to Vertices approach (cf. section III), to
a single-valued data to proceed the standard PCA. A second
data matrix X ∈ [N×2m,m] is obtained. With N1 = 2m×N
rows, X can be simply expressed as:

X =


x1(1) · · · xm(1)

. . .

x1(N1) · · · xm(N1)

 (5)

Hence, Σ is the covariance matrix whereby the existing
correlations between all the variables are characterized:

Σ =
1

N1
XT X (6)

The correlation analysis begins by approximating the eigen-
vector matrix P ∈ Rm×m, which is associated to Σ. Oppositely
to the model-based diagnosis, the VPCA does not develop a
system behavioral model. Rather, an implicit model, which
reduces the data dimensionality and reports the dependencies
between variables, is utilized. Faults are outlined once these
relations are missed within a real operating process. Building
an adequate correlation model necessitates an optimal choice
of the principle components. Divers algorithms have been
depicted for this purpose in the literature [35]. Only the
Variance of the Reconstruction Error (VRE) technique is
addressed in this work [36]. The number of principle com-
ponents l is estimated through the variance computation. The
main idea behind the VRE is to admit l ∈ [1, · · · ,m−1] that
guarantee a minimum average of variance between variables.
Recognizing the parameter l permits to decompose P. Hence
forward, P̂ and P̃ designate respectively the principal and
the residual spaces assigned to P. Equation (7) highlights
dimensions of the new spaces raised from the decomposition:

P =
[
P̂[m×l] P̃[m×(m−l)]

]
(7)

B. Fault detection

Indeed, the VPCA fault detection is ensured through
the approximation of statistical indexes. Abnormalities are
encountered once an index exceeds its predefined threshold.
Table II summarizes each index formalization and its corre-
sponding threshold.

TABLE II: Detection indexes and their associated thresholds

Index Formalization Threshold
Squared Prediction Error (SPE) x(k)(I− P̃P̃T )x(k)T δ 2

α = g χ2
h,α

Squared Weighted Error (SWE) x(k)(P̃Λ̃−1P̃T )x(k)T T 2
Hα

= χ2
(m−l),α

Hotelling Index x(k)(P̂Λ̂−1P̂T )x(k)T T 2
α = χ2

l,α
Mahalanobis Distance x(k)(PΛ−1PT )x(k)T Dα = χ2

m,α

Note that k = 1..N× 2m and Λ is the eigenvalue matrix
associated to Σ. G is the sum of λ j, which are the eigenvalues
of Σ. χ is the chi-square distribution function and α is the
freedom degree parameter that is assigned for this latter.
Afterwards, G and h are calculated as follows:

θi =
m

∑
j=l+1

λ
i
j

h = f loor(θ1/θ2)

g = θ1/θ2

(8)

C. Fault localisation

In the case of a fault occurrence, the examination of
its origin is triggered. The present work utilizes the vari-
able reconstruction method to identify the faulty sources.
By considering that each variable is faulty, this technique
achieves an entire reconstruction to measurements using the
VPCA implicit model. Consider XR the reconstructed vector
associated to one variable from the initial data-set matrix.
ΞR is the vector that underlines the reconstruction direction.



At an instant k, the principal part from XR, denoted X̂R ,is
obtained through the following relations:

X̂R = GRX

GR = Im−ΞR(Ξ̃
T
R Ξ̃R)

−1
Ξ̃

T
R

Ξ̃R = (Im− P̂P̂T )ΞR

(9)

Final decision about the fault source is obtained thanks to an
isolation index ASPER(k). This latter is applied on the data
resulting from the reconstruction:

ASPER(k) =
SPER(k)

δ 2
α(k)

(10)

Notice that SPER(k) is calculated through the same formal-
ization of the SPE index mentioned in the fault detection step
(see Table II). By varying R from 1 to m, a faulty variable
is pinpointed with an isolation index lower than 1.

V. APPLICATION TO AN ACC SYSTEM

To present a proof of concept for the proposed interval-
based solutions, simulations have been established on a
modern ACC system. With no intention to be exhaustive in
detailing its operation, the ACC takes safety measurements
based on the instantaneous evaluation of the TTC [6]. As-
suming that their dynamics remains constant in short horizon
time, the TTC approximates the remaining period to a crash
occurrence between two vehicles. Depending on the obtained
TTC value, a reference distance to an in-front vehicle, noted
dre f , is maintained. The retained dre f , must assure a longer
TTC for the ACC-equipped vehicle for the next control cycle.
In fact, the problem can be seen as a car-following scenario,
where two vehicles i and j are represented respectively as
the leader and the follower [37]. Consider Vi, Vj, pi and
p j , which are both of vehicles velocities and positions.
These dynamics are obtained at each instant thanks to sensor
measurements and V2V communication. The TTC analytical
formalization, proposed in [38], is adopted in this work since
it fits the studied car-following scenario:

T TC =−
di j

ḋi j

ḋi j =
1

di j
(pi− p j)

T (Vi−Vj)

(11)

Where di j is the distance separating vehicles i and j and
ḋi j is the rate of change associated to this distance.

With a prior knowledge of uncertainty bounds in sensor’s
measurements, the [T TC] as well as [dre f ] are computed in
real-time corresponding to the proposed uncertainty char-
acterization method. After that, an encloser of the ACC-
equipped vehicle target set-point is approximated via [dre f ].
The obtained enclosures have as a main mission to validate
the couple (T TC, dre f ), which are calculated through a non-
interval methods. As long as (T TC, dre f ) are perfectly en-
closed by ([T TC], [dre f ]) the navigation safety is guaranteed.

However, the uncertainty may exceed its normal bounded
level in presence of anomalies. Especially in case of per-
manent fault occurrence, erroneous safety margins would

Fig. 1: Proposed ACC safety verification principle

be delivered by the set-membership uncertainty handling
approach. Under these circumstances, the risk management
becomes useless and the ACC-equipped vehicle safety is
endangered. For this reason, all sensors and the commu-
nication tools are monitored through the proposed VPCA
diagnosis process (represented respectively by pi, p j, Vi, Vj
and di j). Hence, a fault-aware risk management strategy is
provided through the mutual operation of the uncertainty
handling and the diagnosis system. Once a fault is detected,
warnings are delivered to the risk management level. Thus,
the worst case of hazard is admitted and the ACC operation
should be aborted. To establish this complementarity between
the diagnosis and the uncertainty handling methodology, a
specific multi-controller architecture [39] has been designed
in order to perform reliable ACC. Figure 2 illustrates the
elaborated architecture and its different components.

Fig. 2: Control architecture of interval analysis-based ACC

To validate the proposed interval-based approaches, a
highway navigation Matlab simulator has been developed.
The interval computation has been allowed thanks to the
INTLAB package [40]. A first test scenario has been carried
to highlight the role of the correlation-based step. Figure 3
illustrates results of the set-membership process with/without
the optimization step.

As shown in Figure 3, the correlation supervision has
notably diminished the width of the TTC enclosures. The un-



Fig. 3: TTC enclosures with/without optimization step

certainty evaluated in the TTC over-approximation has been
reduced with an average rate of 60.4%. Monitoring the cor-
relation has contributed in boosting the set-membership risk
management optimality. In addition, all along the simulation
run-time, the new compact TTC over-approximation encloses
perfectly the exact TTC i.e., TTC calculated without injecting
any noise in the simulation dynamics. Consequently, the
upper/lower safety margins have been appropriately defined
by the risk management approach.

During a second test scenario, huge random uncertainty
amounts have been injected in the simulation measurements
at three different periods. More precisely, such enormous
uncertainties, which may only occur in case of fault presence,
have been injected in Vi measurements. Figure 4 presents the
evolution of the SPE detection index applied to monitor the
ACC system. As shown, anomalies have been well-detected
and the SPE index has exceeded its associated threshold
during fault injection instants.

Fig. 4: Fault detection with SPE index

Once a fault is detected, the fault localisation step is
triggered. Figure 5 presents the evolution of the ASPER

isolation index, which is computed after the reconstruction
of each variable at the first time a fault is detected.

Fig. 5: Fault isolation with ASPER index

The depicted results confirm that the communication tool,
which is responsible for providing the leader velocity Vi,
is the fault source. Simulations prove the efficiency of the
proposed risk management within its associated diagnosis
process. The uncertainty-related risks as well as faults affect-
ing sensors and the communication tools have been detected
and well-mastered.

VI. CONCLUSION

A comparative study between performances of uncertainty
handling approaches, which are dedicated for IAV safety
verification, has been presented. It has been deduced that
the interval-based methods has great aptitudes in ensur-
ing accuracy and robustness to uncertainty. However, these
approaches are too conservative in general. To solve this
problem, the evolution of the correlation relating variables is
characterized to refine the uncertainty evolution assessment.
Compact enclosures, obtained via the interval arithmetic,
supply min/max safety thresholds. An efficient hazard worst-
case analysis is permitted via these enclosures. The proposed
risk management includes also a PCA-based diagnosis pro-
cess, which handles interval-data. A tight link between the
uncertainty handling and the diagnosis has been established
to ensure a reliable autonomous navigation. The overall
risk management technique has been integrated on an ACC.
Simulation results prove the elaborated safety verification-
level efficiency and its aptitude in handling uncertainties.

Further work intends to integrate a “prediction-correction”
step into the set-membership safety verification method. Oth-
erwise, the proposed risk management should be integrated
on a real intelligent vehicle.
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