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Abstract. This paper presents a sub-optimal energy management
strategy, based on Stochastic Dynamic Programming (SDP), for efficient
powersplit of a Hybrid Electric Vehicle (HEV). An optimal energy man-
agement strategy is proposed, permitting to have simultaneous speed
profile and powersplit optimization of the HEV. Formulated as a multi-
objective optimization problem, an ε-constraint method has been used
to find the Pareto front of the energy optimization task. Traffic condi-
tions and driver behavior could be assimilated to a stochastic nature,
thus, it is proposed in this paper to address the vehicle power as Markov
Decision Process. A Stochastic Database is used to store Transition Prob-
ability and Reward Matrices, corresponding to suitable vehicle actions
w.r.t. specific states. They are used afterwards to calculate sub-optimal
powersplit policy for the vehicle via an infinite-horizon SDP approach.
Simulation results demonstrate the effectiveness of the proposed app-
roach compared to a deterministic strategy given in [1]. The present
work is conducted on a dedicated high-fidelity model of the HEV that
was developed on MATLAB/TruckMaker software.

Keywords: Hybrid electric vehicle · Energy management · Stochastic
dynamic programming · Markov decision process · Multi-objective
optimization · ε-constraint

1 Introduction

In recent years, the problem of reducing the level of pollution by vehicle’s exhaust
gazes (mainly in urban zone) has become one of the main research topics. This
issue has been considered and recognized at the state governments level. Multiple
laws and decrees have been passed to smoothly switch over to a zero-emission
technologies (e.g., pure electric vehicles (EV)). Hybrid electric vehicle (HEV) is a
promising transportation technology with regard to the objective of reducing the
exhaust gazes emission, which maintains a relatively high autonomy compared
to EV [20].
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Concerning the energy optimization in the HEV and EV, the researchers
mainly deal with two kind of problems: (1) energy power management for a
given velocity profile [6,16,26]; (2) velocity profile optimization for EV or conven-
tional vehicles [9,22,32]. The application of the optimal control theory to power
management on HEV has been the most popular approach, which includes lin-
ear programming, optimal control and especially Dynamic Programming (DP)
[2,6,14,21,23,26,28]. These techniques have been widely studied and applied to
a broad range of vehicles.

The authors in [23] propose an approach for determining the battery State
Of the Charge (SOCbat)-dependent equivalent cost factor in HEV supervisory
control problems using DP. Song et al. [28] use the DP approach to deal with the
global optimization problem for deriving the best configuration for the drivetrain
components sizes and energy split strategies of a hybrid energy storage system,
including a battery and a supercapacitor, for an electric city bus. Authors in
[38] proposed a DP-rule based (DP-RB) algorithm to solve the global energy
optimization problem in a real time controller of a plug-in hybrid electric bus
(PHEB). A control grid (a set of deterministic rules) is built for a typical city
route according to the station locations and discrete SOCbat levels. An offline
DP with historical running information of the driving cycle is used to deduce
optimal control parameters of RB on all points of the control grid.

Other authors as Tokekar et al. [32] studied the problem of the velocity
profiles search for a car-like robots in order to minimize the energy consumed
while traveling along a given path, whereas Dib et al. [9] tackle an energy man-
agement problem for an electric vehicle compliant with online requirements for
“eco-driving application”. The main difference between two last papers cited
above is that the robot is fully autonomous, and the electric vehicle is con-
trolled by a driver, but the driver receives the velocity profile proposed by an
eco-driving system. Authors in [22] propose an optimization of the speed tra-
jectory to minimize the fuel consumption and communicate it to the driver. In
their approach the driver sends the information of the intended travel destina-
tion to the server. The server generates a route, collects the associated traffic
and geographical information, and solves the optimization problem by a spatial
domain DP algorithm that utilizes accurate vehicle and fuel consumption models
to determine the optimal speed trajectory along the route. Kim et al. [15] use
model predictive control for the velocity and power split optimization in HEVs.
A given velocity profile is optimized by setting the constraints on the velocity
and the acceleration of the vehicle. This allows to smooth the current velocity
profile without generating a new one. The authors in [34] proposed a method that
solves the velocity optimization problem for HEVs, based upon information from
Global Navigation Satellite-based Systems, assuming that the velocity trajectory
has a predefined shape. Although this method is used for HEVs, the authors
do not deal with the energy management optimization aspect. A sub-optimal
strategy, based on Deterministic Dynamic Programming (DDP) approach, for
online energy optimization of a HEV is proposed in [1]. It uses mainly an appro-
priate speed profile and power-split database, obtained offline with DDP, in
order to cope with different traffic situations, and this is carried out by using a
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multi-dimensional interpolation method. This approach permits to have simul-
taneous speed profile optimization and optimal power split strategy.

In effective transportation systems, a totally deterministic model is unlikely
to include various uncertainties, associated with sensor’s measurement errors,
power demand with stochastic nature. To overcome this drawback, some
researchers make use of Stochastic Dynamic Programming (SDP) [10,13]. The
basic idea behind SDP is the fact that the driver behavior can be modeled and
predicted by a Stationary Markov Chain [24]. Plotting the data in the speed-
power plane reveals that the driver behavior can be predicted to some extent
[10]. Authors in [13] carried out a study to investigate what can be achieved if
all the available on-board information is used optimally to assess the potential
of predictive control for HEV powertrains. The DDP is used for dimensioning
of the energy storage elements and the SDP is used to find a causal operating
strategy as in [25]. A time-invariant state feedback based control law, derived
from SDP, is proposed in [19] as a power management strategy.

According to [18], a battery SOCbat gradual decrease to a lower thresh-
old leads to better fuel economy, compared with Charge-Depleting and Charge-
Sustaining (CDCS) strategy. Authors in [12], as well as in [27,29], deal with the
problem of prediction of the battery SOCbat. These papers use an offline global
optimal control to generate the desired SOCbat trajectory, later these values are
used as an input in Model Predictive Control (MPC). It is proved that prediction
of the future trajectories, based upon either past or predicted vehicle velocity
and road grade trajectories, could help in obtaining a solution close to the opti-
mal one [35]. Tulpule et al. [33] assume the battery SOCbat is linearly decreasing
with the distance traveled. A Kalman Filter based Estimator is proposed in [1]
to predict a reference SOCbat.

Unlike the above cited references, the present paper proposes an optimization
technique based on SDP permitting to have simultaneous speed profile and pow-
ersplit optimization strategy for a series-parallel hybrid bus. As driver’s power
demand is influenced by various driving conditions, it is presented as a random
Markov process. An online sub-optimal speed profile and related powersplit gen-
eration is developed to deal online with the current road profile and driver power
demand. This is carried out using an Optimal Profile Database based on SDP
(OPD-SDP), where different transition probabilities and rewards are collected
and utilized depending on reference battery SOCbat curve, generated in advance
by training an Artificial Neural Network based module for several standard driv-
ing cycles. The reference SOCbat curve constraint guarantees a smooth battery
discharge so that also at the end of the operational cycle (in the end of a course
of a day) the SOCbat do not fall below its permitted minimum level.

The rest of the paper is organized as follows. In Sect. 2, the studied bus pow-
ertrain and its dynamical model are presented. Section 3 presents the stochastic
modeling of the process, cost function definition and reference SOCbat gener-
ation method. Section 4 describes SDP based control strategy. In Sect. 5, sev-
eral simulation results are presented showing the efficiency of the proposed
velocity profile optimization and stochastic energy management strategies.
Finally, conclusions and some prospects are given in the last section.
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2 Modeling of the Hybrid Bus

The aim of this section is to illustrate the architecture and the mathematical
model of the studied system, i.e., BUSINOVA hybrid bus, developed by SAFRA
company1. This bus is composed of an electric motor, a hydraulic motor, an
internal combustion engine and battery as the propulsion powertrain system of
the vehicle.

2.1 Hybrid Bus Powertrain Architecture

The model of the studied hybrid bus is based on a series-parallel power-split
hybrid architecture [4]. A simple block diagram of the power flows in the bus is
shown in Fig. 1. The electric (EM) and hydraulic (HM) motors are both directly
connected to the transmission and can ensure simultaneously or independently
the traction of the bus. On the other hand, the internal combustion engine (ICE)
is coupled to a hydraulic pump (HP) for driving the HM, and therefore allowing
the ICE load shifting.

Fig. 1. Block diagram of the powertrain power flows. (ICE: internal combustion engine,
HP: hydraulic pump, HM: Hydraulic motor, EM: electric motor) [1].

The rotational speeds of the HM and the EM are imposed by the wheels speed
in proportion to the reduction ratios of HM and EM respectively. Moreover, the
rotational speed ωHM and the torque THM are expressed as follows:

⎧
⎨

⎩

ωHM (TICE ,DHM ) = DHP .ηvHM
.ωICE

DHM .ηvHP

THM (TICE ,DHM ) = DHM .ηmHM
.TICE

DHP .ηmHP

(1)

where ωICE , TICE are respectively rotational speed and torque of the ICE, and
DHM , DHP , ηmHM

, ηmHP
, ηvHM

, ηvHP
are respectively displacement, mechanical

efficiency and volumetric efficiency of the HM and the HP.

1 http://www.businova.com
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The BUSINOVA can operate according to the modes described below:

1. the propulsion is fully supplied by the electric motor (mode I),
2. the bus is actuated by the hydraulic motor via the ICE (mode II),
3. the mode III implies the hybrid operation of the EM and the HM via ICE,
4. the regenerative braking (mode IV) - the part of the kinetic energy during

braking phase is recuperated to charge the electric battery.

2.2 Dynamical Model

This part is dedicated to the dynamical equations describing the bus. The pur-
pose of the dynamical model is to have a realistic global behavior of the bus in
order to validate the proposed energy management techniques. To describe it in
a generic manner, assume that the bus is moving up the slope of θ degree (cf.
Fig. 2). The origin of the coordinates is situated in the Center of Mass (CoM).
It is supposed that CoM of the bus is in its geometric center. The dynamical
equation of the bus is given as follows:

Ftr + Frr + Fad + Fg + Fbrake = (M + Meq)a (2)

where F tr traction force, F rr rolling resistance, F ad aerodynamic force, F g

gravity force, F brake mechanical brake force, M bus weight, Meq equivalent
mass of rotating parts, a bus acceleration.

To produce the bus acceleration, it is necessary to take into account the
moments of inertia of the rotating components (e.g., rotor of the EM, crankshaft
of the ICE, driving axle, etc.). It is done by introducing the equivalent mass Meq

of the rotating components:

Meq =
igηptJrot

r2
(3)

where ig gear ratio, ηpt powertrain efficiency, Jrot total inertia of the rotating
components in the transmission, and r the wheel radius [7].

The traction force Ftr is linked to the torque produced by the powertrain Tpt

via gear ratio ig, powertrain efficiency ηpt. Expanding the dynamical equation
(2), the following relation is obtained:

a =
dv

dt
=

1
M + Meq

H (4)

with

H =
igηptTpt

r
− μrrFNsign(v) − 1

2
ρACd(v + vwind)2

− Mg sin(θ) − Tbrake

r
(5)
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where:

– Tpt: output powertrain torque from the gearbox,
– μrr: rolling resistance coefficient, FN = Mgcos(θ) normal force, g gravity

acceleration, θ slope angle, v bus speed,
– ρ: the air density, A the frontal area of the bus, Cd drag coefficient, vwind

wind speed,
– Tbrake: the brake torque provided by the bus mechanical brake system.

3 Overall Multi-criteria Optimization Formulation

The objective of an optimal control problem is to find the optimal bus veloc-
ity profile and energy split between the actuators for a given trajectory D.
Section 3.1 describes a proposed global control architecture. Section 3.2 is ded-
icated to the stochastic modeling of driver’s behavior. Section 3.3 describes an
approach for reference SOCbat curve generation, and Sect. 3.4 defines a proposed
multi-objective minimization criteria formulation.

Fig. 2. Forces acting on the bus. [1].

Fig. 3. Proposed global control architecture for online stochastic sub-optimal speed
profiles and its powersplit generation.
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3.1 Global Control Architecture

A global stochastic control architecture is proposed in Fig. 3.
It consists of 5 blocks:

– Block 1© calculates the demanded power Pdem of the vehicle for a reference
driver’s speed profile.

– Block 2© calculates the reference SOCbat curve (cf. Sect. 3.3).
– Block 3© stands for Optimal Profiles Database based on Stochastic Dynamic

Programming. This block contains Transition Probability (cf. Sect. 3.2) and
Reward Matrices, based on the defined cost function (cf. Sect. 3.4). An opti-
mal speed profile and powersplit are obtained using Stochastic Dynamic Pro-
gramming approach which is detailed in Sect. 4.

– Block 4© and Block 5© contain dynamic model of the bus and the powertrain
architecture dynamics.

3.2 Stochastic Modeling of Driver

The driver’s throttle and brake pedal commands are interpreted as a power
demand to be satisfied by the powertrain. The driver’s behavior can be consid-
ered as a stochastic process [3,37], therefore the driver model is represented as
a Markov Decision Process in this paper. The system is described by the state
variable x =

{
v, Pdem, SOCbat

}
, where v bus speed, Pdem total power demand,

and SOCbat battery state of charge. The power distribution between two energy
storages and the speed profile optimization is controlled by the control signal
u =

{
a, PEM

}
, where a is acceleration and PEM electric motor power. Based on

collected and simulated data of driving cycles, the transition probability of the
state variable are calculated and modeled as a homogeneous Markov Chain.

The state and control spaces are discretized so that they take a finite number
of values. The state variables are discretized as follows:

Pdem ∈ {
P 1

dem, P 2
dem, . . . , P

Np

dem} (6)

v ∈ {
v1, v2, . . . , vNv} (7)

SOCbat ∈ {
SOC1

bat, SOC2
bat, . . . , SOCNE

bat } (8)

So the total state space dimension is:
{
xi, i = 1, 2, . . . , NpNvNE} (9)

The control variables u are also discretized:

a ∈ {
a1, a2, . . . , aNa} (10)

PEM ∈ {
P 1

EM , P 2
EM , . . . , PNEM

EM } (11)

Since the Pdem is assumed to be a Markovian state, the power dynamics is
defined as follows:

Pdem,k+1 = wk (12)
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where the probability distribution of wk is assumed to be:

Pr
{
w = P j

dem | Pdem = P i
dem, v = vl} = pil,j (13)

i, j = 1, 2, . . . , Np, l = 1, 2, . . . , Nv, where
Np∑

j=1

pil,j = 1, and pil,j represents

the transition probability of the system in a state P j
dem at instant k + 1 with

regards to the system in state P j
dem and vl at instant k.

We used standard driving cycles in this study to determine the transition
probabilities as follows: various standard driving cycles were selected to represent
different urban driving cycles. From the reference speed profile, Pdem has been
calculated using the vehicle model (cf. Sect. 2). Using nearest-neighbor quanti-
zation, the sequence of observations (Pdem, v) was mapped into a sequence of
quantized states (P i

dem, v = vl). The transition probability has been estimated
by the maximum likelihood estimator [36], which counts the observation data
as:

p̂il,j =
mil,j

mil
(14)

with mil �= 0, where mil,j is the number of occurrences of the transition from

P i
dem to P j

dem, when the speed was at vl, mil =
n∑

j=1

mil,j is the total number of

times that P i
dem has occurred at speed vl.

3.3 Reference Battery SOC

The BUSINOVA bus is a plug-in hybrid electric vehicle and its standard func-
tioning time is 8 h a day (so called “course of a day”). Figure 4 illustrates the
spatial bounds of a bus running cycle. The bus travels from its starting location
to another route terminus, stopping at bus stations (BS) along the route to allow

Fig. 4. Spatial bounds of a bus running cycle.
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passengers to board and to alight. This movement is called a trip. By the end
of a day, the bus reaches its SOCmin value and can be recharged during all the
night long to ensure the service the next day.

In this work, the principle idea is to consider that a better usage of the
electric energy is such that it is available until the end of the day (during 8 h
operational cycle), and this is considered as an optimal functioning of the bus.
The working hypothesis behind this assumption is to use the maximum amount
of energy that can be consumed from the battery in one day driving so that
the battery energy is spread as uniformly as possible in one working day. This
implies the smooth battery discharging rate (C-rate), avoidance of the high or
low SOCbat and excessive depth of charge, which lead to a high rate of battery
capacity loss [5,8,30]. As Li-ion batteries represent a big part of a vehicle cost,
the clear interest is to prolongate the battery life. For that purpose a SOCbat

Estimator based on Kalman Filter has been proposed in [1].
An Artificial Neural Network (ANN) module was designed to learn the mech-

anisms of optimal SOCbat curves according to different trip information [31].
After getting the average speed and length of route segments when the trip
starts, the ANN module is used to generate a reasonable and relatively precise
SOCbat reference curve. However, frequent acceleration phases strongly impact
the energy consumption in the vehicle [17]. Thus, in this work, an average abso-
lute acceleration value has been added as an input to the ANN module, in order
to take into account the dynamics of the speed variation on a given route seg-
ment. The block 2© in Fig. 3 corresponds to the SOCbat curve learning module
based on ANN which has as inputs: SOCbat,initial initial battery SOCbat, vmean

average speed, amean average absolute acceleration value, dcurrent traveled dis-
tance, and dremain remained distance. This relation is illustrated in Fig. 5. The
road is divided into segments Dn. We can see that the more important is the
average speed/acceleration (on a given route segment), the more energy is con-
sumed in the corresponding phase.

Fig. 5. Relation among average speed/acceleration and SOCbat reference.
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3.4 Multi-objective Optimization Problem Formulation

As any problem of optimization, it is important to define optimization criteria.
In our case, the criteria is defined in order to minimize the energy consumed by
the HEV while optimizing both: HEV speed profile and the powersplit during the
trip D. In previous work [1] a minimizing cost function consisted in a compromise
between electric motor and engine consumed power. The weighted aggregation
method has been used to find a set of sub-optimal trade-off solutions of the cost
function. In this work, a driver’s power demand is considered as a random MDP
(cf. sub-sect. 3.2). Thus, the following cost function ζ is proposed and formulated
as a Multi-Objective (MO) optimization problem:

ζ = f1 + f2 (15)

where f1 is a criterion responsible for speed optimization and f2 for powersplit
optimization. The given criteria are defined as follows:

f1 = (
vref − v

dt
− a)2 (16)

f2 = (SOC(Dn) − SOCcurrent)2 + (Pdem − PEM − PHM )2 (17)

where vref is a reference driver speed, v bus current speed, dt time interval, a
acceleration control input, SOC(Dn) reference SOCbat value for a route segment
Dn, SOCcurrent current SOCbat value, Pdem, PEM and PHM demanded power,
electric and hydraulic motors supplied power, respectively.

The goal is to find a set of optimal solutions that minimize f1 and f2 among
all the feasible solutions, i.e., generate a Pareto front (cf. Fig. 6). To this end,
ε-constraint method was chosen. It is a MO optimization technique, proposed
by Haimes et al. [11], for generating Pareto optimal solutions. It makes use of a
single-objective optimizer which handles constraints, to generate one point of the
Pareto front at a time. For transforming the MO problem into several single-
objective problems with constraints the authors use the following procedure
(assuming minimization for all the objective functions):

minimize
x

fl(x)

subject to fj(x) ≤ εj , i = 1, . . . ,m, j �= l
x ∈ S

where l ∈ {
1, 2, ...,m} and S is the feasible region, which can be defined by

any equality and/or inequality constraint. The vector of upper bounds, ε =
(ε1, ε2, . . . , εm), defines the maximum value that each objective can have. In
order to obtain a subset of the Pareto optimal set (or even the entire set, in
case if this set is finite), one must vary the vector of upper bounds along the
Pareto front for each objective, and make a new optimization process for each
new vector.

Based on the defined cost function, the Reward Matrices are calculated and
stored in an Optimal Profile Database based on Stochastic Dynamic Program-
ming (OPD-SDP) in order to be used to find optimal policy for infinite horizon
problem.
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Fig. 6. Pareto Front of the minimization functions.

4 Sub-optimal Energy Management Strategy Using
Database Based on SDP

After a Markov model has been built, Transition Probability and Reward Matri-
ces are stored in the OPD-SDP, the Stochastic Dynamic Programming is used
to find the optimal control, minimizing the expected cost function (15), for each
vehicle state. The control signal u =

{
a, PEM}. An infinite horizon problem is

formulated on the homogeneous Markov chain. The optimization finds an opti-
mal policy, u = π(x) that minimizes the expected cost function (15) over an
infinite horizon [24].

Jπ
λ (x0) = lim

N→∞
E

{ N−1∑

k=0

λkζ(xk, π(xk))} (18)

where ζ is the cost for one time step, λ is the discount factor, xk is the dynamic
state vector at the kth time point and E

{
. . . } denotes the expectation with

respect to the considered prediction model defined by the time invariant Markov
chain. The discount factor λ < 1 assures convergence of the infinite sum. The
optimal policy u = π(x) is found by using a modified policy iteration algorithm
(cf. Fig. 7). The modified policy iteration consists of the following steps:

1. Initial guess: Set i = 1. Provide an initial guess for πi(x) and the discounted
infinite horizon future cost J

πi−1
λ (x).

2. Policy evaluation: Calculate the cost Jπi

λ (x) of the policy πi(x) by iterating

Jπi
λ (xk) = ζ(xk, u) + E

{
λJπi

λ (xk+1)}
backwards N times starting from Jπi

λ (xN ) = J
πi−1
λ (x) and ending with the

truncated cost Jπi

λ (x) = Jπi

λ (x0). If | J i+1
π (x) − J i

π(x) |≤ ξ when iterating
backwards terminate the iterations with the answer Jπi

λ (x) = Jπi

λ (xk).
3. Policy improvement: Improve the policy by taking one value iteration step:

πi+1(x0) = arg min
u

[

ζ(x0, u) + E
{
λJπi

λ (x1)

]

.

Check for convergence: if | J i+1
π (x0) − J i

π(xk) |≤ ξ, then terminate the algo-
rithm with the answer π(x) = πi+1(x). If πi+1(x) has not converged, increase
the index: i = i+1, and go to step 2.
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The flowchart of the Modified Policy Iteration Algorithm for SDP is presented
in Fig. 7. The given algorithm efficiency is tested and validated for real-time
application. The simulation results are presented in Sect. 5.

The calculation of SDP consumes relatively big amount of memory, so a
reasonable resolution of state variables number is very important in terms of
computation effort. With trials and errors method, the following discretization
sets for state and action variables have been applied:

Pdem =
{ − 200 : 20 : 160}kW (19)

v =
{
0, 5, 10, 20}m/s (20)

SOCbat =
{
0.2 : 0.1 : 0.9} (21)

a =
{ − 3,−1, 0, 0.5, 1, 1.25, 1.5}m/s2 (22)

PEM =
{ − 10 : 5 : 60}kW (23)

Based on the defined sets, the Transition Probability and Reward Matrices are
calculated.

Fig. 7. Modified policy iteration algorithm flowchart.
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4.1 Transition Probability Matrices Generation

As it was aforementioned in Sect. 3.2, the Transition Probability Matrices (TPM)
are calculated using maximum likelihood estimation (cf. Eq. (14)). In order
to have a richer database for TPM estimation, data from the following stan-
dard driving cycles (SDC) have been collected: ECER15 (also known as UDC
- Urban Driving Cycle), EUDC (European Urban Driving Cycle), ArtUrban
(Urban Artemis), and NEDC (New European Driving Cycle). These SDC rep-
resent common driving conditions in an urban environment, emulating different
driver’s behavior (abrupt and smooth acceleration/deceleration, cruise speed
phases, etc).

The variation of bus weight significantly influences the vehicle dynamics (thus
its consumed energy), as it can vary up to several tons. The tested data has been
enlarged by simulating each of the SDC for three different masses, corresponding
to an empty, half-full, and full bus. Therefore, the bus dynamics will be tested
for much more states, as for the same speed profile the power demand will be
different. It is considered in these hypotheses that a full bus corresponds to 70
passengers with an average weight of 60 kg.

After obtaining the data from several SDC for different masses, it was con-
cluded that no all states are explored and some of them are barely feasible.
That is why it makes sense to eliminate those states and, thus, reduce the state
dimension.

5 Simulation Results

In order to evaluate the efficiency of the proposed approach, a validation scenario
has been performed for several driving cycles. The given stochastic strategy has
been tested and compared to a strategy based on DDP based database as given
in [1]. The validation scenario consists of a test with an assumption that bus
mass varies during the trip. The bus is a transportation mean, it is considered
that the mass changes only during stops in order to take or to drop off the
passengers.

Table 1 summarizes the obtained results for several SDC. “+” corresponds to
a positive improvement, “-” means that DDP approach demonstrated a better
performance. The consumed energy Econs given by the column Energy [kWh]
in Table 1 is calculated as follows:

Econs =
∫ tf

0

PEMdt +
∫ tf

0

QLHV ṁfdt (24)

where PEM is the electric motor consumed power, ṁf fuel consumption rate,
and QLHV = 43 MJ/kg lower heat value for diesel.

In order to validate the proposed algorithm, in terms of generalization aspect,
it has been additionally tested on an ArtRoad SDC, which has not been used
before to estimate the TPM. To illustrate the performance, the simulation results
for ArtRoad and ArtUrban SDC are presented in Figs. 8 and 9, respectively.
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Figure 8 shows the simulation results for ArtRoad SDC for the case when
it is assumed that the bus weight is variable. We can see that the stochastic
algorithm shows results close to the deterministic approach. Global energy con-
sumed during the trip while using DDP approach is 4.95% higher comparing to
SDP method. It outperforms the DDP approach due to smoother speed profile
and energy management algorithm.

Figure 9 shows the simulation results for ArtUrban SDC. This is one of the
profiles that has been used to train the TPM. However, in this case the bus
weight is variable as well. In this more realistic scenario, the SDP approach still
outperforms the DDP method by 5.68%.

Both ArtRoad and ArtUrban SDC are characterized by frequent acceleration
and deceleration phases. In this case, the SDP based approach demonstrates bet-
ter results. For the SDC with mainly constant speed phases (e.g., EUDC and
NEDC) the improvement compared to DDP approach is more modest or even
negative (cf. Table 1). Therefore, the expediency of the use of the SDP app-

Table 1. Comparison of the SDP w.r.t. DDP based strategies. Variable weight.

Driving Cycle ΔSOC [%] Fuel [l] Energy [kWh] Energy Diff. [%]

DDP SDP Diff. [%] DDP SDP Diff. [%] DDP SDP

ArtRoad 8.15 7.91 +2.91 0.48 0.47 +2.0 8.22 7.81 +4.98

EUDC 4.51 4.45 +1.33 0.11 0.12 −9.1 2.71 2.64 +2.58

ArtUrban 2.15 1.87 +13.3 0.60 0.59 +1.67 7.04 6.64 +5.68

NEDC 4.60 4.66 −1.3 0.15 0.17 −13.3 3.65 3.85 −5.47

Average – – +4.06 – – −4.68 – – +1.94

Fig. 8. ArtRoad SDC. Constant weight. (a) Speed profile, (b) Battery SOC curve,
(c) Fuel consumption curve, (d) Powersplit for DDP approach, (e) Powersplit for the
proposed SDP approach, (f) Total energy consumption.
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Fig. 9. ArtUrban SDC. Variable weight. (a) Speed profile, (b) Battery SOC curve,
(c) Fuel consumption curve, (d) Powersplit for DDP approach, (e) Powersplit for the
proposed SDP approach, (f) Total energy consumption.

roach is more advantageous in case if a vehicle is subject to some uncertainties,
e.g., aggressive driving style and/or traffic conditions (traffic lights, traffic jams,
pedestrian crossing, etc.), which lead to frequent acceleration and deceleration
phases.

6 Conclusion and Prospects

In this paper, a Stochastic Dynamic Programming technique is used to simul-
taneously generate an optimal speed profile and related powersplit strategy for
HEV, in order to ensure energy optimization in the presence of uncertainties (due
to different traffic conditions and/or a driver’s behavior). To this end, a driver’s
power demand is modeled as a Markov Chain. The formulated energy optimiza-
tion problem, being intrinsically multi-objective problem, has been transformed
into several single-objective ones with constraints using an ε-constraint method
to determine a set of optimal solutions that represent the Pareto Front.

Simulation data of several standard urban driving cycles have been used
to train Transition Probability Matrices (TPM) using the maximum likelihood
estimation technique. A trained reference SOCbat curve has been utilized as a
constraint to estimate Reward Matrices based on the defined cost function. For
a real-time application purpose, the obtained TPM and Reward Matrices have
been collected into an Optimal Profile Database based on SDP (OPD-SDP).
The OPD-SDP has been then used to calculate sub-optimal speed profiles and
related powersplit by Modified Policy Iteration Algorithm using an infinite hori-
zon optimization formulation. The results obtained by the SDP were compared
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to a Deterministic Dynamic Programming, and it has been shown that near opti-
mal results can be obtained in real-time application. Later, the given approach
will be implemented in the actual studied bus.
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