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Abstract— We propose a kinematic motion strategy which
allows performing a sequential merging of a set of curvature-
constrained wheeled vehicles in order to obtain a platoon
formation – one of the basic motion tasks defined for intelligent
autonomous vehicles. The proposed design methodology is
motivated by the lining-up maneuvering characterizing the N-
trailer structures. The main emphasis has been paid on the
safety guarantees of the dynamic navigation of the fleet of
vehicles. In this context, we provide formal conditions under
which all the vehicles during the maneuvers keep their motion
in a prescribed road width, their longitudinal velocities and
motion curvatures are constrained to the prescribed bounded
ranges, and the minimal safe inter-vehicle distances are not
violated. Formal considerations have been complemented by
exemplary results of numerical simulations for a set of five
vehicles.

I. INTRODUCTION

The cooperative control design for a group of autonomous
vehicles constitutes one of the fundamental issues in the
multi-robot systems [1]. In the field of intelligent transporta-
tion, the merging for platoon-forming maneuver is among
the basic and most challenging tasks defined for intelligent
vehicles in public transportation (e.g., in urban areas or on
highways) and in freight transportation [3], [4], [8]. The
key factors which determine practical applicability of any
multi-vehicle control system, apart from its effectiveness,
are scalability (with respect to a number of vehicles), re-
liability, and safety guarantees of the maneuvers. Numerous
works have been published so far in the robotic and control
literature [17], [7], [10], [12] as well as in the intelligent
transportation literature [14], [5] paying attention on the
mentioned factors. In the context of control design for
intelligent autonomous vehicles, much attention was paid on
the platoon-control problem in the context of adaptive cruise
control system addressing such issues like string stability,
closed-loop robustness, control performance, and also safety
of maneuvers [13], [18], [2], [15], [19], [16]. Platooning is a
very attractive way of transportation which allows reducing
energy consumption by the vehicles, reducing a traffic con-
gestion, and providing safer and more comfortable driving
with the help of better coordination between the vehicles. It
is worth to mention here three high-impact initiatives devoted
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to this topic - the pioneering PATH project, the European
SARTRE project, and recently launched the Grand Coop-
erative Driving Challenge which addresses, among other
things, the cooperative merging of vehicle platoons. Despite
the mentioned endeavors and numerous interesting results
achieved so far, several important challenges still remain to
be investigated due to high complexity and dimensionality
of the problem [5], [10]. From the practical viewpoint, one
still seeks relatively simple control approaches which would
be scalable, distributed in nature, addressing constraints
imposed on the vehicles, and simultaneously providing strict
(analytical) conditions guaranteeing safe motion of the multi-
vehicle system during various scenarios of maneuvering.

In this paper, a cooperative motion strategy is proposed
which allows a set of arbitrary number of connected au-
tonomous vehicles merging and platoon forming in a safe
manner. Safety is preserved by keeping the upper and lower
bounds of velocities and motion curvatures of the vehicles in
a prescribed ranges, and by ensuring no collisions between
the vehicles with their positions staying within a road of
a given width. By using the smooth transitions between
the control stages, it is also possible to limit the upper
bounds of absolute accelerations of the vehicles during the
maneuvers. Application of the control design methodology
inspired by the lining-up maneuvering with the N-trailer
vehicles (recently investigated in [9]), leads to a simple and
scalable kinematic control strategy, with low computational
complexity (also with respect to the number of maneuvering
vehicles), and provides strict analytical conditions guaran-
teeing safety of nominal maneuvers. Implementation of the
proposed control policy does not require planning of any ref-
erence trajectories for the vehicles (in contrast to the popular
approach – see, e.g., [4], [11]), is not based on any numerical
optimization (opposed, e.g., to [10]), and needs measuring of
only the actual positions and orientations of the vehicles. All
the mentioned properties seem to be especially beneficial in
the context of embedded control solutions demanding low
computational power from the vehicles’ onboard computers.
Therefore, the proposed solution seems to be competitive
when related to other strategies known from the literature.

The rest of the paper is organized as follow. Section II
is devoted to modeling of the studied multi-vehicle system.
Section III contains the main assumptions and a formulation
of the control problem under consideration. The proposed
control strategy is described and formally justified in Sec-
tion IV. Selected simulation results, illustrating the nominal
control performance, together with comments are presented
in Section V.
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II. MODELING THE MULTI-VEHICLE SYSTEM

Let us consider a set S of M autonomous vehicles moving
along a straight road of a prescribed width D > 0 (see
Fig. 1). The vehicles are labeled by Vj with only even
subscripts (including zero), i.e., j ∈ Ze , {0, 2, 4, . . . , 2i −
2, 2i, 2i + 2, . . . , 2M − 2}. Kinematics of the V2i vehicle

Fig. 1. Configuration variables and kinematic parameters of a multi-vehicle
system virtually connected (through virtual trailers highlighted in blue) in
the N-trailer structure while moving in the fixed (global) frame {G}; the
angles θ2i and θ2i−1 are defined with respect to a positive semi-axis xG

body will be modeled (using sγ ≡ sin γ, cγ ≡ cos γ) as

q̇2i = G(θ2i)u2i =

[

1 0 0
0 cθ2i sθ2i

]⊤

u2i, (1)

where q2i = [θ2i x2i y2i]
⊤ ∈ (−π, π] × R

2 is a vehicle-
body configuration with orientation angle θ2i and positional
coordinates (x2i, y2i), while

u2i =

[

ω2i

v2i

]

=

[

(tan δ2i/l2i)v2i
v2i

]

∈ U ⊂ R
2 (2)

is a kinematic control input comprising the angular velocity
ω2i of a vehicle body and the longitudinal velocity v2i
of a midpoint (x2i, y2i) of the rear fixed (non-steerable)
wheels. The term δ2i is a steering angle of a front wheel
which is assumed to be accurately controlled by the vehi-
cle’s on-board servo guaranteeing that ∀ t ≥ 0 δ2i(t) =
arctan(l2iω2i(t)/v2i(t)). The parameter l2i > 0 denotes a
distance between the rear wheels’ axle and a steering wheel
of the vehicle V2i (cf. Fig. 1).

The order of vehicles in set S is determined by the
subscripts j ∈ Ze assigned according to vehicles’ coordinates
along the xG axis, that is, a vehicle V2i+2 is a subordinate
of a vehicle V2i if x2i+2 < x2i. A leading vehicle, denoted
as V0, is selected as a most forefront vehicle from the set S .
If for any two vehicles Vj1 and Vj2 holds xj1 = xj2 , then
their ordering can result, e.g., from their initial distances to
the leader, that is, j1 > j2 if dj1,0(0) > dj2,0(0) where

di1,i2(t) ,
√

(xi1(t)− xi2(t))
2 + (yi1(t)− yi2(t))

2 (3)

is a distance between any two vehicles Vi1 and Vi2 , or from
other particular preference.

In Section IV, we are going to adopt a methodology
originally applied to the N-trailer vehicles [9]. Therefore,
for the purposes of motion strategy design, let us treat the

multi-vehicle system as a virtual N-trailer, where the leading
vehicle V0 is treated as a tractor and all other vehicles (the
followers) are treated as trailers of some prescribed lengths
L2i > 0. Introduce also the virtual trailers (denoted in blue
in Fig. 1) of lengths

L2i−1(t) ,
√

A2
i (t) +B2

i (t), (4)

and of the orientation angles

θ2i−1(t) , Atan2 (Bi(t), Ai(t)) ∈ (−π, π], (5)

where Ai(t) = x2i−2(t) − x2i(t) − L2icθ2i(t) and Bi(t) =
y2i−2(t)−y2i(t)−L2isθ2i(t). Note that the lengths (4) (and
angles (5)) are computed as functions of, generally, time-
varying arguments. Thus, in contrast to parameters L2i, the
lengths (4) are not prescribed but must be computed on-line.
Following [9], one shall expect that longer lengths L2i and
L2i−1 will imply longer duration of the merging maneuver,
which is performed with smaller absolute angular velocities
of the vehicles. Furthermore, longer lengths will make the
steady inter-vehicle distances larger in a formed platoon.

The virtual trailers Vl (their lengths and orientation angles
as well) are all labeled with odd subscripts l ∈ Zo ,

{1, 3, 5, . . . , 2i− 1, 2i+1, . . . , 2M − 3}. They virtually join
the real vehicles forming together a virtual kinematic chain
of the Standard N-Trailer (SNT) [9]. The virtual joint-angles
βj and βl, with j ∈ Ze and l ∈ Zo, are defined as follows
(see Fig. 1)

∀ i ≥ 1 β2i , θ2i−1 − θ2i, β2i−1 , θ2i−2 − θ2i−1, (6)

and they can be collected in a vector

β(t) = [β1(t) β2(t) . . . βN (t)]⊤ ∈ T
N , (7)

where N = 2M − 2 for a set of M vehicles. For the virtual
SNT kinematic structure from Fig. 1 one can easily derive for
any i ∈ Zo ∪ Ze \ {0} the following velocity transformation

[

ωi

vi

]

=

[

0 sβi/Li

0 cβi

] [

ωi−1

vi−1

]

⇐ ui = Ji(βi)ui−1 (8)

which is valid when Li = const (see [9]), and where any vl,
with an odd index l ∈ Zo, denotes a longitudinal velocity of
the point (xl, yl), which is co-linear to the length Ll of the
virtual trailer (see Fig. 1 for l = 2i− 1).

III. PREREQUISITES AND PROBLEM STATEMENT

A. Basic assumptions

A1: Initially, i.e., for t ∈ [0, t∗0) all the vehicles move with
some finite constant velocity vm > 0 within a road of
width D > 0, parallel and sufficiently far from the road
borders, that is, ∀ i y2i(t) ∈ [ε2i, D − ε2i], ε2i > 0,
θ2i(t) = 0, v2i(t) = vm, and d2i,2i−2(t) ≥ dmin for
some prescribed minimal distance dmin > 0.

A2: The leading vehicle V0 persistently moves along a
straight lane, that is, ∀ t ≥ 0 y0(t) = y0(0) = y0 and
θ0(t) ≡ θ0(0) = 0.

A3: The steering angle δ2i of any vehicle V2i is constrained
to some prescribed range [−∆2i,∆2i] with ∆2i < π/2.
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A4: The configuration q2i(t) of any vehicle V2i is measur-
able on-line, and any vehicle V2i can bi-directionally
communicate at least with its neighbors, i.e., with
vehicles V2i−2 and V2i+2, to exchange the necessary
data (see Remark 3 in Section IV-B).

Assumption A1 describes a typical situation where a set
of coordinated vehicles initially moves in steady conditions
(within some finite time interval [0, t∗0)) along a road (e.g.,
along various lanes on a highway) in some physical sepa-
ration of their bodies (greater than dmin), which is not nec-
essarily safe for the merging-for-platoon-forming maneuvers
but only ensures initial collision-free motion. A2 indicates
that the leading vehicle determines a constant reference
y-location of the expected platoon formation within the
road width. Assumption A3 is natural (due to mechanical
construction) in any real car-like vehicle. Moreover, A3
corresponds to a limit imposed on a maximal possible abso-
lute curvature |κ2i(t)| of the V2i vehicle’s motion. Finally,
assumption A4 allows closing a feedback from the current
vehicles’ configurations, and exchange other data necessary
in the cooperative control process between any vehicles in S .

B. Control problem formulation

Let us introduce the y-positional errors

e2i(t) , y2i−2(t)− y2i(t), (9)

where y2i−2(t) = y0 for i = 1 denotes (upon A2) a constant
reference y-coordinate determined by the leading vehicle V0.

Problem 1 (Merging-for-Platoon-Forming (MPF) task):
For a given set S of M vehicles satisfying assumptions
A1-A4, a control problem is to find the bounded control
laws u2ic(t) = [ω2ic(t) v2ic(t)]

⊤ which, when applied into
kinematics given in (1) by taking u2i(t) := u2ic(t) for
all i ∈ {0, 1, 2, . . . ,M − 1}, merges all the vehicles in a
terminal platoon in the sense that ∀ i

e2i(t)
t→∞
−→ 0 ∧ θ2i(t)

t→∞
−→ 0 ∧ (u2i(t)− u0c(t))

t→∞
−→ 0,

(10)
preserving the prescribed vehicles order by keeping
x2i−2(t) − x2i(t) > 0 for t → ∞, and satisfying ∀ i the
following safety guarantees and constraints:

(g1) ∀ t > 0 v2ic(t) ∈ [vm, vM ),
(g2) ∀ t > 0 |κ2ic(t)| , |ω2ic(t)/v2ic(t)| ≤ (tan∆2i)/l2i,
(g3) ∀ t > 0 y2i(t) ∈ (0, D),
(g4) ∀ t > 0 d2i,2i−2(t) ≥ dmin,

where vM > vm is a prescribed (finite) upper bound of
the admissible longitudinal velocity, while dmin > 0 is a
prescribed minimal admissible distance between the vehicles.

By condition (10), we expect the vehicles to terminally
converge (in the order prescribed at the beginning of a control
process) to a common straight line determined by the leading
vehicle V0, moving terminally with the same longitudinal
velocity v0c. The latter requirement ensures constant terminal
(steady) inter-vehicle distances in a platoon. We do not
require the steady inter-vehicle distances to be equal, since
this objective can be efficiently achieved by subsequent
usage of the platoon-control methods widely discussed in

the literature – see, e.g., [8]. On the other hand, we require
satisfaction of four safety guarantees and constraints: limiting
longitudinal velocities to the prescribed admissible range
(g1), limiting the maximal admissible motion curvature to
a prescribed range (g2) corresponding to assumption A3,
keeping the vehicles positions within the road width (g3), and
collision-free motion (g4) of any two neighboring vehicles
in the set S .

Remark 1: The MPF task has been formulated in the
space of velocities, since the vehicles are modeled solely on
a kinematic level. In this context, the control problem under
consideration shall be read in terms of a desired nominal
motion strategy.

IV. CONTROL STRATEGY DESCRIPTION

A. Control stages and the MPF control law

In order to meet all the safety guarantees and constraints
formulated in Problem 1 we propose to divide a control
process into two main subsequent stages:

• stage (S1) responsible for a preparation of the set
S by ordering the vehicles (assigning them numbers)
and stretching the vehicle set along a road to ensure
sufficiently large (safe) distances between the vehicles
and to achieve favorable (in view of the next control
stage) configuration of the virtual N-trailer chain,

• stage (S2) responsible for sequential merging of the
consecutive vehicles into a platoon.

From now on, we assume that a transition from (S1) to (S2)
is allowed to be performed only once for a given vehicle in
the whole control time horizon (the mono-stable transition),
avoiding this way any potential chattering effect.

We propose a nominal motion strategy for the leading
vehicle V0 by defining

u0c(t) ,

[

0
vm + (vM − vm) tanh (α(τα) ‖β(t)‖)

]

, (11)

where α : R → [0, 1] is a smooth activation function

α(τα) ,
λ(τα)

λ(τα) + λ(1− τα)
(12)

with

λ(z) ,

{

0 for z ≤ 0,
exp(−1/z) for z > 0,

such that α(τα ≤ 0) = 0 and α(τα ≥ 1) = 1, while
τα , (t−t∗0)/Tα is the scaled time-variable with a prescribed
scaling factor 0 < Tα < ∞. The prescribed (finite) delay
time t∗0 determines beginning of the control stage (S1). It is
worth to note that velocity v0c(t) defined by (11) is a convex
combination of boundary velocities vm and vM , such that
v0c = vm if α(τα) ‖β(t)‖ = 0 and v0c → vM if ‖β‖ → ∞.

A nominal motion strategy for any vehicle V2i, i ∈
{1, 2, . . . ,M − 1}, is defined in an iterative form

u2ic(t) =

[

ω2ic(t)
v2ic(t)

]

,

[

s2i(τs, w2i) · ω̃2ic(t)
max{vm, ṽ2ic(t)}

]

, (13)
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where
[

ω̃2ic(t)
ṽ2ic(t)

]

, J2i(β2i(t))J2i−1(β2i−1(t))u2i−2c(t) (14)

with matrices J2i(β2i) and J2i−1(β2i−1) of the forms re-
sulting from transformation (8). Note that matrix J2i is
computed using the prescribed parameter L2i, while matrix
J2i−1 must be computed with the current length (4) updated
on-line. The term s2i : R× {0, 1} → [0, 1] used in (13) is a
transition operator

s2i(τs, w2i) ,

{

0 if w2i = 0,
α(τs) if w2i = 1,

(15)

where α(τs) is the activation function determined by (12).
The argument w2i allows forcing (at some time instant t∗2i)
the function s2i to transit from zero to unity, simultaneously
determining a transition from the control stage (S1) to the
control stage (S2) for the vehicle V2i. The first argument
τs , (t− t∗2i)/Ts is a scaled time-variable with a prescribed
scaling factor 0 ≤ Ts < ∞; w2i ∈ {0, 1} is a bi-valued
decision variable which governs the transition process, that
is, it either keeps the function s2i at zero if w2i = 0 or
releases the transition of s2i from zero to unity in a finite
time interval Ts if w2i = 1. The decision variable w2i will
be very useful to release a transition from control stage
(S1) to stage (S2) for vehicle V2i only after satisfaction of
all the necessary conditions guaranteeing safe maneuvers in
stage (S2), see Section IV-B. The time instant t∗2i used in
definition of τs represents a moment when decision variable
w2i changes its value from zero to one. For the set of M
vehicles we have the number of M − 1 decision variables
{w2, w4, w6, . . . , w2M−2} (excluding the leading vehicle),
which are manipulated by the control system.

Remark 2: Activation function α(·) used in (11) allows
the leading vehicle accelerate smoothly in the case of a non-
zero norm ‖β(t)‖ already at the beginning of a control
process, that is, at t = t∗0. Transition operator s2i used in
(13) leads to a unidirectional transition from the zero angular
velocity, necessary for control stage (S1), to the value ω̃2ic(t)
required in stage (S2) during the MPF maneuvers. Note that
by increasing the scaling factor Ts in the definition of τs used
in (15) one can make the transitions process smooth, which
leads to smaller angular accelerations. On the other hand,
by selecting the factor Ts smaller, one makes the transition
sharper, up to the instantaneous switching transition at the
limit for Ts = 0.

B. Motion strategy formulation with safety conditions

Proposition 1: The MPF control law, defined by (11) and
(13), applied to the control inputs of kinematics (1), by
forcing, respectively, u0(t) := u0c(t) and u2i(t) := u2ic(t)
for every i ∈ {1, 2, . . . ,M − 1}, solves the Problem 1 if the
pre-defined parameters vm, vM , and selected L2i satisfy

vM
vmL2i

≤
tan∆2i

l2i
, (16)

and if for every vehicle V2i, i ∈ {1, 2, . . . ,M − 1}, one
applies the switching transition (Ts := 0) with the decision

variable w2i = 0 for t ∈ [0, t∗2i), and w2i = 1 for t ≥ t∗2i
starting at t = t∗2i when simultaneously:

(c1) |βk(t
∗
2i)| <

π
2 for k ∈ {1, 2, . . . , 2i, 2i+ 1, 2i+ 2},

(c2) v2i−2c(t
∗
2i) > v2ic(t

∗
2i) > vm (acute inequalities),

(c3) L2i−1(t
∗
2i) ≥ L2i/[ζcβ2i−1(t

∗
2i)], for some ζ ∈ (0, 1),

and 2L2iL2i−1(t
∗
2i)cβ2i(t

∗
2i)+L2

2i−1(t
∗
2i) ≥ d2min−L2

2i,
(c4) L2i+1(t

∗
2i) ≥

dmin+L2i−1(t
∗

2i)(1−cβ2i(t
∗

2i))−L2i+2

cβ2i+2(t∗2i)
,

(c5)
∑i−1

k=1 |e2k(t
∗
2i)| ≤ ǫ2i, taking ǫ2i > 0 as a prescribed

sufficiently (negligibly) small constant such that

2ǫ2i + (L2i/vm)σ̄2i < ε2i, (17)

with ε2i introduced in A1, and σ̄2i = supt≥t∗
2i
σ2i(t)

being a supremum of a non-negative function

σ2i(t) =

[

L2i−1(t)

L2i
|cβ2i(t)cβ2i−1(t)sθ2i−1(t)|

+ |sθ2i−2(t)|] v2i−2c(t). (18)

Under conditions (c1)-(c5), the steady inter-vehicle distances
in a platoon will satisfy: d2i,2i−2(∞) ≥ L2i−1(t

∗
2i) + L2i.

Simultaneous satisfaction of conditions (c1) to (c5) de-
termines a time-instant t∗2i of transition from control stage
(S1) to control stage (S2) for the vehicle V2i, which should
guarantee safe MPF maneuver performed with this vehicle
V2i. Condition (c2) requires that a longitudinal velocity of a
preceding vehicle V2i−2 is strictly greater than a longitudinal
velocity of vehicle V2i, while the latter is strictly greater
than the lower bound vm. Conditions (c3) and (c4) deter-
mine how much the distances between neighboring vehicles
V2i−2, V2i, V2i+2 should be enlarged during the control stage
(S1) to guarantee safe maneuvering with the vehicle V2i in
stage (S2) in the sense of not colliding with the preceding ve-
hicle (V2i−2) and the following vehicle (V2i+2), respectively.
The first condition in (c5) corresponds to (almost) finishing
of the MPF maneuvers by all the preceding vehicles from
V2 to V2i−2 (of course, for V0 we can say that the leading
vehicle trivially and exactly ’finishes’ MPF maneuver already
at t∗0, i.e., the sum in (c5) for i = 1 should be taken as
equal to zero). (c5) indicates also that the proposed MPF
strategy will be performed sequentially by particular vehicles
V2, V4, . . . , V2M−2, started at time instants t∗2 ≤ t∗4 ≤ . . . ≤
t∗2M−2, respectively. Finally, the conservative condition (17)
allows satisfying the guarantee (g3) – it determines how far
from the road boundaries (by the value of ε2i introduced
in assumption A1) the vehicle V2i should initially stay to
not violate (g3) during the MPF. Note that supremum σ̄2i

in (17) can be replaced by the (more conservative) upper
bound ¯̄σ2i = vM [(supt∈T2

L2i−1(t)/L2i) + 1], where for
the case of switching transition from stage (S1) to (S2) holds
supt∈T2

L2i−1(t) = L2i−1(t
∗
2i), see Section IV-C.

Remark 3: According to the proposed control policy (11)-
(14), one can infer which data are needed to be exchanged
between the cooperating vehicles. Namely, at any time instant
t ≥ t∗0 the leading vehicle has to receive current values of all
the virtual joint angles β1(t), . . . , βN (t). On the other hand,
every vehicle V2i (for i > 0) has to receive configurations
q2i−2(t) and q2i+2(t), the computed velocity uc2i−2(t), the
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Fig. 2. A block scheme of the proposed MPF control system

value of ρ2i−2(t) :=
∑i−1

k=1 |e2k(t)|, and the current values
of virtual joint angles β1(t), . . . , β2i+2(t). A block scheme
explaining a structure of the proposed control system has
been presented in Fig. 2.

Remark 4: Proposition 1 has been formulated for the case
of the (non-smooth) switching transition between stages (S1)
and (S2). It is worth noting that Problem 1 can be effectively
solved under conditions (c1)-(c5) using also the smooth
transition by taking (even relatively large) Ts > 0. It will
be illustrated by simulation results in Section V. By using
the smooth transition, the maximal absolute values of angular
accelerations can be made acceptably small leading to more
smooth motion of the following vehicles. A formal analysis
of the system behavior in the case of the smooth transition,
however, requires further investigations.

C. Formal justification of Proposition 1

Let us provide formal arguments which justify the claim
formulated in Proposition 1 by a (sketch) analysis of the
closed-loop system for subsequent stages (S1) and (S2).

a) Arguments common for stages (S1) and (S2): We
show first that guarantees (g1)-(g2) are satisfied in both
control stages (S1) and (S2). Upon (11) it is clear by
construction that ω0c(t) ≡ 0 and v0c(t) ∈ [vm, vM ) because
v0c(t) = vM only if ‖β(t)‖ = ∞ which is impossible in
T
N . Upon (13) and (14) it is clear by construction that

inft |ω2ic(t)| = 0, inft v2ic(t) = vm. Furthermore, we
can assess: supt |ω2ic(t)| ≤ supt |v2i−2c(t)| /L2i and also
supt v2ic(t) ≤ max{vm, supt v2i−2c(t)}. Thus, for i = 1
we have supt |ω2c(t)| ≤ supt |v0c(t)| /L2 < vM/L2, and
supt v2c(t) ≤ max{vm, supt v0c(t)} < max{vm, vM} =
vM ; for i = 2 we have supt |ω4c(t)| ≤ supt |v2c(t)| /L4 <
vM/L4, and supt v4c(t) ≤ max{vm, supt v2c(t)} <
max{vm, vM} = vM . Proceeding for i > 2, one concludes:

∀ t ≥ 0 ω0c(t) = 0 ∧ |ω2ic(t)| ∈ [0, vM/L2i), (19)

∀ t ≥ 0 v0c(t) ∈ [vm, vM ) ∧ v2ic(t) ∈ [vm, vM ) (20)

for i ∈ {1, 2, . . . ,M − 1}, which satisfy (g1). Next, the
motion curvature κ2ic(t) = ω2ic(t)/v2ic(t) is zero for
vehicle V0, while for other vehicles we can assess upon
(19)-(20): supt |κ2ic(t)| = (supt |ω2ic(t)|)/(inft v2ic(t)) <
vM/(vmL2i). Under condition (16), (g2) is satisfied.

b) Arguments for stage (S1): The duration of stage (S1)
for the vehicle V2i is T1 = [t∗0, t

∗
2i). In this stage w2i = 0,

thus ω2i(t) := ω2ic(t) = 0 for t ∈ T1. By recalling (1)
and assumption A1, it is clear that ẏ2i(t) ≡ 0 for t ∈ T1,
and upon assumptions A1-A2 the guarantee (g3) it trivially
satisfied. Next, let us show that conditions (c1)-(c4) can be
satisfied in finite time in (S1). Upon the previous intermediate
conclusions, and due to A1-A2, one can derive the following
equations valid ∀ i ∈ {1, . . . ,M − 1} within stage (S1):

β̇2i(t) = −
ṽ2i−2,2i(t)

L2i−1(t)
sβ2i(t), β2i−1(t) = −β2i(t), (21)

L̇2i−1(t) = ṽ2i−2,2i(t)cβ2i(t), (22)

where ṽ2i−2,2i , v2i−2c − v2ic is a difference between the
nominal velocities of vehicles V2i−2 and V2i. Since v0c(t) >
vm and v2c(t) = max{vm, v0c(t)cβ1(t)cβ2(t)} < v0c(t)
(acute inequality) for all t > t∗0 if only cβ1(t)cβ2(t) < 1
(i.e., if vehicles V0 and V2 do not form a platoon yet), one
concludes that ṽ0,2 > 0 and upon (21) that β1(t) and β2(t)
will have a tendency to converge toward zero in (S1). By
the same argument, L1(t) (upon (22)) will start increasing if
only |β2(t)| becomes less than π/2. Similar arguments can
be formulated to show that v2ic(t) ≤ v2i−2c(t) for all t ∈ T1.
However, to obtain the condition vm < v2ic(t) < v2i−2c(t)
for i ∈ {1, . . . ,M − 1}, with both acute inequalities corre-
sponding to (c2), one has to satisfy the following inequality
v2i−2ccβ2icβ2i−1 = v0c

∏2i
k=1 cβk > vm which, according

to (11), leads to the condition

tanh(α(τα) ‖β‖) +
1−

∏2i
k=1 cβk

∏2i
k=1 cβk

<
vM
vm

. (23)

Since 0 ≤ tanh(α(τα) ‖β(t)‖) < 1 for all t ≥ t∗0 and
(vM/vm) > 1 (by definition), it is always possible to meet
(23) in a finite time thanks to the convergence tendency for
angles βk(t) resulting from equations (21). Thus, satisfaction
of required conditions (c1) and (c2) is possible within a
finite time interval in stage (S1). Furthermore, meeting (c1)
and (c2) implies positive right-hand side of (22). As a
consequence, all the lengths L2i−1(t) with odd indexes will
increase by an integral action. Therefore, by keeping the
system in stage (S1) through the sufficiently long finite time
interval T1 it is possible to increase the lengths L2i−1(t)
and L2i+1(t) to the values imposed by conditions (c3)-(c4).
A rate of change for the lengths L2i−1(t) proportionally
depends on the velocity difference ṽ2i−2,2i(t), which can
be increased by admitting a wider range [vm, vM ) of the
admissible longitudinal velocities introduced in (g1).

Finally, let us show that guarantee (g4) is also satisfied
within stage (S1). One can easily check that in stage (S1)

ḋ2i,2i−2(t) =
x2i−2(t)− x2i(t)

d2i,2i−2(t)
ṽ2i−2,2i(t), (24)
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where ṽ2i−2,2i , v2i−2c − v2ic, and d2i,2i−2 is the Eu-
clidean distance between vehicles V2i and V2i−2. Since
x2i−2(0) − x2i(0) ≥ 0 (by the postulated rule of vehicles
numbering) and ṽ2i−2,2i(t) ≥ 0 for all t ≥ 0 (by the
arguments formulated so far), it is clear from (24) that the
distance d2i,2i−2(t) cannot decrease during stage (S1). In
view of assumption A1, one guarantees (g4). Moreover, when
ṽ2i−2,2i(t) becomes strictly positive (it happens in finite time
by satisfaction of (23)), the distance d2i,2i−2(t) will become
increasing.

c) Arguments for stage (S2): In the case of the switch-
ing transition from (S1) to (S2), a duration of the control
stage (S2) for the vehicle V2i will be represented by the
range T2 = [t∗2i,∞). Switching to the control stage (S2) at
t = t∗2i for the vehicle V2i means that conditions (c1)-(c4)
are satisfied, and additionally (c5) holds. The latter means
that either V2i−2 = V0 is the leading vehicle if i = 1 (in
this case the sum in (c5) is exactly zero, and θ0(t) ≡ 0 by
A2), or (if i ≥ 2) all the preceding vehicles V0, . . . , V2i−2

have just (almost) finished their MPF maneuvers (cf. (10)).
In particular, satisfaction of (c5) together with assumption
A2 (and according to the results provided in [9]) allows one
to conclude

∀ t ≥ t∗2i θ2i−2(t) ≈ 0 ∧ θ2i−2(t → ∞) → 0. (25)

Hereafter, we also assume that condition (c2) when satisfied
at t = t∗2i is also preserved for any finite t ∈ T2 (see
Remark 5). Under this assumption, one can take v2ic(t) =
ṽ2ic(t) = v2i−2c(t)cβ2i(t)cβ2i−1(t) (see (13)-(14)), which
allows one to show that

L̇2i−1(t) = [1− s2i(t)]v2i−2c(t)s
2β2i(t)cβ2i−1(t). (26)

Thus, for all t ∈ T2 (where s2i(t) ≡ 1) holds

L̇2i−1(t) ≡ 0 ⇒ L2i−1(t) = L2i−1(t
∗
2i) = const. (27)

In view of (27) and (25), and since vjc(t) > 0 for all
t ≥ 0 and all j ∈ Ze, one can treat now the subset
of two vehicles, V2i and V2i−2, as a virtual tractor-trailer
system (more precisely: the Standard 1-Trailer) moving in
the passive lining-up maneuver (see, [9]), where V2i−2 plays
a role of a tractor whereas V2i a role of a trailer. Therefore,
we can use the results presented in [9] to write the dynamics
of virtual joint angles between the vehicles V2i and V2i−2:

β̇2i−1(t) =
−v0c(t) ξ2i−2(t)

L2i−1
sβ2i−1(t) + η2i−1(t), (28)

β̇2i(t) =
−v0c(t) ξ2i−1(t)

L2i
sβ2i(t) + p2i(β2i−1(t), t), (29)

where v0c(t) > 0 for all t ≥ 0 (see (20)), ξk ,
∏k

j=1 cβj

is positive under condition (c1) and ξk = 1 if k <
1, η2i−1(t) = p2i−1(β2i−2(t), t), while pk(βk−1(t), t) =
[v0c(t) ξk−2(t)/Lk−1]sβk−1(t) is a perturbation term such
that pk(0, t) = 0. Note that for i = 1 the perturbing term
η1(t) ≡ 0 in (28). For i > 1, the term η2i−1(t) is negligibly
small for t ∈ T2, upon conclusion (25), and is asymptotically
vanishing, thus its effect can be neglected in the (at least

initial phase of) stage (S2). Therefore, one can conclude
asymptotic (and, at least, initially monotonic) convergence
β2i−1(t) → 0 as t → ∞. Introducing now a positive definite
function Wβ , 1 − cβ2i, we can assess its time derivative
as follows:

Ẇβ ≤ −
v0c ξ2i−1

L2i
s2β2i +

v0c ξ2i−2

L2i−1(t∗2i)
|sβ2i| |sβ2i−1|

= −(1− ζ)
v0c ξ2i−1

L2i
s2β2i

+ |sβ2i| ξ2i−2

(

v0c |sβ2i−1|

L2i−1(t∗2i)
− ζ

v0c cβ2i−1(t
∗
2i)

L2i
|sβ2i|

)

,

where ζ ∈ (0, 1) is a majorization constant referenced in
(c3). Note that ξ2i−2 > 0, ξ2i−1 > 0, and cβ2i−1(t

∗
2i) > 0

upon condition (c1). Moreover, in the above worst-case es-
timation we have used the following two facts inferred from
the previous analysis: supt∈T2

|β2i−1(t)| = |β2i−1(t
∗
2i)|, and

∀ t ∈ T2 L2i−1(t) = L2i−1(t
∗
2i). It is evident now, that

Ẇβ ≤ −(1− ζ)(v0c ξ2i−1/L2i)s2β2i if only

|sβ2i| ≥ χ2i |sβ2i−1| , (30)

where χ2i = L2i/[ζL2i−1(t
∗
2i)cβ2i−1(t

∗
2i)] ≤ 1 under the

first of conditions formulated in (c3). Since |sβ2i(t
∗
2i)| =

|sβ2i−1(t
∗
2i)|, by the basic geometric argument (cf. Fig. 1),

the inequality (30) is satisfied at the very beginning of
stage (S2), and since β2i−1(t) → 0 (as argued above) also
β2i(t) → 0 as t → ∞. Since the convergence of angle
β2i−1(t) is (at least initially) monotonous, one concludes
upon (30) that

sup
t≥t∗

2i

|β2i(t)| = |β2i(t
∗
2i)| . (31)

Now, by recalling (6) and due to (25), one concludes also that
θ2i−1(t) → 0 and θ2i(t) → 0 as t → ∞, fulfilling the second
condition required by (10). Since ∀ k Jk(0) = diag{0, 1}, it
is clear from (13)-(14) that convergence β2i−1(t) → 0 and
β2i(t) → 0 as t → ∞ implies (u2ic(t) − u2i−2c(t)) →
0 as t → ∞. The latter convergence will happen for
consecutive vehicles V2i with i = 1, 2, . . . subsequently
entering the control stage (S2). It leads to the sequence
(u2c(t)−u0c(t)) → 0, (u4c(t)−u2c(t)) → 0,. . . as t → ∞,
which implies (u2ic(t) − u0c(t)) → 0 as t → ∞. Since
u0(t) := u0c(t) and u2i(t) := u2ic(t) (by Proposition 1),
the third condition imposed by (10) will be fulfilled.

Remark 5: A rationale behind assuming that condition
(c2) when satisfied at t = t∗2i is also preserved for any finite
t ∈ T2 comes from the following reasoning. Satisfaction
of (c2) at t = t∗2i corresponds to satisfaction of inequality
(23) at t = t∗2i. At the beginning of stage (S2) holds
s2i(t

∗
2i) = 1 (switching transition), thus upon (26) one can

state that L̇2i−1(t
∗
2i) = 0. If the joint angles β2i−1(t) and

β2i(t) for t ≥ t∗2i converge to zero in such a way that
supt∈T2

|β2i−1(t)| = |β2i−1(t
∗
2i)| and supt∈T2

|β2i(t)| =
|β2i(t

∗
2i)|, the inequality (23) will be satisfied also for all

finite t > t∗2i.
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Evolution of the y-positional error in stage (S2) results
from the following perturbed differential equation

ė2i(t) = −
v2i(t)

L2i
e2i(t) + g2i(t) = f2i(e2i, t) + g2i(t) (32)

which can be directly derived by differentiation of (9), using
kinematics (1), and utilizing a basic geometrical relation
e2i = L2isθ2i + L2i−1sθ2i−1 (cf. Fig. 1). The perturbing
term g2i(t) = v2i−2c(t)[

L2i−1(t)
L2i

cβ2i(t)cβ2i−1(t)sθ2i−1(t)+
sθ2i−2(t)] satisfies |g2i(t)| ≤ σ2i(t) for all t ∈ T2, where
the function σ2i(t) has been introduced in (18). According
to (32), it is clear that the equilibrium e2i = 0 of the unper-
turbed dynamics ė2i(t) = f2i(e2i, t) is globally exponentially
stable, which can be easily checked by using a Lyapunov
function We , e22i/2 and recalling the result (20). In view
of the above, and by referring to the Lemma 9.4 formulated
in [6], one can conclude that the solution of (32) satisfies

∀ t ∈ T2 |e2i(t)| ≤ |e2i(t
∗
2i)| exp(−α(t−t∗2i))+µ2i(t) (33)

with µ2i(t) =
∫ t

t∗
2i

σ2i(τ) exp(−α(t − τ))dτ , and α = vm

L2i
.

Moreover, since σ2i(τ) → 0 as t → ∞ (because θ2i−1(t) →
0 and θ2i−2(t) → 0 as t → ∞, as shown before), by
recalling the Lemma 9.6 formulated in [6], one concludes
that e2i(t) → 0 as t → ∞ which fulfills the first condition
imposed by (10).

Next, let us analyze satisfaction of guarantee (g3). Accord-
ing to (33), one can write (see [6], pp. 352)

sup
t∈T2

|e2i(t)| ≤ max
{

|e2i(t
∗
2i)| ;

σ̄2i

α

}

≤ |e2i(t
∗
2i)|+

σ̄2i

α

where σ̄2i = supt∈T2
σ2i(t) (see (18)). Furthermore, upon

definition (9), it can be checked that e2i(t) = y0 − y2i(t)−
∑i−1

k=1 e2k(t). Moreover, for the sufficiently small constant
ǫ2i introduced in (c5), the errors |e2k(t)| for k < i and t ≥ t∗2i
converge monotonously implying supt∈T2

∑i−1
k=1 |e2k(t)| =

∑i−1
k=1 |e2k(t

∗
2i)|. As a consequence, one can assess:

sup
t∈T2

|y0 − y2i(t)| ≤ sup
t∈T2

|e2i(t)|+ sup
t∈T2

i−1
∑

k=1

|e2k(t)|

≤ |e2i(t
∗
2i)|+

σ̄2i

α
+ ǫ2i

=

∣

∣

∣

∣

∣

y0 − y2i(t
∗
2i)−

i−1
∑

k=1

e2k(t
∗
2i)

∣

∣

∣

∣

∣

+
σ̄2i

α
+ ǫ2i

≤ |y0 − y2i(0)|+
σ̄2i

α
+ 2ǫ2i, (34)

where we utilized the fact that y2i(t
∗
2i) = y2i(0) (because

∀ i ẏ2i(t) ≡ 0 within (S1)). The result (34), together with
assumption A2, indicate that the absolute y-position of the
vehicle V2i cannot increase by more than 2ǫ2i + σ̄2i/α with
respect to its absolute initial y-position. By referring to
assumption A1, the worst case scenario imposes the safety
condition 2ǫ2i + σ̄2i/α < ε2i, corresponding to (17), which
implies satisfaction of guarantee (g3).

Finally, let us justify the forms of conditions (c3) and
(c4) in the context of guarantee (g4). When the vehicle
V2i enters the control stage (S2), it should preserve safe

distances d2i,2i−2 and d2i+2,2i between the two neighboring
vehicles: V2i−2 and V2i+2, respectively. From basic geome-
try, the distance d2i,2i−2 results from the following formula:
d2i,2i−2(t) = [L2

2i + 2L2iL2i−1(t)cβ2i(t) + L2
2i−1(t)]

1/2.
According to the results (27) and (31), one observes that
a lower bound of the distance d2i,2i−2(t) for t ∈ T2 satisfies
inft∈T2

d2i,2i−2(t) = d2i,2i−2(t
∗
2i), where

d22i,2i−2(t
∗
2i) = L2

2i + 2L2iL2i−1(t
∗
2i)cβ2i(t

∗
2i) + L2

2i−1(t
∗
2i),

while (since β2i(t → ∞) → 0, as shown before)

d2i,2i−2(∞) = L2i + L2i−1(t
∗
2i). (35)

Now, by imposing d22i,2i−2(t
∗
2i) ≥ d2min required by (g4)

leads to the second part of condition (c3). A lower bound
of the distance d2i+2,2i(t) for t ∈ T2 can be (conser-
vatively) assessed taking into account only its component
dx2i+2,2i along the xG axis. It is clear that dx2i+2,2i−2(t) =

x2i−2(t)−x2i+2(t) and ḋx2i+2,2i−2(t) = v2i−2(t)cθ2i−2(t)−
v2i+2(t)cθ2i+2(t) ≈ (v2i−2(t) − v2i+2(t)) ≥ 0 for t ∈
T2 (the latter approximation comes from a fact that the
vehicle V2i+2 is still in control stage (S1), while the vehicle
V2i−2 has almost finished its MPF maneuver). Therefore,
we can write dx2i+2,2i−2(t

∗
2i) ≤ dx2i+2,2i−2(∞) and, as a

consequence, dx2i+2,2i(t
∗
2i) + dx2i,2i−2(t

∗
2i) ≤ dx2i+2,2i(∞) +

dx2i,2i−2(∞). From the latter inequality we have

dx2i+2,2i(∞) ≥ dx2i+2,2i(t
∗
2i) + dx2i,2i−2(t

∗
2i)− dx2i,2i−2(∞).

Since the lower bound of the distance between the vehicles
V2i+2 and V2i satisfies inft∈T2

dx2i+2,2i(t) ≥ dx2i+2,2i(∞),
we can impose a conservative condition motivated by (g4)

dx2i+2,2i(t
∗
2i) + dx2i,2i−2(t

∗
2i)− dx2i,2i−2(∞) ≥ dmin (36)

to guarantee no collision between vehicles V2i+2 and V2i

within the control stage (S2). From the basic geometry
(cf. Fig. 1) and since θ2i(∞) = 0 (as shown before) we
know that d2i,2i−2(∞) ≡ dx2i,2i−2(∞), and by recalling that
θ2i+2(t

∗
2i) = θ2i(t

∗
2i) = 0 we can write: dx2i+2,2i(t

∗
2i) =

L2i+2 + L2i+1(t
∗
2i)cβ2i+2(t

∗
2i), dx2i,2i−2(t

∗
2i) = L2i +

L2i−1(t
∗
2i)cβ2i(t

∗
2i), and (see (35)) dx2i,2i−2(∞) = L2i +

L2i−1(t
∗
2i). Substituting all these formulas into inequality

(36), and resolving it with respect to L2i+1(t
∗
2i), gives

condition (c4). Summarizing, satisfaction of (c3)-(c4) entails
satisfaction of (g4).

V. SIMULATION RESULTS AND COMMENTS

We present exemplary simulation results obtained for a set
of five car-like vehicles moving along a road of width D =
5.5m and satisfying assumptions A1-A4 (for ∆2i = 58◦

and l2i = 2.65m). An initial configuration of the ordered
vehicles has been illustrated on the left side in the middle
plot in Fig. 3. The following parameters have been selected
for simulations: L2i = 2.5m for all i ∈ {1, 2, 3, 4}, dmin =
4.5m, vm = 10m/s, vM = 1.5vm = 15m/s, ǫ2i = 0.2m, for
all i ∈ {1, 2, 3, 4}, t∗0 = 1 s, and Tα = 2 s. Transitions from
the control stage (S1) to stage (S2) for particular vehicles V2i

were forced by using the transition operator (15) with the
scaling factor Ts = 2 s. As a consequence, the subsequent
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Fig. 3. Simulation results of the MPF maneuvers for the case of the five-vehicle set S = {V0, V2, V4, V6, V8}; four selected configurations of the
multi-vehicle system have been illustrated on the middle plot (thin dash-dot lines illustrate the links forming the virtual N-trailer); accelerations presented
on the bottom plots have been numerically approximated (see the animation at https://goo.gl/Gsa1L6)

transition processes for particular vehicles were smooth (see
the obtained velocity profiles in Fig. 3), and every transition
duration was equal exactly Ts seconds.

Analyzing the results presented in Fig. 3, one may observe
that the control process starts at t = t∗0 = 1 s and practically
finishes in less than 15 s. The platoon has been safely formed
keeping the vehicles within the road width D, keeping the
inter-vehicle distances non-decreasing, and preserving the
order of vehicles prescribed at the beginning of maneuvers.
The results reveal conservativeness of condition (17) – in the
considered case the y-positions of all the merging vehicles
were converging monotonically within the whole control
stage (S2) yielding supt∈T2

|y0 − y2i(t)| = |y0 − y2i(0)|
(cf. (34)). It is worth stressing that longitudinal and angular
velocities (satisfying all the imposed constraints) have been
smoothed due to the usage of transition operators s2i (cf.
the right-bottom plot in Fig. 3) with scaling factor Ts ≫ 0.
This fact reveals that the non-instantaneous transitions from
control stage (S1) to stage (S2) may not only preserve
the expected safety guarantees of the maneuvers, but also
helps lowering the maximal absolute accelerations of the
vehicles, which seems to be an important practical benefit
(for numerically approximated acceleration profiles, see the
left-bottom and the middle-bottom plots in Fig. 3).
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