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Intelligent Energy Management Strategy based on
Artificial Neural Fuzzy for Hybrid Vehicle

Elkhatib Kamal and Lounis Adouane

Abstract—This paper proposes an intelligent energy manage-
ment strategy for a hydraulic-electric hybrid vehicle in order
to minimize its total energy consumption. It proposes first to
model the vehicle total energy consumption and investigates the
minimization of an expended energy function, formulated as the
sum of electrical energy provided by the on-board batteries and
consumed fuel. More precisely, it is proposed in this paper an
intelligent controller which shows its capabilities of increasing
the overall vehicle energy efficiency and therefore minimizing
total energy consumption. The proposed strategy consists of an
advanced supervisory controller at the highest level (third) which
corresponds to a fuzzy system deciding the most appropriate
operating mode of the system. In the second level, an intelligent
optimal control strategy is developed based on neuro-fuzzy
logic. Then, in the first level, there are local fuzzy controllers
to regulate vehicle subsystems set points to reach the best
operational performance. The advantage of the proposed strategy
could be summarized as follows: (i) it can be implemented
online; (ii) reduces total energy consumption compared with
several traditional methods. The proposed strategy validations
are performed using a mix of automotive TruckMaker and
MATLAB/Simulink developed software on several (standard or
not) driving cycles.

Index Terms—Hybrid Vehicle; Power Management Strategy;
Hierarchical Control Architecture; Adaptive and Optimal Neuro-
Fuzzy Controller.

NOMENCLATURE

• IHHCS: Intelligent Hierarchical and Hybrid Controller
Strategy.

• ISSMC: Intelligent Supervisory Switching Mode Con-
troller.

• IPDOC: Intelligent Power Distribution and Optimization
Controller.

• LFPIDC: Local Fuzzy Tuning Proportional-Integral-
Derivative Controllers.

• ICE, HM, HP and EM: Internal Combustion Engine,
Hydraulic Motor, Hydraulic Pump and Electric Motor.

• SOC: State Of Charge.
• ANN: Artificial Neural Network.
• LAA: Learning Adaptive Algorithm.
• PCVE: Produced and Consumed Vehicle.
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• FMC: Fuzzy Management Controller.
• ωICE : Rotational speed of the ICE.
• DHM , DHP , ηmHM

, ηmHP
, ηvHM

and ηvHP
: Displace-

ment, mechanical efficiency and volumetric efficiency of
the HM and the HP, respectively.

• Ftr, Frr, Fad, Fg and Fbrake: Traction force, rolling re-
sistance, aerodynamic force, gravity force and mechanical
brake force, respectively.

• M , Meq and a: bus weight, equivalent mass of rotating
parts and bus acceleration, respectively.

• ig , ηpt, Jrot and r: Gear ratio, powertrain efficiency, total
inertia of the rotating components in the transmission and
radius of the wheel, respectively.

• ∆Ωki , ζk: Correction value for Ωki and learning rate at
instant k.

• ykj and ŷkj : jth calculated and desired outputs.
• N : Number of training iterations.
• T kactual: Total actual wheel torque.
• ηopt and ηhev: Optimal and the actual efficiency of the

hybrid vehicle, respectively.
• Tpt: Output powertrain torque from the gearbox.
• µrr, FN , g, θ, v: Rolling resistance coefficient, normal

force, gravity acceleration, slope angle, bus speed, respec-
tively.

• ρ, A, Cd, vwind : Air density, the frontal area of the bus,
drag coefficient and wind speed, respectively.

• Tbrake: Brake torque provided by the bus mechanical
brake system.

• TICE , THM , TEM : ICE, HM, EM torque, respectively.
• PICE , PHM , PEM : ICE, HM and EM consumed power,

respectively.
• TICE,SP , TEM,SP : ICE and EM torque set point, respec-

tively.
• ṁfuel: Fuel flow rate of the ICE.
• QLHV : Lower heating value of a used fuel.
• ωEM , Tdemand: EM current speed and torque demand,

respectively.
• σICE,j1 and σEM,i1, σICE,j2 and σEM,i2: Mean and the

standard deviation of the Gaussian Membership Functions
(GMF) of the output variable for the ICE and the EM.
mICE,j and mEM,i: Inferred weights of the jth and ith

output membership function for the ICE and the EM.

I. INTRODUCTION

THE sustainable development of the automotive industry
is faced to a dual challenges: energy exhaustion and envi-

ronment pollution. There has been an urgent need to effectively
improve energy efficiency and reduce energy consumption.
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The hybrid electric vehicles (HEV) promise a relevant solution
with regard to the objectives of reducing the fuel consumption,
as well as the decrease of the exhaust gazes emission [1] due
to efficiency of the conversion and density limits of the low
power of electric motors and batteries [2]. The presence of
additional power sources in the HEV introduces additional
degrees of freedom in controlling the drivetrain, since at each
time the driver power request can be delivered by either one
of the on-board energy sources or their combination. The
additional degrees of freedom can be leveraged to reduce
fuel consumption and pollutant emissions and also to optimize
other possible costs function such as battery life [3]. Vehicle
fuel consumption is not only related to the performance of
the vehicle itself but also it is closely related to energy power
management for a given velocity profile [4]-[20] and driver
behavior optimization [21]-[24]. A correlative research study
confirmed that Power Management Optimization (PMO) on
HEV can reduce fuel consumption [4]-[20], and it is also
conducive to reducing emissions. Thus, PMO proves to be an
effective measure to achieve reduction of fuel consumption,
which is one of the important focuses for automobile energy
savings.
The authors in [4] has investigated the use of dynamic pro-
gramming to formulate global optimum numerically for reduc-
ing fuel consumption under the assumption of full knowledge
of the future driving conditions. Unfortunately, the obtained
results through dynamic programming cannot be implemented
directly due to its high computational demands. To remedy
this problem, approximated dynamic programming [5] and
stochastic dynamic programming [6] had been suggested
as possible solutions. Analytical optimization methods, on
the other hand, use a mathematical problem formulation to
find an explicit solution that makes the obtained solution
faster than a purely numerical methods. Within this category,
Pontryagin’s minimum principle based Energy Management
Strategy (EMS) is introduced as an optimal control solution
[7]. This approach can only generate an optimal solution
if implemented offline since in this case the future driving
conditions are supposed to be known in prior. For online
implementation, authors in [8], [9] have proposed a generic
framework of online EMS for HEVs is proposed, where an
Estimation Distribution Algorithm (EDA) is used for on-line
(i.e., real-time) optimization of the power-split strategy. It
includes several control strategies for managing battery State-
Of-Charge (SOC). Rule-based energy management control
strategies have been widely used in practical HEV energy
management systems due to the fact that the algorithms are
easy to implement in real time. Rule-based EMS for HEV
are proposed in [10]-[12] in order to split the power demand
between the engine and the battery. In [13],[14] authors use
a rule-based controller based on StateFlow (SF) toolbox and
they proposed a proper supervisory environment for a complex
structure of control. The problem of this method is that it
needs highly engineering experience, extensive experimental
data, etc. to create these rules. In addition, it gives limited
benefits for fuel economy. To overcome this problem, a fuzzy
inference system is added to rule-based strategy in [15],
[16]. The advantages of fuzzy system are: simple enough to

be implemented in real time applications, use of linguistic
variables and ease to model nonlinearity and uncertainty but
as main drawback fuzzy system alone is not adaptive to large
modification of the system modelling. This problem can be
solved by using the Genetic Algorithms (GA) [17] to optimize
the membership functions of the fuzzy controller for several
problems while using appropriate fitness function. Random
convergence of solutions is the major disadvantage of GA.
In addition, the optimization algorithm is generally highly
time consuming, therefore, many of the problem statements
do not prefer GA for optimizing their respective function.
To overcome this problem and to reduce fuel consumption,
Artificial Neural Network (ANN) is introduced in [18]-[20].
ANN are good learning but are generally considered as black
boxes.
One of the main objectives of this paper is the development
and experimental verification of such control framework to
minimize the energy consumption based on the merging of two
paradigms (ANN and fuzzy system) to inserts their advantages
and avoids their disadvantages. In order to study and develop
an efficient and reliable EMS forHydraulic-Electric Hybrid
Vehicle (HHEV), a precise vehicle modelling is desirable.
The studied vehicle is a hybrid bus, based on a series-
parallel power-split hybrid architecture. This hybrid bus is
called BUSINOVA and is developed by SAFRA Company
(cf. Figures 1 and 2). BUSINOVA is composed of Electric
Motor (EM), Internal Combustion Engine (ICE), Hydraulic
Motor (HM), and battery as the propulsion powertrain system
of the vehicle. The EM and HM motors are both directly
connected to the transmission and can ensure simultaneously
or independently the traction of the bus. On the other hand,
the ICE is coupled to a Hydraulic Pump (HP) for driving
the HM. This gives a big number of working modes for the
bus which increase the combinations of optimizing its energy
management.
The contributions of this work are twofold: The primary
objective is to investigate and to propose a reliable model
of the studied HHEV, corresponding to the BUSINOVA bus
based on a mix of IPG automotive TruckMaker and MAT-
LAB/Simulink software (cf. section II and section IV). This
software has been chosen because it allows reliable and dy-
namic simulation of the overall bus and its different embedded
and interconnected sub-systems (such us: EM, HM, ICE,
HP and battery). The second main contribution corresponds
to the proposition of an overall Intelligent Hierarchical and
Hybrid Controller Strategy (IHHCS), (cf. section III), in order
to enhance the bus energy efficiency, leading therefore to
minimize the total energy consumption (summation of electric
energy and fuel energy). The overall proposed control and
EMS is compared with alternative frameworks existing in
the literature based on Optimal Fuzzy Logic Control (OFLC)
[16] and SF [13] in order to demonstrate the advantages
of the proposed methodology (cf. section IV). The results
of this paper support that the proposed strategy is capable
of: (i) being applied to various types of hybrid vehicles;
(ii) reducing total energy consumption compared with several
traditional methods; (iii) increasing global vehicle efficiency;
(iv) being implemented in real-time; (v) reducing the number
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of rules needed in fuzzy control; (vi) keeping SOC within the
range which promotes battery longevity. Therefore, this paper,
will provide both a novel model and novel approach for an
advanced energy management system of hybrid vehicles.
The paper is organized as follows. The overall HHEV’s
description and modeling is given in section II. In section III,
the proposed intelligent hierarchical hybrid controller structure
is developed. Section IV. is dedicated to explain a power
management strategy based on StateFlow, which corresponds
to one of the comparative methods used in this paper. Simu-
lation results and comparative analysis using IPG automotive
TruckMaker simulator are presented in section V. Finally, the
conclusions and future prospects are presented in section VI.

II. MODELING OF THE HYBRID BUS

The aim of this section is to model the studied system,
i.e., BUSINOVA hybrid bus, developed by SAFRA Company
(cf. Figure 1). It is emphasized also in this section the use of
TruckMaker/Matlab software in order to have precise simula-
tions. This software will allow us to illustrate the efficiency
of the proposed IHHCS (cf. section V). The studied hybrid
bus is composed of an EM, a HM, a ICE and battery as the
propulsion powertrain system of the vehicle.

Fig. 1. BUSINOVA hybrid bus.

A. Hybrid bus powertrain architecture

The model of the studied hybrid bus is based on a series-
parallel power-split hybrid architecture [25]. A simple block
diagram of the power flows in the bus is shown in Figure
2. The EM and HM are both directly connected to the

Fig. 2. Block diagram of the powertrain power flows. (ICE: Internal Com-
bustion Engine, HP: Hydraulic Pump, HM: Hydraulic Motor, EM: Electric
Motor, PICE : Consumed fuel power, PHM : Hydraulic motor power and
PEM : Consumed electrical power.)

transmission and can ensure simultaneously or independently

the traction of the bus. On the other hand, the ICE is coupled
to a HP for driving the HM, and therefore allowing the ICE
load shifting.

The rotational speeds of the HM and the EM are imposed
by the wheels speed in proportion to the reduction ratios of
HM and EM respectively. Moreover, the rotational speed ωHM
and the torque THM are expressed as follows: ωHM (TICE , DHM ) =

DHP .ηvHM
.ωICE

DHM .ηvHP

THM (TICE , DHM ) =
DHM .ηmHM

.TICE

DHP .ηmHP

(1)

where ωICE , TICE are respectively rotational speed and
torque of the ICE, and DHM , DHP , ηmHM

, ηmHP
, ηvHM

,
ηvHP

are respectively displacement, mechanical efficiency and
volumetric efficiency of the HM and the HP. The specification
parameters of the ICE, HM, HP and the traction EM used in
BUSINOVA are given respectively in the Tables V and VI (cf.
Appendix).
The BUSINOVA can operate according to the modes described
below:

• the propulsion is fully supplied by the EM (mode 1),
• the bus is actuated by the HM via the ICE (mode 2),
• the mode 3 implies the hybrid operation of the EM and

the HM via ICE,
• the recharge of the electric battery via ICE (mode 4),
• the regenerative braking (mode 5) - the part of the kinetic

energy during braking phase is recuperated to charge the
electric battery.

B. Dynamical model
This part is dedicated to the dynamical equations describing

the bus. The parameters used for the vehicle modeling is
presented in the Table VII in the appendix. The purpose of
the dynamical model is to have a realistic global behavior of
the bus in order to validate the proposed energy management
technique. To describe it in a generic manner, assume that the
bus is moving up the slope of θ degree (cf. Figure 3). The
origin of the coordinates is situated in the Center of Mass
(CoM). It is supposed that CoM of the bus is in its geometric
center. Projecting the vectors of the forces to x-axis (the bus is
moving along x-axis in the positive direction, with the velocity
v and acceleration ax = a), the following expressions of the
forces acting on the bus is obtained (cf. Figure 3):

Ftr − Frr − Fad − Fg − Fbrake = (M +Meq)a (2)

where Ftr traction force, Frr rolling resistance, Fad aerody-
namic force, Fg gravity force, Fbrake mechanical brake force,
M bus weight, Meq equivalent mass of rotating parts, a bus
acceleration. In this modeling it is assumed that all the masses
M (which include curb mass of the bus and passengers’
mass) are homogeneously distributed in order to consider that
the CoM is in the geometric center of the bus. To produce
a bus acceleration, it is necessary to take into account the
moments of inertia of the rotating components (e.g., rotor
of the EM, crankshaft of the ICE, driving axle, etc.). It is
done by introducing the equivalent mass Meq of the rotating
components:

Meq =
igηptJrot

r2
(3)
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where ig gear ratio, ηpt powertrain efficiency, Jrot total inertia
of the rotating components in the transmission, and r the wheel
radius [26].

The traction force Ftr is linked to the torque produced by
the powertrain Tpt via gear ratio ig , powertrain efficiency ηpt.
Expanding the dynamical equation (2), the following relation
is obtained:

a =
dv

dt
=

1

M +Meq
H (4)

with

H =
igηptTpt

r
− µrrFNsign(v)− 1

2
ρACd(v + vwind)

2

−Mg sin(θ)− Tbrake
r

(5)

where Tpt is the output powertrain torque from the gearbox,
µrr is the rolling resistance coefficient, FN = Mgcos(θ) is the
normal force, g is the gravity acceleration, θ is the slope angle,
v is the bus speed, ρ is the air density, A is the frontal area of
the bus, Cd is the drag coefficient, vwind is the wind speed,
Tbrake is the brake torque provided by the bus mechanical
brake system.

Fig. 3. Forces acting on the bus.

C. HHEV Design using TruckMaker

TruckMaker1 software (cf. Figure 4) is a highly reliable and
precise software for modelling and controlling heavy vehicles
(it is used by important international companies throughout
the world). This software can be used even independently or
with MATLAB/Simulink and its key features are given in the
following: The software is plug and play, allows for model data
customization and for power train configuration customization.
In addition, it has an easy Graphical User Interface (GUI)
to modify the parameters of the studied HHEV. TruckMaker
software can be used for:

• Fuel consumption evaluation, fuel economy and vehicle
drivability.

• Simulation of a single component and simulation of a
component in the loop.

• Software in the loop, and hardware in the loop.
To perform a simulation in TruckMaker, it is just like on

a real test drive, it is needed to define a vehicle, the tires,
the powertrain, a driver, a test track and a maneuver that the
driver should complete. In TruckMaker, there is a model for

1Developed by IPG Automotive German Company.

each of these requirements. The combination of these models
forms a global TestRun. Hence, the model of the studied bus
is implemented by using TruckMaker software (cf. Figure
4). Since all the BUSINOVA model parameters are defined
on the TruckMaker GUI. BUSINOVA simulink subsystem
blocks are then generated automatically by TruckMaker. If any
modification is needed, the user can change the parameters
from the GUI or add new blocks on MATLAB/Simulink
to define new modeling functions that are not included in
TruckMaker software.

Fig. 4. TruckMaker vehicle.

As far as possible, each component of the TruckMaker
simulator should correspond to an actual component on the
studied BUSINOVA bus. Tables VII, V and VI in the appendix
indicate the specification of the studied hybrid vehicle.

III. PROPOSED INTELLIGENT HIERARCHICAL
HYBRID CONTROLLER STRATEGY (IHHCS)

After the definition of the BUSINOVA bus model, the aim
of this section is to make the focus on the proposed IHHCS,
embedded in the bus in order to minimize its total energy
consumption while maximizing the global vehicle efficiency.
Therefore, in this section, an IHHCS structure is proposed
which is capable of meeting various objectives including opti-
mized power flow management, maintaining high operational
efficiency of the ICE, and balancing EM and battery charge
to maximize the global vehicle efficiency. The first block of
the proposed IHHCS (cf. Figure 5) corresponds to a driver
command interpreter which converts the driver inputs from the
brake and accelerator pedals to the required torque to apply at
the wheels level in order to track the desired velocity profile
as accurately as possible.
This proposed strategy consists of three control levels as
shown in Figure 5. An Intelligent Supervisory Switching Mode
Controller (ISSMC) based on fuzzy logic is developed in the
third level (the highest level) that is capable of managing all
of the possible bus operation modes (cf. section III.A). At
the second level (cf. section III.B), an advanced Intelligent
Power Distribution and Optimization Controller (IPDOC) has
been developed for power splitting which decides the opti-
mal combination of power sharing between different energy
sources to maximize the overall vehicle efficiency. In section
III.C, a Local Fuzzy tuning Proportional-Integral-Derivative
Controllers (LFPIDC) is used to regulate the set points of EM
and HM via ICE, to give a good tracking control performance.
In this paper, we will focus more on level 3 and level 2 (cf.
respectively, section III.A and III.B).
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Fig. 5. Developed IHHCS for BUSINOVA bus distributed generation system.
In this figure the following acronym are used: PCVE is the Produced and
Consumed Vehicle, Tdemand is the torque demand, TICE,SP and TEM,SP

are the ICE and EM torque set point, respectively.

A. Intelligent Supervisory Switching Mode Controller (Level
3: ISSMC)

As mentioned in section II.A, there are five modes of
operation. In order to improve the HHEV operation, the
proposed ISSMC based on fuzzy logic has to decide which
operating mode (or combination of them) is appropriate. Many
parameters (such as the value of SOC for the battery, vehicle
power required, vehicle speed and maximum power supplied
by the battery, etc.) must be considered to choose the most
efficient operation mode to manage and optimize the power
flow. Based on the available output torque, the pedal position
is converted into torque demand (Tdemand). If Tdemand<0, the
driver intends to decelerate the vehicle therefore regenerative
braking mode is chosen. But, if Tdemand>0, the requiring
torque is split between EM or/and HM via ICE. In the
proposed algorithm, modes 1, 2, 3, and 4 are selected by
fuzzy logic and mode 5 is selected by Boolean logic. Fuzzy
logic is well suited for selecting between modes 1, 2, 3 and 4,
since the range or boundary is vague and not clearly specified
due to the actual state of the vehicle (masse, velocity, etc.)
for these modes. The ISSMC input variables are Reference
Speed (RS) profile, Tdemand and SOC, and its output variable
is the operation mode (Mode). We use Gaussian Membership
Functions (GMF) in the premise parts (input variables) and
consequent parts (output variables) as given in Figure 6 and
Center of Gravity (COG) defuzzication to calculate the output
fuzzy signal, the advantage of this method is its simplicity in
reducing the complexity of the calculations [27]. The actual
physical values for the input variables are defined as the
following: reference speed is from 0 Km/h to 75.65 Km/h,
Tdemand is from 0 Nm to 1170 Nm, and SOC is from 0%
to 100%. The selected Bus operating modes are based on
the fuzzy rules (cf. Table I),as example, when the battery

SOC is high, speed are high speed condition and the torque
demand is less than the EM torque, therefore EM can drive
the vehicle, etc., where RN is the rule number. The fuzzy rule
is constructed from 27 individual fuzzy rules.
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Fig. 6. Input and output variables membership functions.

TABLE I
SOME EXAMPLES OF FUZZY RULES USED BY THE ISSMC.

RN Tdemand SOC RS Mode
1 Low High High Mode1
2 High Low Low Mode2
. . . . .
. . . . .
. . . . .

27 Low Low Low Mode4

B. Intelligent Power Distribution and Optimization Controller
(Level 2: IPDOC)

An integrated neuro-fuzzy system is proposed in second
level which has the advantages of both fuzzy systems and
ANN. The block diagram of the proposed level 2 is presented
in Figure 7. This level consists of two blocks: Learning
Adaptive Algorithm (LAA) block and Fuzzy Management
Controller (FMC) block. Once level 3 has selected the appro-
priate mode, this level of control manages and optimizes the
power distribution between the two different sources based on
new proposed formula to update the proposed fuzzy controller.
Therefore, the mode of operation is considered as one input
for this level beside other six input variables: Produced and
Consumed Vehicle (PCVE) and actual vehicle torque for the
LAA block and the same three inputs of the third level
(reference speed profile, Tdemand, SOC) for the FMC block,
while there are two output variables are ICE and EM torque
set points TICE,SP and TEM,SP , respectively. The FMC block
splits the required torque between EM or/and HM via ICE
(cf. section III.B.1) based on the fuzzy logic and generates
the TICE,SP and TEM,SP to the first level (LFPIDC). The
proposed LAA block based on a neural network is used
to update weights of the FCM output variables. The total
actual and the optimal efficiency for the vehicle are calculated
based on the elementary efficiencies of the EM, battery, ICE,
HP, HM and transmission. The main contribution of this
level are: (i) find the best combination of power distribution
between different energy sources and maximize hybrid vehicle
overall efficiency; (ii) tune the optimal parameters of the fuzzy
controller based on ANN optimization; (iii) and generates the
set point for the first level.
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Fig. 7. Block diagram of the proposed level 2.

1) Proposed Fuzzy Management Controller (FMC): The
design of the FMC must achieve two objectives. One is to
make the ICE and EM operate at suitable working points
to increase the overall system efficiency, and the second
is to make the control strategy becomes more concise and
convenient. FMC block is proposed based on the fuzzy logic
control to manage the power distribution between the two
different sources and generates the TICE,SP and TEM,SP to
the LFPIDC level. It consists of two outputs (TICE,SP and
TEM,SP ) (cf. Figure 7). The actual physical varaibles for the
ouput variables as the following, EM torque range from -600
Nm to 660 Nm and ICE torque range from 0 Nm to 343 Nm.
Some of the fuzzy rules are shown in Table II. The proposed
FMC inferred output for the ICE torque (TICE) and EM torque
(TEM ) based on COG are given by,

TICE =

∑c
j=1mICE,jσICE,j1σICE,j2∑c

j=1mICE,jσICE,j2
(6)

TEM =

∑c
i=1mEM,iσEM,i1σEM,i2∑c

i=1mEM,iσEM,i2
(7)

where, σICE,j1 and σEM,i1, σICE,j2 and σEM,i2 are the mean
and the standard deviation of the GMF of the output variable
for the ICE and the EM, respectively, which are two adjustable
parameters; mICE,j and mEM,i are the inferred weights of
the jth and ith output membership function for the ICE and
the EM, respectively; c is the number of fuzzy rules. The
mean and the standard deviation of the output variable are
optimized based on the proposed LAA which is presented in
the following section.

2) Proposed Learning Adaptive Algorithm (LAA): LAA
is developed based on neural networks to optimize the mean
and the standard deviation of the FMC output variable. In
this method, error between the desired output of the system
and the output data of real system is used to correct (update)
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Fig. 8. Initial GMF of the FMC output variables.

TABLE II
SOME EXAMPLES OF THE USED FUZZY RULES OF FMC.

RN Mode Tdemand SOC RS TEM,SP TICE,SP

1 Mode 1 High High High High Low
2 Mode 2 High Low Low Low High
. . . . . . .
. . . . . . .
. . . . . . .

27 Mode 3 High High High Medium Medium

the GMF weights for proposed FMC. Consequently, this
algorithm adapts parameters of FCM strategy based on the
below Theorem to minimize the objective function (20) (cf.
Figure 11) and to maximize the total vehicle efficiency. The
total actual efficiency for the vehicle are calculated based on
the elementary efficiencies of the EM, battery, ICE, HP, HM
and transmission.

Theorem: FMC parameters which are given in (6) and (7)
are optimized by the proposed LAA, if the mean and the
standard deviation of the GMF satisfy the following:

σk+1
ij1 = σkij1 − ζk

t+s∑
k=t+1

N∑
j=1

(
ekedµtd,ij + ekeffµeff,ij

)
(8)

σk+1
ij2 = σkij2 − ζk

t+s∑
k=t+1

N∑
j=1

(
ekedµtd,ij + ekeffµeff,ij

)
(9)

where, σij1 is σICE,j1 and σEM,i1 for (6) and (7), and σij2
is σICE,j2 and σEM,i2 for (6) and (7) which are the mean
and the standard deviation of the GMF for ICE and the EM,
respectively, etd and eeff are the error functions for the torque
demand and the vehicle total efficiency, µtd,ij and µeff,ij are
the weights of the ith rule for the jth training pattern, ζk

is the learning rate, k the iteration index, t is the trailing
edge of the moving time-window over which the prediction
error is minimized and s is the window of learning. For off-
line learning we select t = 1 and s = P ; where P is the
size of the training set, which is usually much larger than the
largest multi-step-ahead prediction horizon needed in practice
[28]. The prediction accuracy deteriorates very quickly with
increasing P . For on-line learning, s can be selected to be
sufficiently large so as to include the largest possible prediction
horizon [28].



2379-8858 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TIV.2017.2788185, IEEE
Transactions on Intelligent Vehicles

7

Proof. The proof can be given as the following. Assume the
objective function given by,

Ek =
1

2

N∑
j=1

(ykj − ŷkj )2 (10)

where ykj and ŷkj are the jth calculated output and desired
output, respectively, N is the number of training iterations.
From equations (6) and (7), the calculated output yj is a
function of consequent parts (Ωi) given by,

yj =
c∑
i=1

µijΩi with:
c∑
i=1

µij = 1 1 ≤ j ≤ N (11)

where Ωi is the consequent part of the ith rule. For a moving
window of s points in a system with N outputs to be predicted,
the following objective function is optimized:

ξ(t) ≡
t+s∑

k=t+1

Et,k =
1

2

t+s∑
k=t+1

N∑
j=1

(y
k/t
j − ŷkj )2 (12)

where the error Et,k depends both on the location of the
window and the prediction point within the window. The
objective of the proposed learning strategy is to minimize
the objective function (10). To simplify the expressions, the
variable t is omitted from the equations. Using a gradient-
descent method, the ANN weights are updated using the partial
differential equation.

∆Ωki ≡ −ζk
t+s∑

k=t+1

(
∂Ek

∂Ωki

)
(13)

where ∆Ωki is the correction value for Ωki at instant k, ζk is
the learning rate at instant k given by,

ζk+1 =

∥∥∥∥ ∆Ωk

∆Ωk−1

∥∥∥∥ ζk (14)

where ‖•‖ denotes the norm value. In view of the prediction
error defined by (12) and from (10), the error gradient with
respect to the weights can be obtained by using the Chain
rule2 [29]. Chain rule is used to calculate the derivative of the
composition of two or more functions. From (10), (11) and
(12), we obtain,

∆Ωi = −ζk
t+s∑

k=t+1

N∑
j=1

(ykj − ŷkj )µkij (15)

As mentioned in [30], µij could be computed to minimize the
objective function expressed by (10) as follows,

µkij ≡

 c∑
g=1

(
ekij
ekgj

)2
−1

1 ≤ i ≤ c , 1 ≤ j ≤ N (16)

where eij (egj) is the error between the jth desired output
of the system and the output data of real system of the ith

2The chain rule is a formula for computing the derivative of the composition
of two or more functions.

rule with the jth(gth) input data. For the studied HHEV, we
consider the error functions defined as the following,

ektd = T kdemand − T kactual ; ekeff = ηopt − ηhev (17)

where T kdemand is the total torque demand required to drive
the vehicle, T kactual is the total actual wheel torque, ηopt
and ηhev are the optimal and the actual efficiency of the
hybrid vehicle, respectively. A sub-objective of the overall
optimization algorithm consists to maximize the efficiency of
the hybrid vehicle (18).

ηhev =

∫ dc
0
Phev∫ dc

0
PICE +

∫ dc
0
PEM

(18)

where dc is the driving cycle interval length, Phev is the
power supplied into the vehicle, PICE is the power consumed
by the ICE, PEM is the power consumed by the EM and
supplied by the battery, with PEM = IbatVbat, where Ibat
and Vbat are the battery current and voltage, respectively. The
fuel consumption rate ṁfuel is transformed into equivalent
consumed engine power PICE :

PICE = ṁfuelQLHV (19)

where QLHV is lower heating value of the used fuel. For diesel
QLHV = 43MJ/kg. From equations (10) and (17), the total
objective function is given by,

Ek =
1

2

N∑
j=1

[(ektd)
2 + (ekeff )2] (20)

Based on (13), the mean and the standard deviation of the
GMF for proposed FMC with proposed LAA are given by,

σk+1
ij1 = σkij1 + ∆σkij1, σk+1

ij2 = σkij2 + ∆σkij2 (21)

where σkij1 and σkij2 are the mean and the standard deviation
of the function which are adjustable parameters of the jth

membership function of the ith fuzzy rule. Based on equations
(15), (17) and (20), the mean and the standard deviation of the
GMF which are given in (21) can be rewritten as (8) and (9)
which are given in the Theorem.
From the derived theorem, it can be seen that a novel hybrid
algorithm was proposed to create a neural fuzzy system, which
takes the effect of the vehicle dynamics in consideration, since
the learning strategy is based on the global vehicle efficiency
and the required torque.

C. Local Fuzzy Tuning Proportional-Integral-Derivative Con-
trollers (Level 1: LFPIDC)

In this level, fuzzy logic tuning PID is proposed based
on [31], [32] for the EM and HM via ICE (cf. Figure 7).
Since this paper focuses more on Level 3 and 2, only few
details of this level are given. This level corresponds to
an adaptive PID controller, based on fuzzy logic inference
system to compute its parameters. It corresponds thus to
a combination of the traditional PID controller and fuzzy
control algorithm. The initial PID controller parameters are
calculated using Ziegler-Nichols step response method, then
these parameters are optimized by fuzzy tuning. Compared to
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the works done on fuzzy PID controllers given in [31], [32],
the proposed LFPIDC gives better performance for special
processes (nonlinear, highly uncertain and unsteady behavior).

IV. POWER MANAGEMENT STRATEGY BASED ON
STATEFLOW

As we explained in section II.A, there are five possible
operating modes. The SF strategy that is used is a rule-based
controller [10]-[12], [13], [14]. The energy management will
only use reference speed profile, Tdemand, SOC to calculate
the appropriate operating mode. According to Tdemand, the
operation of this controller is divided into five modes. We
use the charge sustaining policy which assure that the (SOC)
stay within preset lower (SOCmin) and upper (SOCmax)
bounds. This policy is chosen for efficient battery operation
as well as to prevent battery depletion or damage power split
strategy. The various operating modes are selected based on
the following set of rules:

• If battery SOC is greater than the lower limit (SOCmin)
and Tdemand can be provided by battery then the vehicle
is only operated in Electric mode.

• If the battery SOC is above the lower limit (SOCmin) and
the use of ICE alone cannot be in efficient operating point,
then ICE and EM both provide the requested power in a
way that the ICE is as near as possible of best operating
point imposed by the transmission and the EM supply the
rest of torque demand.

• If the Tdemand requested by the driver is negative, and
the battery SOC is maximal then the mechanical braking
is engaged. The controller state machine is implemented
using Simulink/ StateFlow (Level 3: cf. Figure 9).

In the second level, Power Management Strategy (PMS) based
on rule based and mathematical formula for power splitting
between EM and HM via ICE is designed. This level is
activated according to the decision made in level 3. Finally in
the first level (LFPIDC) corresponds to the same than what
is given in subsection III.C. Some examples of switching
conditions between the modes are given in the Table III, NA
means that TEM or TICE is not depend on Tdemand.

Some examples of switching conditions between the modes
are given in the Table III, NA means that TEM or TICE is
not depend on Tdemand.

TABLE III
SOME EXAMPLES OF THE SF SWITCHING CONDITIONS.

Tdemand SOC (100%) TEM TICE Mode
>0 >60% >Tdemand NA Mode 1
>0 <30% NA NA Mode 2
>0 >30% NA <Tdemand Mode 3
>0 <60% NA >Tdemand Mode 4
<0 <90% NA NA Mode 5

V. SIMULATION RESULTS AND DISCUSSION

To verify the BUSINOVA bus model and the control
performance of the proposed overall control and optimal
energy management strategy, simulation results under different

Fig. 9. Power management strategy based on the SF for BUSINOVA bus.

driving cycles and variable road slopes, with a simulator based
on IPG automotive TruckMaker are used. In order to develop
and to evaluate the performance of the proposed overall energy
management strategy (called IHHCS (cf. section III)), a realis-
tic model of the studied Hydraulic-Electric Hybrid bus is used
(cf. Section II) and implemented using TruckMaker/MATLAB
simulator (cf. Section II.C). The actual physical HHEV pa-
rameters are listed in Tables VII to VI (cf. Appendix). In
this section, three simulations and discussions to demonstrate
the effectiveness of the proposed IHHCS are presented. The
first simulation compares the control surface of the proposed
strategy and SF based strategy. In the second simulation,
the effectiveness of the proposed overall control architecture
is highlighted and a comparison with different well known
strategy (e.g., OFLC (Optimal Fuzzy Logic Control) and also
SF (StateFlow)) are discussed. The third simulation validates
the proposed strategy for different standard driving cycles to
illustrate the reliability of the proposed control architecture.

A. Simulation 1: Control surface of the proposed Fuzzy Strat-
egy and its Comparison with StateFlow Approach

In this section, simple PMS based on the rule-based con-
troller SF [10]-[12], [13], [14] is briefly described in order to
give some comparisons with the proposed strategy based on
fuzzy logic inference system. In addition, the resultant EM
torque for both SF and the proposed strategy are highlighted
under different conditions. The resultant EM torque for the
proposed strategy and SF strategy under different bus nav-
igation conditions are given in Figure 10 (left) and (right),
respectively, which shows that the proposed strategy is more
smoothing than the SF strategy. Therefore, according to the
control surface and the knowledge of the expertise, the rules
of the fuzzy controller can be modified to give more smoothing
for the proposed strategy. Figure 10 shows the control surfaces
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of the torque set point for the EM as a percentage w.r.t. the
global torque set point (Tdemand) and SOC using proposed
fuzzy strategy and SF.

Fig. 10. Control surfaces of EM torque set point with global torque set point
(Tdemand) and SOC using proposed strategy (left) and Stateflow (right).

In addition, as the learning rate (14) is updated online,
the ANN weights (13) will also be updated after every
data input to minimize the error function in order to ensure
quick convergence speed toward the sub-optimal controller
parameters. The experiment results show that the proposed
strategy has performed a good prediction results as well as
running time (cf. average objective function error in Figure
11). From Figure 11, it can be seen that, there are two jumps
at instant 40 sec and 95 sec, these are due to abrupt change
of the acceleration (given by the velocity set point, cf. Figure
12). Nevertheless, it is to be noted that the average error will
always decrease until reaching (at 150 sec) the global optimal
controller parameters of Level 2. In the following simulation
2, the overall performance for the proposed strategy related to
the energy consumption are given and compared to different
other strategies in the literature.
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Fig. 11. Average objective function error for the proposed strategy.

B. Simulation 2: Proposed Overall Control Architecture for
Complete HHEV Simulation

To prove the effectiveness of the proposed overall control
architecture for optimal energy management, IHHCS is com-
pared with OFLC [16] and SF [13] methods already existing
in the literature. In order to implement and measuring the
performance of these strategies system, BUSINOVA bus model
has been selected. The vehicle model parameters used for
the simulation are given in the appendix. These strategies are
implemented in IPG automotive TruckMaker vehicle simula-
tion software. For simulation runs, the initial state of charge,

driving cycle, all other parameters and constrains conditions
are the same. The desired and the actual bus speed profile is
shown in Figure 12. Figure 13 shows the driver torque demand
and the required wheel torque for the proposed IHHCS, OFLC
and SF strategies.
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[Km/h] for the proposed IHHCS strategy w.r.t. OFLC and SF.
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From Figure 12 it is seen that the vehicle output speed of
the vehicle is similar to the set point of the drive cycle for
the proposed IHHCS, OFLC and SF strategies. In addition,
from Figure 13, it can be seen that, all the strategies give
the total torque demand, but each strategy generates different
optimal set point for EM and HM via ICE to satisfy this target,
so it consume different electrical energy and fuel energy.
To eliminate the sudden change of the torque and obtain
smoother dynamic we need to use PID controller, since the
PID controller implemented in the inner control loop smoothes
out any sudden changes in the fuzzy control output signals,
which is particularly important at low speeds [33]. Figure 14
depicts the progress of SOC (from initial to final state) using
IHHCS strategy, OFLC and SF.
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From Figure 14, it is seen that the SOC values begin at
0.9500 for IHHCS, OFLC and SF strategy. SOC is finished at
0.9510 using the proposed IHHCS strategy. The net fluctuation
is 0.0010. With OFLC, the SOC value finish at 0.9528. The
net fluctuation is 0.0028. With SF, the SOC value finish at
0.95015. Therefore, we can see that during the driving cycle,
the SOC level is kept higher when using IHHCS strategy,
instead of using OFLC and SF. Energy consumed by the
ICE [KJ] for the IHHCS, OFLC and SF are given in Figure 15.
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Total consumed energy by the vehicle for these controllers
is given in Figure 16 which shows that the IHHCS strategy
is better w.r.t. to OFLC and SF controllers for reducing total
consumed energy (fuel consumption and battery discharge),
which increases the efficiency of the vehicle.
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To have a more specific comparative analysis, the variation
of SOC, and the total energy consumption for a typical driving
cycle are shown in Table IV, where FEC is the Fuel Energy
Consumption by ICE [KJ].

TABLE IV
COMPARISON OF RESULTS FOR PROPOSED IHHCS, OFLC AND SF

STRATEGIES.

Control Strategy FEC by ICE [KJ] SOC [100%]
SF 3835 95∼95.015

OFLC 3800 95∼95.028
IHHCS 3732 95∼95.100

From Table IV, with the initial SOC, driving cycle, all other
parameters and constrains conditions are the same, it is seen
that the proposed IHHCS kept SOC higher than OFLC and
SF and reduce the fuel consumption up to 1.79% and 3%
compared to OFLC and SF methods, respectively.

From Figures 12 to 16, simulation results indicate that the pro-
posed online energy management control method can achieve
increased energy efficiency. From the simulation results, it can
be seen that the proposed IHHCS and OFLC based energy
management method can achieve better energy efficiency com-
pared with SF strategy. In addition, we observe that, all power
sources (battery and the ICE) can be operated within their
desired working ranges while satisfying the load demand. It is
emphasized in Table IV that the proposed strategy significantly
reduce the fuel consumption by the ICE [KJ], which shows the
effectiveness of the strategy applied on the BUSINOVA bus.
Three standard cycle conditions are selected in simulation 3
for testing vehicle performance.

C. Simulation 3: Proposed Strategy Validation over Different
Driving Cycles

Indeed, to validate better the proposed strategy, several
Standard Driving Cycles (SDC), commonly used in the
literature have been used. Among them for instance the
Federal Test Procedure (FTP-75) (cf. Figure 21) or the
modified version of FTP-75 which is known as Highway Fuel
Economy Test (HWFET) (cf. Figure 25). These two SDC are
used for representing the American Driving Cycle and the
European standard New European Driving Cycles (NEDC)
(cf. Figure 17), which are widely used in the literature for
simulationas well as for actual experiments.
Figures 17, 21, 25, 18, 22 and 26 depict the trajectories of
bus velocity, and the torque under the NEDC, FTP-75 and
HWFET drive cycles, respectively. It is seen that the output
speed and torque of the vehicle is similar to the reference
speed profile and the torque demand of these drive cycles.
The main goal of the proposed strategy is to minimize the
total energy consumption of the vehicle over the complete
drive cycle and increase the efficiency of the vehicle. Figures
19, 23 and 27 show the total energy consumption by the
vehicle during the NEDC, FTP-75 and HWFET complete
cycles, respectively.
Average objective function error for the three driving cycles
NEDC, FTP-75 and HWFET are given in Figures 20, 24
and 28, respectively. It is found that the average error will
always decrease which show the effectiveness of the proposed
strategy. In addition, the proposed strategy can be applied to
the power assignment for HHEVs even if the future driving
cycle is unknown.
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over NEDC cycle.
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[Km/h] for proposed strategy over FTP-75 cycle.
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Fig. 22. Comparisons between reference torque and actual vehicle torque
[Nm] for proposed strategy over FTP-75 cycle.
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Fig. 23. Total energy consumed by the vehicle [KJ] for proposed strategy
over FTP-75 cycle.
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Fig. 24. Average objective function error for the proposed strategy over FTP-
75 cycle.
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[Km/h] for proposed strategy over HWFET cycle.
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[Nm] for proposed strategy over HWFET cycle.
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Fig. 28. Average objective function error for the proposed strategy over
HWFET cycle.

From simulation 3 results, it is seen that the proposed
strategy can satisfy the speed and power requirements for
three standard cycle conditions and gives a good tracking
performance even if the future driving cycle is unknown.
In summary, it can be seen that the BUSINOVA bus follows the
trajectory of the reference inputs. Thus, if driving cycles are
changed, the control effect of the proposed strategy remains
as accurate as the results under NEDC, FTP-75 and HWFET
cycles. Compared to OFLC and SF, the proposed strategy
significantly reduce the fuel consumption, increase the energy
efficiency and covers a wide range of driving conditions.

VI. CONCLUSIONS AND PROSPECTS

This paper discusses two important aspects of the control
and optimization of hydraulic-electric hybrid vehicles power
management. The first part of this work is dedicated to the de-
velopment and validation of a dynamic BUSINOVA bus model
using IPG automotive TruckMaker. This structure includes two
energy sources: a battery and an ICE. The obtained results
given in section V confirm the fidelity of the model under a
variety of operating conditions. The second part of this paper
focuses on minimizing total energy consumption, increasing
energy efficiency, and thereby increasing total distance tra-
versed between refueling. The value of the proposed methods
are demonstrated under various driving schedules through
comparison with other popular methods in the literature. The
proposed architecture, composed by three control levels, has
been implemented using real time power management strategy,
named intelligent hierarchical and hybrid control strategy
(IHHCS). This strategy consists of an advanced supervisory
controller at the highest level (third) which corresponds to a
fuzzy system deciding the most appropriate operating mode
(or combination of modes) which would be the most efficient
for the HHEV. In the second level, an Intelligent Power
Distribution and Optimization Controller (IPDOC), based on
neuro-fuzzy logic, has been developed for power splitting.
This level takes into account the selected modes generated
at the third level, and decides the optimal combination of
power sharing between different energy sources to minimize
the total energy and to maximize the overall HHEV efficiency.
Finally, in the first level, a Local Fuzzy Tuning Proportional-
Integral-Derivative Controllers (LFPIDC) has been used to
track the set points of EM and HM via the ICE generated
at the second level, in order to reach peak performance and
acceptable operation indexes while taken into consideration

the dynamic behavior of EM, ICE and HM.
The obtained results confirm that, using the proposed ap-
proach: (i) the proposed strategy effectively splits the torque
between EM and HM via ICE; (ii) mean and the standard
deviation of the membership function of the fuzzy logic con-
troller are optimized based on neural-network; (iii) total energy
consumption is reduced compared with several traditional
methods; (iv) global vehicle efficiency is improved as well as
the total average distance traversable between refueling; (v)
the strategy can be easily implemented in real time because
it does not depend on prior information about future driving
conditions; (vi) rate of charge of the battery can be limited to
minimize aging effects.
Hence, this paper provides a novel model and approach for an
advanced power management system of hybrid vehicles. It is
planned in the near future to implement the overall proposed
control strategy on the actual BUSINOVA platform.

VII. APPENDIX

In this appendix, we will present the parameters of the
BUSINOVA bus used in IPG automotive TruckMaker. Where
MIRP is Moment of Inertia of the Rotating Parts, RRC is the
Rolling Resistance Coefficient, ADC is Air Drag Coefficient
DLHV is the Diesel lower heat value and GAC is Gravity
Aceleration.

TABLE V
CHARACTERISTICS OF THE HYDRAULIC MOTOR AND PUMP.

Specification Value
Hydraulic motor Hydraulic pump

Displacement [cm3] Variable - [22 - 110] Fixed - 40
Max torque [Nm] 175 @100 bar 63.5@100 bar
Max speed [rpm] 3400 6100

TABLE VI
PARAMETERS OF THE PERMANENT MAGNET SYNCHRONOUS MOTOR.

Specification Value Specification Value
Nominal speed [RPM] 3240 Nominal current [A] 137
Nominal torque [Nm] 305 Maximum torque [Nm] 660
Nominal power [kW] 103 Maximum speed [RPM] 4000

TABLE VII
PARAMETERS OF THE DYNAMIC MODEL OF BUSINOVA BUS AND ICE.

Parameter Value Parameter Value
Bus mass [kg] 13490 MIRP [kgm2] 0.911

RRC 0.009 Wheel radius [m] 0.484
GAC [m/s2] 9.81 Gear ratio 12.2

Frontal area [m2] 6.7 Transmission efficiency 0.93
ADC 0.61 Air density [kg/m3] 1.25

Max speed, [rpm] 2300 Max speed, [rpm] 2300
Max torque, [Nm] 343,8 Max output power [kW] 70.6

Displacement [mm3] 82.2 Stroke [m] 0.107
C1 [kPa] 101.5 DLHV [kJ/kg] 42946

Combustion efficiency 0.75 Diesel density [g/cm3] 0.8355
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