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Abstract— This paper describes the design of an overall
Multi-Controller Architecture (MCA) for safe automated driv-
ing, under uncertainties in highway environment. This MCA
combines the decision-making process, the path planning and
the control algorithms. In order to ensure the safety and
smoothness of the vehicle navigation, a decision-making strategy
for handling lane change maneuvers is proposed by means
of a robust Two-Sequential Level Bayesian Decision Network
(TSLDN). The latter is utilized for the driving situation as-
sessment, the decision-making and for safety verification of the
current performed maneuver. Moreover, from actual navigation
risk assessment standpoint, a dual-safety criterion combining
an Extended Time-To-Collision (ETTC) and a novel Dynamic
Predicted Inter-Distance Profile (DPIDP) is developed. The
DPIDP is evaluated on-line as the actual distance between
vehicles during lane changes maneuvers over an observed
control horizon. Thanks to this proposed algorithm, a safety
retrospection over the current maneuver risk could be carried
out. In this way, the overall MCA described in this paper
allows the best probabilistic decision to achieve the vehicle
navigation task in hazardous situations while maximizing its
safety. Several simulation results show the good performance
of the overall proposed control architecture, mainly in terms
of efficiency to handle probabilistic decision-making even for
very risky/complex scenarios.

I. INTRODUCTION

One of the major research topics in the domain of au-
tonomous navigation, is enabling vehicles to cope with any
environment traffic condition while making the appropriate
decision and guaranteeing the safety of maneuvers even in
presence of uncertainty. According to [1], the core of an
automotive safety system can be partitioned as a situation
assessment method which defines the current driving state
of safety, and a decision making strategy that makes the
control decision. In this paper, both of these parts are going
to be developed. The driving situation assessment on one
hand, consists of what the drivers are normally taught to:
assessing their surrounding environment by evaluating the
collision risk, make predictions of road user trajectories and
plan driving maneuvers considering these predictions. On the
other hand, the decision making strategy that represents the
choice of the most suitable action.

The focus will be in this paper, on one of the main
challenging maneuvers for autonomous vehicles in highway
environment, corresponding to the situation assessment and
decision making during vehicle lane change. Researchers
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have pursued multiple ways to improve situation assess-
ment strategies, during vehicle lane change, through threat
measure indicators such as Time to Collision (TTC) [2],
[3]. However, a unique TTC warning threshold is usually
used to assess the collision risk which does not satisfy the
different levels of risk during the lane change process. In
this paper, to conform to the driver perception of safety and
given the environment dynamic conditions, we distinguish
multiple warning levels [4], [5] that improves the decision
making process.

Concerning the decision making process, numerous meth-
ods have been used. In [6], authors describe a fully automated
driving algorithm that uses a dynamic drivable area as a
safety constraint for the optimal trajectory in which the
vehicle must stay to ensure its safety. An energy function
based on potential field is used to assess the risk and drive
decision maneuvers. However, this method does not take
uncertainties into consideration. Also, various probabilistic
framework have been studied for decision making. Schubert
[7] uses a Bayesian network for lane change decision making
and a deceleration to safety time (DST) as a threat measure to
assess the danger of the navigation lanes status. However, the
common definition of the DST is restricted for a specific path
to detect longitudinal collision. In this work, an Extended
TTC (ETTC) measure is utilized, that addresses the problem
from a planar perspective [2].

In this paper, it is proposed a Bayesian approach to
decision-making, through a Two-Sequential Level Decision
network (TSLDN), utilized for the situation assessment, the
decision making and the safety verification of the maneuver.
Decisions on when and how to assist the vehicle are made
in the first-layer, by estimating the collision risk for different
types of collision scenarios, while taking measurement uncer-
tainty into account. In addition, a safety verification through
the second layer is made by estimating a specific Dynamic
Predicted Inter-Distance Profile (DPIDP), between vehicles
during lane change maneuvers over a control horizon. In
contrast with the work developed in [8], among the main
differences is the introduction of dynamic aspects of updating
and reconfiguration of the DPIDP due to the use of predicted
trajectories of road users over a time prediction horizon (cf.
Section III-B). The DPIDP is utilized in order to estimate
the current performed maneuver risks to compensate for
possible failure of the perception module or other devices,
and therefore propose the best decision to achieve the vehicle
navigation task while maximizing its safety.

The rest of the paper is organized as follow. Section II
is dedicated to highlight the overall multi-controller archi-
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Fig. 1. Proposed multi-controller architecture for highway navigation

tecture. Section III formalizes the decision-making where is
detailed the used TSLDN, the dual-safety criterion for the
risk assessment and the decision making strategy for deriving
most suitable maneuver decision. The simulation results will
be presented in Section IV and this paper concludes with
perspectives on future research.

II. PROPOSED MULTI-CONTROLLER ARCHITECTURE FOR
HIGHWAY NAVIGATION

The general control architecture proposed in this paper is
shown in Fig. 1. It is a Multi-Controller Architecture (MCA)
that aims at decomposing the overall complex task into a
multitude of sub-tasks to achieve [8], [9].

Once the future vehicle trajectory is obtained while using
block 1 (cf. Fig. 1 and Section III-B), an appropriate proba-
bilistic decision making strategy for autonomous navigation
is applied (cf. block 2 in Fig. 1, detailed in Section III) to take
into account several aspects, such as: perception uncertainties
and maximizing passengers’ safety. The proposed probabilis-
tic decision making strategy computes, first, the most suitable
decision maneuver according to the environment knowledge
based on perception sensors through a threat measure (cf.
Section III-A.1), and while taking into account the presence
of uncertainty to achieve desired action. This paper make
the focus mainly on the risk assessment during lane change
maneuvers, where it is proposed to activate a safety analysis
in order to estimate the maneuver risks through a Dynamic
Predicted Inter-Distance Profile (DPIDP) between vehicles
(cf. Section III-B). Afterwards, based on the optimal decision
(output of block 2), deterministic criteria regarding the
precedent task achievement is checked (for example, the
lane change maneuver task is considered achieved if the
vehicle reaches the centerline of the left lane and remain
steady around this line), and a maneuver safety verification
(cf. block 3 in Fig. 1) is performed in this block. The
result of block 3 enables the switch between different ADAS
(Advanced Driver Assistance System) modules (block 4)
to activate the corresponding controller. During autonomous
navigation in a highway, vehicles perform either an Adaptive

Cruise Control (ACC) behavior for driving with desired
velocity while maintaining a safety distance with vehicles
ahead, or Lane Keeping Assist (LKA) based on a Frenet
reference frame or switches to an Auto-Lane Change (ALC)
behavior based on Elliptic Limit-Cycles (ELC) trajectories
(developed in [10] for obstacle avoidance in mobile robot
navigation) while guaranteeing the smoothness and the safety
of the obtained trajectory (block 4). The selected ADAS
generates homogeneous target set-points defined by a pose
(xT ,yT ,θT ) and a velocity vT [9], [11]. The details of the
aforementioned ADAS and the adaptation of the previously
developed ELC to the highway case is out of the scope of
this paper and has been detailed in our previous work [8].
These set-points are fed to the nonlinear control law (block 5
represented in Fig. 1) developed in [12] that aims to drive the
vehicle toward specific (static or dynamic) target set-points.
This asymptotic control law is based on a Lyapunov function
design to ensure the convergence of the vehicle toward the
assigned set-points.

In the next section, the decision block, constituting the
main contribution of this paper, is detailed.

III. PROPOSED MULTI-LEVEL DECISION NETWORK FOR A
LANE-CHANGE ASSISTANCE

It is proposed in this paper, a TSLDN (cf. Fig. 2). The
purpose of the overall network is to conform to the driver
perception of safety and judgment for dangerous situations
and infer the driver’s action. The first level represents the
Maneuver Decision Level (MDL) where the choice of action
regarding rather is suitable to activate even abort the Auto
Lane Change Maneuver. The probabilistic decision process
takes into account the safety, based on the current situation
assessment, using an extended Time To Collision formulation
(ETTC) [2] (cf. SectionIII-A.1) while taking measurement
uncertainty into account. The second level is a Safety Ver-
ification Decision Level (SVDL) where a safety checking
regarding the action chosen in the MDL is performed based
on a definition of a new measure, the Dynamic Predicted
Inter-Distance Profile (DPIDP) (cf. Section III-B.1), used to
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Fig. 2. Two-Sequential Level Decision Network (TSLDN) for lane change maneuvers (Netica software)

detect and compensate for possible failure of the perceptive
module. A most suitable decision is then obtained by maxi-
mizing a utility function over the possible alternatives of the
action nodes (cf. Section III-C), given the available evidence
[13]. The Probabilistic model summarizing the two levels is
described in Fig. 2 and constitutes a novel manner to manage
decision making maneuvers.

A. Maneuver decision level: Based on Extended TTC

In the proposed MDL, the lanes are numbered from right
to left by i ∈ N+, with i = 1 denoting the rightmost lane.
In this paper, for the sake of convenience, a two lane
configuration to present this model is considered. However,
this architecture is generic and can be extended to an N-
Lane configuration. To derive decision strategy for the most
suitable maneuver to be achieved, the situation assessment
variables represented by a set of chance nodes UC has
to be defined. UC represents the set of random variables
(X1,X2, ....,Xn) and their conditional probabilistic dependen-
cies [13]. The chance nodes defining the structure of the
MDL are then:

1) Observation on the level of danger of the lanes Li: Li
is an observation node that describes the level of danger of
the lanes. It is based on an extended formulation of the TTC
(ETTC), that addresses the problem from planar perspective
[2] where vehicles are considered in a two-dimensional
plane. A quartic equation (given in [2]) describes this mea-
sure and takes as parameters the state of each vehicle defined
by their position, velocity and acceleration component on X
and Y directions with one unknown the ETTC. The ETTC
is computed at each time step for each vehicle pair that are
close enough. The most dangerous vehicle in each of the lane
characterized by a small ETTC is used as input to the MDL.
In the MDL, the conditional probability distribution related
to the ETTC measure under the condition of the status of the
lanes P(Li|SLi) is approximated in this paper, by a normal
distribution. This is justified by the fact that the ETTC is an

estimation based on uncertain sensor observations (position,
velocity, acceleration) and only a probability distribution is
known with confidence. This is known as soft evidence.
Thus, the likelihood function which takes into account the
ETTC will be:

P(Li|SLi) = N (µt , σ
2
t ) =

1
σt
√

2π
exp
− 1

2
(ET TCLi

−µt )2

σ2
t (1)

with i ∈ (1,2), µt is the mean and σt is the standard
deviation of the ETTC. In this work, based on a five-level [4]
discretization of the likelihood function P(Li|SLi) and given
uncertain evidence (cf. Fig. 2), equation (2) is obtained: P(Li|SLi = Dangerous) = N (µt = ET TCdan, σ2

t )
P(Li|SLi = Occupied) = N (µt = ET TCocc, σ2

t )
P(Li|SLi = Free) = N (µt = ET TC f ree, σ2

t )
(2)

The value ET TCstate represents the fixed threshold for
determining the occupancy of the lane for each of the states
[Dangerous,Occupied,Free].

2) Status of Lane SLi: These nodes describe the status
of occupancy of the lane. The possible states are Dangerous
(vehicles present on the lane at a critical state from the ego
vehicle), Occupied (denoting the uncertainty and the risk
outside of the critical zone) and Free (no vehicles present
on the lane until a certain distance).

3) Observation on the vehicle’s position OPosVeh:
OPosVeh is the uncertain observation denoting the estimated
position of the vehicle in the lane. The candidate lane is
selected by checking the closest distance of the vehicle to
the center-line of one of the lane based on the definition of
a Frenet reference frame [8].

4) Vehicle position estimation PosVeh: This parameter
denotes the vehicle position in the lane. The possible states
are Lane1 and Lane2.

5) Utility SafetyUS: Utility nodes UV defines the cost
related to the decision [14]. In the MDL (cf. Fig. 2), Usa f ety
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is the utility related to the safety of each of the maneuver
alternatives given the observations.

B. Safety verification level: Dynamic Predicted Inter-
Distance Profile (DPIDP) during lane change maneuver

1) Actual Inter-Distance Profile AIDP: We propose in
this paper, a safety criterion-based on a DPIDP between
vehicles in order to estimate the maneuvers risks during the
lane change maneuver (from the head portion to the tail
portion). Indeed, the assumption considered is that if nothing
changes in the initial configuration, the predicted evolution
of the inter-distance between vehicles during lane change
is not supposed to change. The DPIDP is proposed while
following the definition of a complete lane change maneuver
(based on Worrall and Bullen definition [15] that divides the
lane change maneuver (overtaking) in three portions: head
portion, lane change part, tail portion) (cf. Fig. 3).

To better understand the problematic, let us present in
this section a predefined static predicted inter-distance profile
(SPIDP) built off-line (cf. Fig.4(a)) during normal conditions
(proposed in [8]) compared to the Dynamic Predicted Inter-
Distance Profile (DPIDP) used in this paper. A small mod-
ification in the initial configuration scenario was injected at
t = 1.5s to better see the reconfiguration ability of the DPIDP.
The SPIDP was constructed while using the same convention
regarding the definition of a lane change maneuver. A Lower
Safety Boundary (LSB) are allowed, that is fixed while
taking into account the vehicles’ uncertainties over their
mutual position and relative velocities. The risk of collision
increases when the progress of the Actual Inter-Distance
Profile (AIDP) between the vehicles is not conform to the
expected one.

The DPIDP criterion on the other hand (cf. Fig. 4(b)) is
built following these steps:

a) Prediction of the vehicles pose during the lane
change: In order to better explain this criterion, let us give
in summary the elements describing the elliptic limit-cycles
trajectories (ELC) used in the ALC controller. These ELC
trajectories are defined while using elliptic periodic orbit,
corresponding to an ellipse of influence (cf. Fig. 3). These
periodic orbits if well-dimensioned (far enough from any
obstacle) and accurately followed guarantee the avoidance

Predicted vehicle trajectory

Predicted obstacle-
vehicle 1 trajectoryEllipse of 

Influence
Ego Vehicle

Obstacle-Vehicle 1

Dynamic target

Head Portion Lane Change part Tail Portion

Fig. 3. Car Simulator: Predicted Trajectories (See. Simulation Video
https://youtu.be/EX6Z5geqonc)

(a) Static Predicted Inter-Distance Profile (SPIDP)

(b) Dynamic Predicted Inter-Distance Profile (DPIDP)

Fig. 4. Simulation results during normal conditions

of any given obstacle. They are defined according to a set
of differential equations:

ẋs = rys +µxs(1− xs/a2
lc− y2

s/b2
lc + cxsys)

ẏs = −rxs +µys(1− xs/a2
lc− y2

s/b2
lc + cxsys) (3)

with (xs,ys) corresponds to the position of the vehicle
according to the center of the ellipse; alc and blc characterize
respectively the major and minor elliptic semi-axes [8];
r =±1 according to the avoidance direction (clockwise (+)
or counter-clockwise (-) respectively); µ ∈ R+ a positive
constant value which allows us to modulate the convergence
of the ELC; c gives the orientation of the ellipse w.r.t.
global reference frame (x−axis). Prediction of the vehicles
pose during the lane change is performed according to the
solution of this differential equation. The latter gives the
pre-planned trajectory, where the ego vehicle’s position is
considered at each sample time as initial configuration of
these ELC trajectories. The obstacle vehicle is avoided if the
vehicle accurately tracks these trajectories. This definition is
particularly important in this work as the set of points con-
stituting the pre-planned ELC trajectory will be considered
as a prediction for future vehicle motion. An overall lane
change trajectory is then constructed using the limit-cycle
set-points representing the head and the lane change part.
The intersection point between the pre-planned elliptic limit-
cycle trajectory and the left lane corresponds to the starting
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of the tail portion. A tail portion of a temporal distance
equivalent to ttail = 1s is then calculated and combined to
constitute the overall lane change trajectory (cf. Fig 3). An
estimation of the time prediction horizon Tpred [s] is then
calculated by estimating the required time for the vehicle,
given a constant velocity to travel the curvilinear distance of
the overall trajectory. The prediction of the obstacle-vehicle
1 pose during the lane change for the time prediction horizon
Tpred is also performed.

b) Dynamic Predicted Inter-distance profile and Pre-
dicted Lower Safety Boundary: We define a control horizon
NCh (number of control moves) to compute the DPIDP as
a function of the maximum time prediction horizon of the
overall lane change trajectory. The control time horizon is
chosen to be: Tch[s] = max(Tpred)/M, where M is a constant
value chosen accordingly based on a simple estimation of the
vehicle capacities for emergency braking. For each control
horizon NCh, the DPIDP will be calculated as the Euclidean
distance between the ego vehicle and the obstacle vehicle d
for all the consecutive points of the predicted trajectories (cf.
4(b)). The objective of these calculations is to evaluate the
DPIDP for the next NCh time intervals:

DPIDP(n) = [d(n),d(n+1), ....,d(n+NCh−1)] (4)

A Predicted Lower Safety Boundary (PLSB) is built for each
control horizon Nch as the projection of the DPIDP with an
offset shift denoting a possible authorized uncertainties over
the vehicles mutual position and velocities. The actual inter-
distance profile (AIDP) is then computed on-line, while the
simulation is running, as the Euclidean distance between the
real positions of the ego vehicle and the obstacle-vehicle 1.

c) Definition of the errors and the AIDP node: The
errors that will allow us to detect any anomaly in the
evolution of the distance are the following:
• Err1 is the difference between the SPIDP and the AIDP

calculated for each control horizon: Err1(n) = ÂIDP−
DPIDP(n)

• Err2 is the difference between the AIDP and the LSB
computed during the control horizon: Err2(n)= ÂIDP−
PLSB(n)

The output of this algorithm is fed into the SVDL. The node
AIDP (cf. Fig. 2) has then three states:
• Outside Margin Input AIDP is strongly different then

the DPIDP (Err1 < 0) and its values goes beyond the
limit boundary defined by the PLSB (Err2 < 0).

• Inside Margin means that the input AIDP is different
than the DPIDP (Err1 < 0), however its values are
within the limit boundaries (Err2 > 0).

• No Change means that the input AIDP is equivalent to
the DPIDP (Err1 ' 0)

A comparison between SPIDP and DPIDP during normal
conditions is detailed in Section IV-A.

The purpose of a two sequential level Bayesian network
instead of one is the ability to reason over a control obser-
vation horizon (cf. Fig. 4(b)). As the MDL is very dynamic
and the choice of action is instantaneously taken which

means if a false alarm is triggered due to wrong information
from the perceptive module, the MDL will immediately
abort the previous decision and compute another one. The
SVDL, on the other hand allows us in this case to verify the
coherence of the maneuver with the predicted pre-planned
trajectory over a control observation horizon (Tch). This gives
the system an average time (Tch) to confirm or not the
dangerousness (given by Err1 and Err2) of the situation
assessment and act accordingly. This way of reasoning under
uncertainty will eventually help ADAS reduce false alarm
and improve performance. The AIDP node constitutes the
uncertainty observation evidence input to node SM.

2) Status of maneuver (SM): This node describes the sta-
tus of the engaged maneuver based on the observations that
the node AIDP provides. The possible states are Dangerous
(for the case where the brought evidence on the AIDP is
outside the margin), Cautious (denoting the uncertainty and
the risk when the AIDP is getting dangerously close to the
lower border which means either that the initial suppositions
to perform the overtaking are not anymore confirmed or it is
an indication that the perception module or other devices give
wrong information on the system which in all case is a way
to have risk assessment on the current achieved maneuver),
Safe (the observation AIDP does not endanger the situation).

3) Utility Check UCh: UCheck is the cost related to the
safety verification during the lane change maneuver based
on the DPIDP.

C. Decision Making strategy for Lane-change maneuver

In this network, two decision nodes are represented (cf.
Fig. 2). For Decision 1 (D1) four possible maneuvers are de-
fined: Lane Change Left (LCL) and Lane Chane Right (LCR)
for lane change maneuvers, Keep Lane ACC (KLACC) for
staying in the considered lane while keeping a safety distance
equivalent to a 2s temporal distance with the obstacle-
vehicle in front and Maintain Velocity (MV) which is an
alternative decision allowing to stay in the current lane while
maintaining previous velocity configuration. This state allows
us to ensure passenger safety, smooth navigation and energy
saving. Decision 2 (D2) in the other side, has 3 states: Abort
Maneuver (AM) that allow us to react to a dangerous change
in the DPIDP by canceling the previous decision effect on
the system and reconfiguring by computing the appropriate
next maneuver decision, Warning Be Careful (WBC) state
represents an additional safety level, where a warning is
issued if any change in the DPIDP is detected and Maneuver
is Safe (MS) state that consolidate the previous decision
made in node D1 regarding to safety.

The ultimate goal of the proposed cascade decision making
strategy is deriving the most suitable decisions given the
available evidence. In a MLDN [13], the set of decision
nodes UD have a temporal order which means the action
chosen for decision Dn−1 is part of the information avail-
able at decision Dn. Following the temporal order for this
network (SL1, SL2, PosVeh,SM) ≺ D1 ≺ D2, the EU for
the first decision is D1 given past observations UObs =
(SL1,SL2,PosVeh,SM) is:
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EU(D1) = ∑
UObs

P(UObs)

(
US(SL1,SL2,PosVeh,D1)

+UCh(SM,D2)

)
= ∑

UObs

P(SL1)P(SL2)P(Posveh)P(SM)(
US(SL1,SL2,PosVeh,D1)+UCh(SM,D2)

) (5)

The EU for the second decision D2 given D1 = d1 is:

EU(D2|D1) = ∑
UObs

P(UObsv | D1,D2)

(
UCh(SM,D2)+

US(SL1,SL2,PosVeh,D1)

)
= ∑

UObsv

P(SL1)P(SL2)P(PosVeh)

P(SM)

(
US(SL1,SL2,PosVeh,D1)+UCh(SM,D2)

) (6)

According to the Maximum Expected Utility (MEU) prin-
ciple, the most suitable decisions are then:

ρ1 = max
D1

EU(D1) (7)

ρ2 = max
D2

EU(D2|D1 = d1) (8)

IV. SIMULATION RESULTS

The simulation results based on experiments performed on
a Matlab/Simulink car simulator that has been implemented
to test the developed algorithms (cf. Fig. 3).

To demonstrate the robustness of the proposed approach
for handling safe highway maneuvers, let us show in what
follows simulation examples. The first set of simulations (cf.
Section IV-A) will show the use of the proposed DPIDP with
various velocity configurations in comparison to a predefined
static distance profile built off-line.

The second set of simulations (cf. Section IV-B) will show,
on one hand the adaptability of the proposed DPIDP to
changes in the initial configuration and its high capability
for anomaly detection and on the other hand the capacity
of the overall MCA to reconfigure and react by taking the
appropriate decision in emergency situations.

For the different simulations shown below (See. Simula-
tion video https://youtu.be/EX6Z5geqonc), it is considered
what follows:
• The scene is constituted of three vehicles in a two-

lane highway: two vehicles on the right lane including
the ego-vehicle (named respectively ego-vehicle and
obstacle-vehicle 1) and one vehicle on the left lane
obstacle-vehicle 2.

• Vegomax = 23m/s, VO1 = 12m/s, VO2 = 25m/s

A. Comparison between SPIDP and DPIDP during normal
conditions and for different initial configurations

This configuration have been used also to build off-line
the static DPIDP (cf. Fig.5(a)). In this simulation, a change
in Obstacle 1 velocity is explicitly injected in the system at
t = 1.5s from VO1 = 12m/s to VO1 = 10m/s during the lane
change maneuver. In what follows a comparison between
SPIDP and DPIDP is lead to assess the safety of the lane
change maneuver regarding to the configuration changes. We

(a) SPIDP (b) DPIDP

Fig. 5. Comparison between SPIDP and DPIDP during normal conditions

can notice that in the SPIDP in Fig. 5(a) that the AIDP goes
outside the lowest safety margin, which results in the MLDN
advising to Abort Maneuver even though this is clearly a
false alarm. In comparison to the SPIDP, we can notice that
the DIPD reconfigure within an average control horizon time
Tch and adapt to the changes as the safety is ensured (Fig.
5(b)). The actual inter-distance didn’t cross the lower safety
boundary. A warning is issued by the Second Level Decision
to alert the system that a change has occurred and as the
MDL recomputes at each time step the appropriate decision,
it allows the system to continue the maneuver.

B. Dynamic predicted inter-distance profile during emer-
gency situations

In the second set of simulations, we have selected a
dangerous scenario that can occur in a highway environment
where the obstacle-vehicle 1 in front suddenly brake, while
the ego vehicle is trying to perform a lane change maneuver.
The DPIDP detects this change and in this situation, two
scenarios can occur whether the status of lane 2 (left) is free
or not (cf. subsection IV-B.1 and IV-B.2 respectively).

1) Scenario 1: The status of the left lane is free: In
this case, we can see in Fig. 6(a) that the AIDPT crosses
the lower boundary generating consequently the SVDL to
advise aborting the maneuver (cf. Fig. 7(b)). The system
thus reconfigure and adapt to the change (ellipse of influence
adapts) and the MDL recomputes the appropriate decision
based on the ETTC input for the new configuration, and
in this case allows the system to continue the lane change
maneuver (cf. Fig. 7(a)) as the left lane is free.

2) Scenario 2: The status of the left lane is dangerous:
In this scenario, appears in the scene the obstacle-vehicle

(a) Scenario 1 (b) Scenario 2

Fig. 6. DPIDP during emergency situations
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(a) Decision 1: MDL (b) Decision 2: SVDL

Fig. 7. Scenario 1: TSLDN during emergency situations

(a) Decision 1: MDL (b) Decision 2: SVDL

Fig. 8. Scenario 2: TSLDN during emergency situations

3 coming from behind in the left. At the beginning of the
simulation this obstacle is far enough ET TC > ET TCocc
to allow the lane change maneuver to start (cf. Fig. 8(a))
but suddenly accelerates which makes the current situation
dangerous and the lane change maneuver impossible. In this
case the appropriate decision is to abort the maneuver and
come back to the initial configuration (the right lane) while
waiting for the status of the left lane to be free again. After
an appropriate waiting ET TC < ET TCocc a second lane
change maneuver is attempted. In this phase the DPIDP is
re-computed for the new lane change maneuver for safety
verification purpose.

V. CONCLUSION

In this paper, an overall multi-controller architecture
(MCA) for safe automated driving has been proposed. An
important module corresponding to a Two-Sequential Level
Decision network (TSLDN) has been proposed and it corre-
sponds to the main contribution of the paper. This module
is designed for highway lane change maneuvers under un-
certainties (which are due mainly to perceptive and/or other
vehicles intention/actions lack of precision). The TSLBN is
utilized for: the driving situation assessment, the decision-
making strategy and a safety verification of the current
performed maneuver. A dual-safety criterion combining an
Extended Time-To-Collision (ETTC) and a novel Dynamic
Predicted Inter-Distance Profile (DPIDP) is developed. The
DPIDP is evaluated on-line as the actual distance between
vehicles during lane changes maneuvers over an observed
Control Horizon. Thanks to this proposed dual-safety cri-
terion, the incurred risk of the host vehicle depending on
the traffic situation and surrounding vehicles-obstacles be-
haviors is always assessed in real time. This proposed overall
MCA topology is particularly useful as it allows a safety

retrospection over the current maneuver risks and propose
therefore the best decision to achieve the vehicle navigation
task while maximizing its safety. Several simulation results
show the good performance of the overall proposed control
architecture even in risky/complex scenarios. Future work
will be carried out to evaluate the overall proposed approach
in real-time experimentation, mainly in collaboration with
the R&D Department of Sherpa Engineering Company.
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