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Abstract: In urban zones, vehicles are often subject to multiple starts and stops, due mainly
to different traffic conditions which are highly energy consuming. This paper investigates the
problem of optimal energy management in a Plug-in Hybrid Electric Bus (PHEB) in urban
environment for the purpose of energy consumption minimization. Hereby an original control
architecture is proposed which comprises an Adaptive Cruise Control with Stop&Go (ACCwSG)
control system and stochastic energy management strategy. To this end, first, an ACCwSG
maneuvers has been developed with the aim of maintaining an inter-vehicular distance that
ensures safety, as well as providing passenger comfort by generating smooth velocity profiles.
Secondly, a Stochastic Model Predictive Control (SMPC) has been developed to optimize PHEB
power split. Power demand is addressed as a Markov Decision Process (MDP). To prove the
efficiency of the proposed strategy, it is compared with a deterministic rule based method. The
obtained results demonstrate the reduction of the energy consumption in average around 13%.
The present work is conducted on a dedicated high-fidelity dynamical model of the hybrid bus
that was developed on MATLAB/TruckMaker software.
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1. INTRODUCTION

Due to traffic congestion, traffic lights, a bus encounters
frequent Stop&Go situations in urban environment. It
results in increased fuel consumption, considerably, during
the starts. Hybrid powertrain architecture of the studied
bus makes profit of the deceleration phases, as a part of the
energy can be recuperated to recharge the electric battery.
From this point of view, the ACCwSG strategy brings
the undeniable benefit. The acceleration and deceleration
profiles optimization with an efficient energy management
strategy can help to reduce the fuel consumption and
respect the battery discharge rate.

Introduction of additional objectives to ACC, e.g., fuel
economy and driver desired response has been investigated
by some authors. Jonsson and Jansson (2004) proposed
a Dynamic Programming based offline control method.
It reduces the fuel consumption while allowing reliable
tracking error (preceding car speed tracking). Usually in
order to satisfy the fuel economy goal, one sacrifices the
acceleration performance and the tracking capability. If an
ACC system pursues good tracking capability only, it leads
to unnecessary acceleration and emergency braking, which
deteriorates the fuel economy of vehicle to some extent. A
velocity control system in order to save the fuel consump-
tion by involving traffic signal information was proposed
by Yu et al. (2015). Model predictive control scheme was
used in order to control the velocity predicting states of the

vehicle and traffic signal switching. The algorithm judges
whether a vehicle should accelerate or not when the vehi-
cle cannot pass the traffic lights during the green phase.
In the algorithm, the fuel economy was predicted using
traffic signal information. A vehicle speed and vehicle-
to-vehicle distance control algorithm for vehicle Stop&Go
cruise control based on linear quadratic optimal control
theory has been proposed in Yi et al. (2001). Kim (2012)
formulated the optimization problem to find the optimal
relative distance profile during a complete stop, and the
optimal velocity profile during a starting motion. Linear
quadratic optimal control theory has been used to develop
the vehicle speed and distance control algorithm. A desired
acceleration for the vehicle has been designed on the basis
of the vehicle speed and distance control algorithm. It
suggested that once leader car resumes the motion after a
full stop, the host car is not obliged to follow the leader car,
instead it can follow an optimal profile. The performance
of ACC system should meet the safety and car-following
requirements while providing slightly different level of
driving comfort and fuel consumption, depending on the
traffic situation and operating mode. Shakouri et al. (2015)
investigated the application of three control approaches in
ACC, the control structure was subdivided in two hierar-
chical loop, ACC with three different control strategies are
implemented in the inner loop that are based on different
approaches to simplify modeling of the vehicle dynamics.
Three different nonlinear model-based approaches for the
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inner-loop controllers are investigated for this system: the
conventional Proportional-Integral Gain Scheduling con-
troller (PI+GS) and two other strategies based on the
simplified modelling of the vehicle dynamics: Balance-
Based Adaptive Controller (B-BAC) and Nonlinear Model
Predictive Controller (NMPC).

Several energy management strategies have been suggested
to manage the distribution of power between two sources
Kamal et al. (2017) Ouddah et al. (2017) Abdrakhmanov
and Adouane (2017a). Hemi et al. (2015) proposed a real
time optimal control strategy based on Pontryagin’s Min-
imum Principle (PMP), combined with a Markov chain
approach for a fuel cell/supercapacitor electrical vehicle.
A Markov chain model is added as a separate block for
a prediction of required power. In recent years various
stochastic model based predictive control (SMPC) algo-
rithms have been proposed. A SMPC algorithm was de-
veloped by Ripaccioli et al. (2010) for power management,
with the goal of optimizing the power splits in hybrid
electric vehicle (HEV), while fulfilling bounds on the state
of charge (SOC) of the battery and on the power availabil-
ity. The power requested from the driver is represented
by a Markov model. Instead of optimizing over driving
cycle known a priori, the SMPC strategy optimizes over
a distribution of future requested power demand, given
the current one, at each sample time. Bichi et al. (2010)
developed an approach based on SMPC used for improving
the performance of powertrain control algorithms, by op-
timally controlling the complex system composed of driver
and vehicle. The vehicle was modelled as a deterministic
dynamical system, and the driver as a stochastic process,
whose dynamics is updated online. Stochastic model pre-
dictive control is applied to optimize expected performance
over a tree of scenarios, while enforcing constraints on
states, inputs, and outputs. From a computational view-
point, by assuming a linear system model they solve the
SMPC problem via standard quadratic programming.

In this paper, we present an original control architecture
that combines an Adaptive Cruise Control with Stop&Go
(ACCwSG) maneuvers and a stochastic energy manage-
ment strategy in order to control safely, precisely and
with minimal energy consumption of studied PHEB. The
proposed architecture uses an ACC controller supporting
stop and go function. The main feature of this controller
is to respect a desired vehicles inter-distance that ensures
safety and passengers’ comfort. Stochastic model predic-
tive control optimizes PHEB power split among the avail-
able hybrid actuators according to a power demand profile.
A Markov chain model has been proposed to predict future
power demand. This proposed architecture gives a smooth
speed profile while saving the fuel and the battery charge
by giving the optimal power split between electric and
hydraulic motors.

The rest of the paper is organized as follows. In section 2,
the studied bus powertrain and its dynamical model are
presented. Section 3, presents the detailed global control
architecture description. In section 4, several simulation
results are presented showing the efficiency of the proposed
control strategy. Finally, conclusions and some prospects
are given in the last section.

2. MODELING OF THE HYBRID BUS

The aim of this section is to illustrate the architecture
and the mathematical model of the studied system, i.e.,
BUSINOVA hybrid bus, developed by SAFRA company. 1

This bus is composed of an electric motor, a hydraulic
motor, an internal combustion engine and the battery as
the propulsion powertrain system of the vehicle.

2.1 Hybrid bus powertrain architecture

The model of the studied hybrid bus is based on a series-
parallel power-split hybrid architecture Bayindir et al.
(2011). A simple block diagram of the power flows in the
bus is shown in Fig. 1. The electric (EM) and hydraulic

Fig. 1. Block diagram of the powertrain power flows. (ICE:
internal combustion engine, HP: hydraulic pump,
HM: Hydraulic motor, EM: electric motor)

(HM) motors are both directly connected to the trans-
mission and can ensure simultaneously or independently
the traction of the bus. On the other hand, the internal
combustion engine (ICE) is coupled to a hydraulic pump
(HP) for driving the HM, and therefore allowing the ICE
load shifting.

The rotational speeds of the HM and the EM are imposed
by the wheels speed in proportion to the reduction ratios of
HM and EM respectively. Moreover, the rotational speed
ωHM and the torque THM are expressed as follows:{

ωHM (TICE , DHM ) =
DHP .ηvHM

.ωICE

DHM .ηvHP

THM (TICE , DHM ) =
DHM .ηmHM

.TICE

DHP .ηmHP

(1)

where ωICE , TICE are respectively rotational speed and
torque of the ICE, and DHM , DHP , ηmHM

, ηmHP
, ηvHM

,
ηvHP

are respectively displacement, mechanical efficiency
and volumetric efficiency of the HM and the HP.

2.2 Dynamical model

This part is dedicated to the dynamical equations describ-
ing the bus. The purpose of the dynamical model is to have
a realistic global behavior of the bus in order to validate
the proposed energy management techniques. To describe
it in a generic manner, assume that the bus is moving up
with a slope of θ degree (cf. Fig. 2). The origin of the
coordinates is situated in the Center of Mass (CoM). It is
supposed that CoM of the bus is in its geometric center.
The dynamical equation of the bus is given as follows:

�Ftr + �Frr + �Fad + �Fg + �Fbrake = (M +Meq)�a (2)

where �Ftr is the traction force, �Frr the rolling resistance,
�Fad the aerodynamic force, �Fg the gravity force, �Fbrake

1 http://www.businova.com
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the mechanical brake force, M the bus weight, Meq the
equivalent mass of rotating parts, �a the bus acceleration.
To produce the bus acceleration, it is necessary to take into

Fig. 2. Forces acting on the bus and ACCwSG scheme

account the moments of inertia of the rotating components
(e.g., rotor of the EM, crankshaft of the ICE, driving axle,
etc.). It is done by introducing the equivalent mass Meq of
the rotating components:

Meq =
igηptJrot

r2
(3)

where ig is the gear ratio, ηpt the powertrain efficiency,
Jrot the total inertia of the rotating components in the
transmission, and r the wheel radius Cheng et al. (2007).

3. PROPOSED ACCWSG USING STOCHASTIC MPC
ALGORITHM

3.1 Global Control Architecture

The proposed control architecture is presented in Fig. 3. It
is composed of two principle blocks: ACCwSG and SMPC.

Fig. 3. Proposed global control architecture

The ACCwSG block ensures a safe distance between
the bus and the ahead vehicle by generating smooth
reference speed profile. The reference distance is a safe
distance determined according to the current speed and
distance between the vehicles, taking into account the
acceleration/deceleration capabilities of the bus.

The SMPC block aims to generate the optimal power
split to increase the fuel economy by taking into account
uncertainties due to the bus weight, road slope, etc.
translated through the requested power.

A detailed description of the ACCwSG and the SMPC al-
gorithms are given in the sections 3.2 and 3.3, respectively.

3.2 Adaptive Cruise Control with Stop&Go algorithm

Block 1© in Fig. 3 corresponds to ACCwSG algorithm.
Adaptive Cruise Control with Stop&Go (ACCwSG) is
a mix of vehicle capability of maintaining a user-preset

speed (Cruise Control), capability of keeping a safe dis-
tance from a preceding vehicle (ACC) and capability to
perform maneuvers at low speeds (Stop&Go) (cf. Fig. 4)
Abdrakhmanov and Adouane (2017b).

ACCwSG parameters proposed in this paper are presented
in Fig. 2.

The aim of ACCwSG is to keep the inter-vehicular distance
dref while vehicles are moving. At the full stop of both
vehicles, the constant minimal safety distance dmin safety

must be respected.

In this paper, it is assumed that the current distance d
between the vehicles is known and obtained by the bus
sensors. In order to avoid collisions with the preceding car,
the bus must follow the reference speed vref which must
consider the following safety requirements. The reference
distance dref to maintain between the vehicles is defined
as follows:

dref = dmin safety + dv (4)

The distance dmin safety is minimal distance to maintain
at full stop of both vehicles. The distance dv is defined as
follows Zhang and Ioannou (2004):

dv = Thv + h∗v2 (5)

where Th = tdr + tsensor + tmotor a headway time which
expresses the delays due to driver reaction, sensor percep-
tion, motors dynamics, respectively, v = vfollower is the
current bus speed.

The term h∗ is calculated based mostly on the braking
capability of the bus and the leader vehicle:

h∗ =
1

2
(

1

almax

−
1

afmax

) (6)

with almax
maximal deceleration of the leader, afmax

maximal deceleration of the bus. To ensure the passengers
comfort and the safety, it is necessary that almax

< afmax

to take into account the extreme cases (e.g., preceding
vehicles with emergency stop).

The calculation of dref is based on the parameters given
in Table 1.

Table 1. Parameter values for dref calculation

Parameter Value

Driver reaction time tdr 0.4 s

Sensor perception delay tsensor 0.1 s

Motors delay tmotor 0.1 s

Bus max deceleration afmax -1.27 m/s2

Leader max deceleration almax -6.87 m/s2

The proposed ACCwSG system has the following switch-
ing logic (cf. Table 2):

• if d ≤ dref : Starting from d = dref , it is considered
that the vehicle is situated in the ACCwSG zone, and
corresponding vref is thus applied.

• if d > dref : Both vehicles are at the safe distance
from each other, so the bus becomes stable at the
cruise speed vcc.

Fig. 4. ACCwSG concept
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the mechanical brake force, M the bus weight, Meq the
equivalent mass of rotating parts, �a the bus acceleration.
To produce the bus acceleration, it is necessary to take into

Fig. 2. Forces acting on the bus and ACCwSG scheme
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r2
(3)
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Fig. 3. Proposed global control architecture
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The term h∗ is calculated based mostly on the braking
capability of the bus and the leader vehicle:

h∗ =
1

2
(

1

almax

−
1

afmax

) (6)
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Motors delay tmotor 0.1 s

Bus max deceleration afmax -1.27 m/s2

Leader max deceleration almax -6.87 m/s2

The proposed ACCwSG system has the following switch-
ing logic (cf. Table 2):

• if d ≤ dref : Starting from d = dref , it is considered
that the vehicle is situated in the ACCwSG zone, and
corresponding vref is thus applied.

• if d > dref : Both vehicles are at the safe distance
from each other, so the bus becomes stable at the
cruise speed vcc.
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Condition d ≤ dref d > dref
Reference Speed vref vcc
Mode ACCwSG CC

Table 2. Switching logic between ACCwSG
and CC

Two speed references proposed are in this paper, vcc
which is an external reference set by the driver, and the
reference speed vref resulting from the ACCwSG system.
In the ACCwSG mode, this reference depends mostly on
the speed of the leader and the current inter-vehicular
distance. The expression of vref is given as follows:

vref = vleader + kp(d− dref )− ḋref (7)

This expression contains the term dref (see equations
(4) and (5)). After derivation, we obtain the following

expression for the ḋref :

ḋref = Tha+ 2h∗va = (Th + 2h∗v)a (8)

with a bus acceleration and v bus speed.

To demonstrate the convergence of this control law, the
Lyapunov theory has been used. The Lyapunov function
candidate is defined as follows: e = 1

2 (d−dref )
2. The time

derivative of e:

ė = (ḋ− ḋref )(d− dref )

= (Vleader − Vref − ḋref )(d− dref )
= −kp(d− dref )(d− dref )
= −kp(d− dref )

2 < 0

(9)

According to Lyapunov synthesis, this control is asymp-
totically stable and converges to 0 (while d �= dref ).

3.3 Stochastic Energy Management algorithm

The second part of the proposed control architecture
consists of an optimal powersplit among the propulsion
elements (cf. section 2.1). We consider the energy man-
agement problem of a series-parallel configuration of pow-
ertrain (cf. Fig. 1) where the electric motor (EM) is
linked to hydraulic motor (HM) in parallel, meanwhile
the HM power is supplied via the internal combustion
engine (ICE) connected in series. The energy management
strategy (block 2© in Fig. 3) is conceived in order to
minimize the fuel consumption by optimally delivering the
requested power. Preq is the total requested power that
must be generated by the powertrain, the controller selects
the PEM which must be provided by the electric motor
through the electric battery, and the PICE which must be
provided by the HM through the ICE. The power balance
equation for each sampling step k is given by equation
(10):

Preq(k) = PEM (k) + PICE(k)− Pbr(k) (10)

where Pbr is the braking power by conventional friction
brakes, in case where the braking kinetic energy can not
be recovered or regenerative braking is not sufficient to
provide the desired vehicle braking power. As the dynam-
ics of the engine and the electric motor are much faster
than the dynamics of the battery charge, the equation that
connects the dynamics of the actuators with the one of the
battery is:

SOC(k + 1) = SOC(k)−KTsPEM (k) (11)

with SOC ∈ [0, 1], SOC = 1 corresponds to a fully
charged battery, Ts the sampling period, and K > 0 a
positive constant identified for a generic HEV battery, it
depends on the battery dynamics. Note that a positive
value of PEM indicates that power is provided by the

battery to the motor, in the opposite case, the battery
is charged by the motor (generator mode) on the regener-
ative braking phase.

The SMPC controls the variation of the engine power ∆P
where

∆P (k) = PICE(k)− PICE(k − 1) (12)

Thus, we obtain the linear model from (10)-(12):

x(k + 1) = Ax(k) +B1u(k) +B2w(k) (13)

y(k) = Cx(k) +D1u(k) +D2w(k) (14)

where

• x(k) =

[
SOC(k)

PICE(k − 1)

]
the state vector,

• u(k) =

[
∆P (k)
Pbr(k)

]
the control vector,

• y(k) = PEM (k) the output,
• w(k) = Preq(k) is considered as a stochastic distur-
bance, which corresponds to the actions of the driver
on the vehicle, where w(k) ∈ W . We suppose that at
time k, the value w can be measured and we denote
it by w(k).

• A =

[
1 KTs

0 1

]
, B1 =

[
KTs −KTs

1 0

]
, B2 =

[
−KTs

0

]

• C =
[
0 −1

]
, D1 =

[
−1 1

]
, D2 = 1

In order to design the SMPC controller, it is necessary to
generate the stochastic perturbation using a Markov chain
model.

The required power Preq is considered as a random process,
denoted by w, and it is modeled as a Markov chain with
the states W = {w1, w2, ..., ws}, where obviously wi ∈ W ,
for all i ∈ {1, ..., s}. The Card(W ) = s is chosen in such
a way that it ensures a good compromise between the
complexity of the stochastic model and its precision. The
Markov Chain is defined by a transition probability matrix
T such that:

[T ]ij = Pr[w(k + 1) = wj |w(k) = wi] (15)

where i, j ∈
{
1, ..., s

}
, w(k) the state of the Markov chain

at time k, Pr is the probability distribution of w(k +
1). Using the Markov chain model with w(k) = wi, the
probability distribution of w(k+ l) is calculated as follows:

Pr[w(k + l) = wj |w(k) = wi] = [(T l)′ · ei]j (16)

where ei is the i
th unitary vector, i.e., [e]i = 1, [e]j = 0 for

all j �= i.
To predict Preq, a Markov chain with s = 300 states is
used. In this paper, the transition matrix T is initialized
by T = I (I Identity Matrix) and then updated online. We
run the controller several times for different driving cycles,
ECER15 (also known as UDC - Urban Driving Cycle),
EUDC (European Urban Driving Cycle), ArtUrban (Ur-
ban Artemis), and NEDC (New European Driving Cycle),
to learn the transition probabilities. The learning of the
transition matrix is done through the power demanded
by the driver Preq which translates the behavior of the
driver and his way of driving. By counting the number
of transitions of a power Preqi to Preqj , the number of
occurrences for each transition from a state i to a state j
is stored in [n]ij .

The transition matrix T can be updated after each sim-
ulation, or when a large number of data is collected. To
update the transition matrix, the following procedure has
been used. For all j ∈ {1, 2, ..., s}
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[T ]j =
[n]j + λ[T ]j

λ+
∑s

k=1
[n]jk

(17)

Where λ the filtering parameter, [T ]j the jth row of
transition matrix T , [n]j the jth row of occurrence matrix
[n].

In the proposed paper, the SMPC algorithm presented in
Bichi et al. (2010), Ripaccioli et al. (2010), is adopted in
order to cope with the uncertainty on the requested power
Preq. The proposed cost function with time depending
references, is the new added element compared to the cited
references, where the SOC is a time-invariant constant
value. PICEref

(k) keeps the electric motor working with
its maximum efficiency to respect the SOCref (k), so as
to maintain the battery charge above a certain threshold
until the end of the day (cf. Fig. 5). This method allows
a better usage of the electric energy and a better power
management of the PHEB. The proposed approach based
on SMPC is formulated according to the specific features
of the PHEB models. The SMPC selects in this work the
optimum engine power variation. It is presented in what
follows the proposed SMPC formulation where the objec-
tive function (to be minimized) relies on an approximation
of the expected value of:

J(k) = c1∆P (k)2 + c2(PICE(k)− PICEref
(k))2

+ c3(SOC(k)− SOCref (k))
2 (18)

where ∆P (k) engine power variation (cf. equation (12)),
PICE actual ICE power, PICEref

(k) is the ICE reference
power, SOC(k) actual SOC, SOCref (k) is the reference
SOC, and ci|i = 1, ..3 constant positive values, given
the weight for each sub-criterion: c1 enforces smooth
mechanical power variations, c2 leads the system to relieve
the electric motor while using the ICE motor when the
requested power exceeds electric motor nominal power, c3
penalizes deviations from battery reference SOCref (cf.
Fig. 5).

It is to be noted that PICEref
is defined to relieve the

electric motor, in order to keep it in the nominal operating
area Pn. For this reason, we proposed a switching logic (cf.
Table 3).

Table 3. Switching logic for the ICE reference
power

Condition Preq < Pn Preq ≥ Pn

ICE reference power, PICEref
0 Preq − Pn

The reference SOCref is time-variable. The BUSINOVA
bus is a plug-in hybrid electric vehicle and its standard
functioning time is n hours a day (so called “course of a
day”). Fig. 5 illustrates an example of a reference SOC
baseline for a course of a day corresponding to 8h. By the
end of a day, the bus has to reach its SOCmin value and
can be recharged during all the night long to ensure the
service the next day. In this work, the principle idea is to
consider that a better usage of the electric energy is such
that it is available until the end of the day (during for
instance 8 hour operational cycle), and this is considered
as an ideal functioning of the bus. The working hypothesis
behind this assumption is to use the maximum amount of
energy that can be consumed from the battery in one day
driving so that the battery energy is spread as uniformly
as possible in one working day. This implies the smooth
battery discharging rate (C-rate), avoidance of the high or

Fig. 5. Reference SOC baseline

low SOC and excessive depth of discharge, which lead to
a high rate of battery capacity loss Tang et al. (2015) . As
Li-ion batteries represent a big part of a hybrid electric
vehicle cost, the clear interest is to prolong the battery
life. Based on this hypothesis, the SOCref is updated each
∆T in order to guide the energy management strategy
solutions produced by the proposed SMPC.

In order to guarantee a prolonged battery life and to
respect electro-mechanical limitations, the state, manip-
ulated inputs and outputs are subject to the constraints:

X = {x ∈ R2,

[
SOCmin

0

]
< x <

[
SOCmax

PICEmax

]
}

U = {u ∈ R2,

[
−∆Pmin

0

]
< u <

[
∆Pmax

Pbrmax

]
}

Y = {y ∈ R,PEMmin < y < PEMmax}

4. SIMULATION RESULTS

Below the simulation results for the proposed global con-
trol architecture are presented. The SMPC supporting
ACCwSG function has been tested for several standardized
urban driving cycles Barlow et al. (2009) to validate its
performance. A driving cycle determines the leader vehi-
cle speed profile. Initial distance between two vehicles is
dmin safety = 5 m (cf. Fig. 2). The bus driver aims to
drive at preset velocity vcc = 40 km/h.

The initial conditions are SOC(0) = 0.9, Preq(0) =
0, ∆Pmax = ∆Pmin = 1kW and Pn = 10kW . The
cost function in equation (18) is normalized and the

weight coefficients are chosen so that
3∑

i=1

ci = 1. For

the simulations presented below, the following weight
coefficients were chosen: c1 = 0.4, c2 = 0.4 and c3 = 0.2.

In order to validate the proposed control strategy four
standard urban driving cycles were chosen: ECER15,
EUDC, ArtUrban, and NEDC. The simulation results are
summarized in Table 4. In order to estimate the effi-
ciency of the proposed SMPC energy management strategy
(EMS), it is compared with the results obtained apply-
ing a Rule-Based (RB) EMS Hofman et al. (2007). The
columns Diff in Table 4 corresponds to the percentage
of improvement of the SMPC compared to RB EMS. “+”
corresponds to a positive improvement, “-” means that RB
EMS demonstrated better performance.

Globally, the SMPC outperforms RB EMS in average by
12.98% from the consumed energy point of view. The
consumed energy Econs given by the column Energy
[kWh] in Table 4 is calculated as follows:
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[T ]j =
[n]j + λ[T ]j

λ+
∑s

k=1
[n]jk

(17)

Where λ the filtering parameter, [T ]j the jth row of
transition matrix T , [n]j the jth row of occurrence matrix
[n].

In the proposed paper, the SMPC algorithm presented in
Bichi et al. (2010), Ripaccioli et al. (2010), is adopted in
order to cope with the uncertainty on the requested power
Preq. The proposed cost function with time depending
references, is the new added element compared to the cited
references, where the SOC is a time-invariant constant
value. PICEref

(k) keeps the electric motor working with
its maximum efficiency to respect the SOCref (k), so as
to maintain the battery charge above a certain threshold
until the end of the day (cf. Fig. 5). This method allows
a better usage of the electric energy and a better power
management of the PHEB. The proposed approach based
on SMPC is formulated according to the specific features
of the PHEB models. The SMPC selects in this work the
optimum engine power variation. It is presented in what
follows the proposed SMPC formulation where the objec-
tive function (to be minimized) relies on an approximation
of the expected value of:

J(k) = c1∆P (k)2 + c2(PICE(k)− PICEref
(k))2

+ c3(SOC(k)− SOCref (k))
2 (18)

where ∆P (k) engine power variation (cf. equation (12)),
PICE actual ICE power, PICEref

(k) is the ICE reference
power, SOC(k) actual SOC, SOCref (k) is the reference
SOC, and ci|i = 1, ..3 constant positive values, given
the weight for each sub-criterion: c1 enforces smooth
mechanical power variations, c2 leads the system to relieve
the electric motor while using the ICE motor when the
requested power exceeds electric motor nominal power, c3
penalizes deviations from battery reference SOCref (cf.
Fig. 5).

It is to be noted that PICEref
is defined to relieve the

electric motor, in order to keep it in the nominal operating
area Pn. For this reason, we proposed a switching logic (cf.
Table 3).

Table 3. Switching logic for the ICE reference
power

Condition Preq < Pn Preq ≥ Pn

ICE reference power, PICEref
0 Preq − Pn

The reference SOCref is time-variable. The BUSINOVA
bus is a plug-in hybrid electric vehicle and its standard
functioning time is n hours a day (so called “course of a
day”). Fig. 5 illustrates an example of a reference SOC
baseline for a course of a day corresponding to 8h. By the
end of a day, the bus has to reach its SOCmin value and
can be recharged during all the night long to ensure the
service the next day. In this work, the principle idea is to
consider that a better usage of the electric energy is such
that it is available until the end of the day (during for
instance 8 hour operational cycle), and this is considered
as an ideal functioning of the bus. The working hypothesis
behind this assumption is to use the maximum amount of
energy that can be consumed from the battery in one day
driving so that the battery energy is spread as uniformly
as possible in one working day. This implies the smooth
battery discharging rate (C-rate), avoidance of the high or

Fig. 5. Reference SOC baseline

low SOC and excessive depth of discharge, which lead to
a high rate of battery capacity loss Tang et al. (2015) . As
Li-ion batteries represent a big part of a hybrid electric
vehicle cost, the clear interest is to prolong the battery
life. Based on this hypothesis, the SOCref is updated each
∆T in order to guide the energy management strategy
solutions produced by the proposed SMPC.

In order to guarantee a prolonged battery life and to
respect electro-mechanical limitations, the state, manip-
ulated inputs and outputs are subject to the constraints:

X = {x ∈ R2,

[
SOCmin

0

]
< x <

[
SOCmax

PICEmax

]
}

U = {u ∈ R2,

[
−∆Pmin

0

]
< u <

[
∆Pmax

Pbrmax

]
}

Y = {y ∈ R,PEMmin < y < PEMmax}

4. SIMULATION RESULTS

Below the simulation results for the proposed global con-
trol architecture are presented. The SMPC supporting
ACCwSG function has been tested for several standardized
urban driving cycles Barlow et al. (2009) to validate its
performance. A driving cycle determines the leader vehi-
cle speed profile. Initial distance between two vehicles is
dmin safety = 5 m (cf. Fig. 2). The bus driver aims to
drive at preset velocity vcc = 40 km/h.

The initial conditions are SOC(0) = 0.9, Preq(0) =
0, ∆Pmax = ∆Pmin = 1kW and Pn = 10kW . The
cost function in equation (18) is normalized and the

weight coefficients are chosen so that
3∑

i=1

ci = 1. For

the simulations presented below, the following weight
coefficients were chosen: c1 = 0.4, c2 = 0.4 and c3 = 0.2.

In order to validate the proposed control strategy four
standard urban driving cycles were chosen: ECER15,
EUDC, ArtUrban, and NEDC. The simulation results are
summarized in Table 4. In order to estimate the effi-
ciency of the proposed SMPC energy management strategy
(EMS), it is compared with the results obtained apply-
ing a Rule-Based (RB) EMS Hofman et al. (2007). The
columns Diff in Table 4 corresponds to the percentage
of improvement of the SMPC compared to RB EMS. “+”
corresponds to a positive improvement, “-” means that RB
EMS demonstrated better performance.

Globally, the SMPC outperforms RB EMS in average by
12.98% from the consumed energy point of view. The
consumed energy Econs given by the column Energy
[kWh] in Table 4 is calculated as follows:
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Table 4. Comparison of the Rule Based strategy and SMPC strategy

Driving Cycle Duration [s]
∆SOC [%] Fuel [l] Energy [kWh]

Energy Diff. [%]
RB SMPC Diff. [%] RB SMPC Diff. [%] RB SMPC

ECER15 389 1.642 1.002 +38.97 0.045 0.064 -42.22 1.208 1.098 +10.01

EUDC 398 2.424 1.779 +26.61 0.010 0.022 -54.50 1.234 1.053 +14.66

ArtUrban 1985 6.376 2.889 +54.68 0.264 0.399 -51.13 5.575 5.131 +7.96

NEDC 2359 7.092 5.987 +15.58 0.116 0.072 +38.00 4.457 3.597 +19.29

Average - - - +33.96 - - -27.46 - - +12.98

Econs =

∫ tf

0

PEMdt+

∫ tf

0

QLHV ṁfdt (19)

where PEM is the electric motor consumed power, ṁf

fuel consumption rate, and QLHV = 43MJ/kg lower heat
value for diesel.

To illustrate the performance graphics NEDC standard
driving cycle (SDC) was chosen. In Fig. 6-9 the simulation
results are presented. Fig. 6 presents the bus ACCwSG
performance results. The driving cycle lasts 2360 s. The
upper figure shows the speed profiles. One can see that the
bus follows smooth speed profile, ensuring a safe distance
between two vehicles (see lower figure). Starting from
≈1060 s and ≈2240 s the bus stops following the leader
vehicle and maintains the preset cruise speed.
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Fig. 6. Speed and Distance Profiles for NEDC SDC

Fig. 7 presents the Powersplit profile for both EMS. Al-
though the total power demand is the same, the powersplit
influences the electric energy and fuel consumption of the
bus.
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Fig. 8 presents the battery SOC and fuel consumption
graphs. One can see that the SMPC distributes power
in such a way that the battery SOC converges to the
referenced SOCref , as opposed to RB EMS, where the
battery final SOC is lower than the SOCref . The rest of
the power is supplied by the ICE. Fig. 8 shows that the
SMPC consume less fuel as well for the given cycle. To
illustrate a global energetic performance, we make use of
equation (19). Fig. 9 proves that from the energy point of
view, the SMPC EMS provides less consumption (notably,
4.457 kWh vs 3.597 kWh, thus 19.29% of improvement).
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5. CONCLUSION AND PROSPECTS

This paper presented a global control architecture, in-
cluding an ACCwSG and energy management strategy
based on SMPC for energy optimization of a HEV. The
developed overall architecture finds a highly practical ap-
plication for the studied heavy urban hybrid bus, which is
always subject to frequent starts and stops phases (phases
which are generally subject to important energy consump-
tion).

First, the ACCwSG algorithm has been proposed. It
ensures a safe distance from the preceding car, taking
into account the deceleration capabilities of the bus and
anticipating an abrupt deceleration by the leader vehicle.
Furthermore, the proposed ACCwSG generates smooth
reference speed profile enabling the passengers comfort.
Afterwards, the energy management strategy based on
a Stochastic MPC has been designed to decrease the
energy consumption of the bus. The required power is
considered as a random Markov process, encompassing
uncertainties with regards to the road profile, bus weight,
etc. The proposed strategy has been tested and validated
for several standard driving cycles and has demonstrated
its efficiency compared to rule-based methods where an
average of improvement about 13% has been observed.

It is planned in near future to implement and validate the
proposed energy management strategy on the real studied
bus.
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5. CONCLUSION AND PROSPECTS

This paper presented a global control architecture, in-
cluding an ACCwSG and energy management strategy
based on SMPC for energy optimization of a HEV. The
developed overall architecture finds a highly practical ap-
plication for the studied heavy urban hybrid bus, which is
always subject to frequent starts and stops phases (phases
which are generally subject to important energy consump-
tion).

First, the ACCwSG algorithm has been proposed. It
ensures a safe distance from the preceding car, taking
into account the deceleration capabilities of the bus and
anticipating an abrupt deceleration by the leader vehicle.
Furthermore, the proposed ACCwSG generates smooth
reference speed profile enabling the passengers comfort.
Afterwards, the energy management strategy based on
a Stochastic MPC has been designed to decrease the
energy consumption of the bus. The required power is
considered as a random Markov process, encompassing
uncertainties with regards to the road profile, bus weight,
etc. The proposed strategy has been tested and validated
for several standard driving cycles and has demonstrated
its efficiency compared to rule-based methods where an
average of improvement about 13% has been observed.

It is planned in near future to implement and validate the
proposed energy management strategy on the real studied
bus.
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