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Abstract: This work is concerned with the minimization of total energy consumption (sum-
mation of electric battery and fuel) of hybrid hydraulic-electric vehicles through an energy
management combined approach incorporating elements of fuzzy logic, neural network and rule-
based algorithms. In this paper, the global vehicle effciency is calculated by considering electrical
motor, battery, engine, hydraulic pump, hydraulic motor and the transmission. An adaptive
fuzzy neural algorithm is embedded in the vehicle with a fuzzy mode-switching control strategy
along with proposed fuzzy tuning controllers to achieve real time control. In addition, a new
formula is developed to update the proposed fuzzy controller. An intelligent hierarchical hybrid
controller strategy is employed with several advantages: (i) proposed strategy does not depend
on the a priori knowledge of the driving event, which makes it suitable to be implemented online;
(ii) it can be easily implemented in real time based on fuzzy rule-based strategy containing five
operation modes; (iii) rate of charge of the battery is limited to minimize aging effects; (iv)
engine is operated near its optimal range. The effectiveness of the overall proposed architecture
is demonstrated under various conditions in MATLAB/Truckmaker simulations which show
increased efficiency over Pontryagin’s minimum principle. Offline and online control performance
of the proposed approach are tested.

Keywords: Hybrid Electric Vehicle, Power Management Strategy, Hierarchical Control
Architecture, Adaptive and Optimal Neuro-Fuzzy Controller.

1. INTRODUCTION

The problem of reducing the environment pollution in
order to save the planet has become one of the most
important challenges in the world. Besides, the worldwide
crisis of the fossil fuel resources, which diminish at high
rate, aggravates it. These two global aspects made the big
industrial companies and the state governments invest in-
creasingly into the alternative energy sources. The hybrid
electric vehicles (HEV) promise a relevant solution with
regard to the objectives of reducing the fuel consumption,
as well as the decrease of the exhaust gazes emission Mur-
phey (2008). The presence of additional power sources in
the HEV introduces additional degrees of freedom in con-
trolling the drivetrain, since at each time the drivers power
request can be delivered by either one of the on-board en-
ergy sources or their combination. The additional degrees
of freedom can be leveraged to reduce fuel consumption
and pollutant emissions and also to optimize other possible
cost such as battery life Li (2015). This task is performed
by the energy management strategy which is the highest
control layer of the drivetrains control strategy. Energy
management strategies can be divided into numerical and
analytical approaches. In numerical optimization methods
? This project is supported by the ADEME (Agence De
l’Environnement et de la Matrise de l’Energie) for the National
French program “Investissement d’Avenir”, through BUSINOVA
Evolution project, (http://www.businova.com/).

like dynamic programming Ximing (2015), the global
optimum is found numerically under the assumption of full
knowledge of the future driving conditions. Unfortunately,
the results obtained through dynamic programming can-
not be implemented directly due to its high computational
demands. To remedy this problem, approximated dynamic
programming and stochastic dynamic programming Jo-
hannesson (2007), Moura (2011) had been suggested
as possible solutions. Analytical optimization methods, on
the other hand, use a mathematical problem formulation
to find an analytical solution that makes the obtained solu-
tion faster than the purely numerical methods. Within this
category, Pontryagin’s Minimum Principle (PMP) based
energy management strategy is introduced as an optimal
control solution Panday (2016). This approach can only
generate an optimal solution if implemented offline since
in this case the driving cycle is supposed to be known
in advance. In addition, rule-based strategies developed
from heuristic ideas are widely used in HEVs applications
Mashadi (2010), Mi (2011), Ying (2016), Kamal (2016)
because they can be implemented easily in real-time, but
creating these rules commonly requires engineering experi-
ence, large numbers of experimental results, etc., and have
generally limited benefits for fuel economy. In order to
improve the fuel economy of rule-based methods, the au-
thors in Lihao (2016) directly adopted fuzzy rules instead
of deterministic ones to improve the operational efficiency
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of vehicle system. In Duan (2003) the authors added a
fuzzy algorithm for the rule-based method, to modify the
rules. To further reduce fuel consumption, fuzzy controllers
were further modified using particle swarm optimization
Chen (2015), genetic algorithms Wu (2008), and machine
learning algorithms Zhou (2013). Moreover, learning vec-
tor quantization using neural network Murphey (2011) or
a fuzzy neural network Wu (2012) are used. The integrated
fuzzy-neural-network system has the merits of both fuzzy
systems Tian (2011) (human-like conditional rules which
depend on knowledge of an expert or past experience)
and Neural Networks (NN) Wang (1997) (learning and
optimization abilities and connectionist structures).
In this work, the design and analysis of a novel Intelli-
gent Hierarchical Hybrid Controller Strategy (IHHCS) for
Hybrid Hydraulic-Electric Vehicles (HHEVs) is presented.
The primary objective is to develop a practical, reliable
and implementable intelligent control strategy, which can
manage the power distribution among different energy
sources to maximize the hybrid vehicle’s overall efficiency.
This hybrid strategy minimizes the total energy consump-
tion (summation of electric battery and fuel) and it can
be employed for both offline and online scenarios. The
proposed strategy consists of three control level based on
neural network, fuzzy logic and rule based optimization.
An Intelligent Supervisory Switching Mode Controller
(ISSMC) based on fuzzy logic in the third level, an In-
telligent Power Distribution and Optimization Controller
(IPDOC) based on optimal neural fuzzy logic strategy in
the second level and Local Fuzzy tuning Proportional-
Integral-Derivative Controllers (LFPIDC) in the first level.
We compare MATLAB/Truckmaker simulations with al-
ternative frameworks existing in the literature based on
PMP Panday (2016) in order to demonstrate the advan-
tages of our methodology.
The results of this paper support that the proposed strat-
egy is capable of: (i) being applied to various types of HEV;
(ii) an accurate and reliable model of the studied bus (i.e.,
BUSINOVA) is design by MATLAB/Truckmaker software;
(iii) reducing fuel consumption by optimizing switching
control modes; (iv) increasing global vehicle efficiency; (v)
being implemented in real-time; (vi) reducing the number
of rules needed in fuzzy control; (vii) being used either
offline or online; (viii) maintaining the engine near its
optimal operating range; (ix) keeping State Of Charge
(SOC) within the range which promotes battery longevity.
The paper is organized as follows. The overall HHEVs
description and modeling is given in section 2. In section
3, the proposed intelligent hierarchical hybrid controller
structure is developed. Simulation results and compara-
tive analysis by MATLAB/Truckmaker simulator are pre-
sented in section 4. Finally, the conclusions and future
prospects are presented in section 5.

2. MODELING OF THE HYBRID BUS

The aim of this section is to modeling based on Truck-
maker software and illustrate the architecture and the
mathematical model of the studied system, i.e., BUSI-
NOVA hybrid bus, developed by SAFRA company (cf.
Figure 1). This bus is composed of an Electric Motor (EM),
a Hydraulic Motor (HM), an Internal Combustion Engine
(ICE) and battery as the propulsion powertrain system of
the vehicle.

Fig. 1. BUSINOVA hybrid bus.

2.1 Hybrid bus powertrain architecture

The model of the studied hybrid bus is based on a series-
parallel power-split hybrid architecture Bayindir (2011). A
simple block diagram of the power flows in the bus is shown
in Figure 2. The EM and HM are both directly connected

Fig. 2. Block diagram of the powertrain power flows. (ICE:
Internal Combustion Engine, HP: Hydraulic Pump,
HM: Hydraulic Motor, EM: Electric Motor)

to the transmission and can ensure simultaneously or
independently the traction of the bus. On the other hand,
the ICE is coupled to a Hydraulic Pump (HP) for driving
the HM, and therefore allowing the ICE load shifting.

The rotational speeds of the HM and the EM are imposed
by the wheels speed in proportion to the reduction ratios of
HM and EM respectively. Moreover, the rotational speed
ωHM and the torque THM are expressed as follows:

ωHM (TICE , DHM ) =
DHP .ηvHM

.ωICE

DHM .ηvHP

THM (TICE , DHM ) =
DHM .ηmHM

.TICE

DHP .ηmHP

(1)

where ωICE , TICE are respectively rotational speed and
torque of the ICE, and DHM , DHP , ηmHM

, ηmHP
, ηvHM

,
ηvHP

are respectively displacement, mechanical efficiency
and volumetric efficiency of the HM and the HP.

The BUSINOVA can operate according to the modes
described below:

• the propulsion is fully supplied by the EM (mode 1),
• the bus is actuated by the HM via the ICE (mode 2),
• the mode 3 implies the hybrid operation of the EM

and the HM via ICE,
• the recharge of the electric battery via ICE (mode 4),
• the regenerative braking (mode 5)- the part of the

kinetic energy during braking phase is recuperated to
charge the electric battery.
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2.2 Dynamical model

This part is dedicated to the dynamical equations describ-
ing the bus. The purpose of the dynamical model is to
have a realistic global behavior of the bus in order to
validate the proposed energy management techniques. To
describe it in a generic manner, assume that the bus is
moving up the slope of θ degree (cf. Figure 3). The origin
of the coordinates is situated in the Center of Mass (CoM).
It is supposed that CoM of the bus is in its geometric
center. Projecting the vectors of the forces to x-axis (the
bus is moving along x-axis in the positive direction, with
the velocity v and acceleration ax = a), the following
expressions of the forces acting on the bus is obtained (cf.
Figure 3):

Ftr − Frr − Fad − Fg − Fbrake = (M +Meq)a (2)

where Ftr traction force, Frr rolling resistance, Fad aero-
dynamic force, Fg gravity force, Fbrake mechanical brake
force, M bus weight, Meq equivalent mass of rotating
parts, a bus acceleration. In this modeling it is assumed
that all the masses M (which include curb mass of the bus
and passengers’ mass) are homogeneously distributed in
order to consider that the CoM is in the geometric center
of the bus. To produce a bus acceleration, it is necessary
to take into account the moments of inertia of the rotating
components (e.g., rotor of the EM, crankshaft of the ICE,
driving axle, etc.). It is done by introducing the equivalent
mass Meq of the rotating components:

Meq =
igηptJrot

r2
(3)

where ig gear ratio, ηpt powertrain efficiency, Jrot total
inertia of the rotating components in the transmission, and
r the wheel radius Cheng (2007).

The traction force Ftr is linked to the torque produced by
the powertrain Tpt via gear ratio ig, powertrain efficiency
ηpt. Expanding the dynamical equation (2), the following
relation is obtained:

a =
dv

dt
=

1

M +Meq
H (4)

with

H =
igηptTpt

r
− µrrFNsign(v)− 1

2
ρACd(v + vwind)2

−Mg sin(θ)− Tbrake
r

(5)

where:

• Tpt: output powertrain torque from the gearbox,
• µrr: rolling resistance coefficient, FN = Mgcos(θ)

normal force, g gravity acceleration, θ slope angle,
v bus speed,
• ρ: the air density, A the frontal area of the bus, Cd

drag coefficient, vwind wind speed,
• Tbrake: the brake torque provided by the bus mechan-

ical brake system.

3. PROPOSED INTELLIGENT HIERARCHICAL
HYBRID CONTROLLER STRATEGY (IHHCS)

In this section, an IHHCS structure is proposed which is
capable of meeting various objectives including optimized
power flow management, maintaining high operational ef-
ficiency of the ICE, and balancing EM and battery charge

Fig. 3. Forces acting on the bus.

to maximize the global vehicle efficiency. The first block
of the proposed IHHCS (cf. Figure 4) is a driver command
interpreter which converts the driver inputs from the brake
and accelerator pedals to required torque.
This proposed strategy consists of three control levels as
shown in Figure 4. The third level has been developed by
fuzzy strategy to decides which operating mode or combi-
nation of modes would be most efficient (cf. section 3.1). At
the second level (cf. section 3.2), an advanced IPDOC has
been developed for power splitting which decides the opti-
mal combination of power sharing between different energy
sources to maximize overall vehicle efficiency. In section
3.3, a LFPIDC is used to track the set points of EM and
HM via the ICE generated at the second level, in order to
reach peak performance and acceptable operation indexes
while taking in consideration of the dynamic behavior of
EM, ICE and HM. The proposed strategy can be used for
both offline and online scenarios. Offline scenario implies
that the information about the future driving cycle and
the environment (road profile, vehicle weight, etc.) is fully
known, whereas for the online scenarios this information
is obtained in real time. In this paper, we will focus more
on level 2 and level 3 (cf. section 3.1 and 3.2). In the
diagram below (cf. Figure 4), PCVE is the Produced and
Consumed Vehicle Energy, Tdemand is the total torque
demand required to drive the vehicle (it is also defined by
the global torque set point), TICE,SP is the ICE torque
set point and TEM,SP is the EM torque set point.

Fig. 4. IHHCS for HHEVs distributed generation system.
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3.1 Intelligent Supervisory Switching Mode Controller
(Level 3: ISSMC)

As mentioned in section 2.3, there are five modes of
operation. In order to improve the HHEVs operation, the
proposed ISSMC based on fuzzy logic and rule based,
has to decide which operating mode (or combination of
them) is appropriate. Many parameters (such as the value
of SOC for the battery, vehicle power required, vehicle
speed and maximum power supplied by the battery, etc.)
must be considered to choose the most efficient operation
mode to manage and optimize power flow. Based on the
available output torque, the pedal position is converted
into torque demand (Tdemand). If Tdemand<0, the driver
intends to decelerate the vehicle. Therefore, regenerative
braking mode is chosen. But, if Tdemand>0, the requiring
torque is split between EM or/and HM via ICE. In the
proposed algorithm, modes 1, 2, 3, and 4 are selected by
fuzzy logic and mode 5 is selected by traditional logic.
Fuzzy logic is well suited for selecting between modes 1,
2, 3 and 4, since the range or boundary is vague and
not clearly specified due to the actual state of the vehicle
(masse, velocity, etc.) for these modes. The ISSMC input
variables are Vehicle Speed (VS), Tdemand and SOC and
its output variable is the operation mode (Mode). We use
Gaussian Membership Functions (GMF) and Centre-of-
Gravity (COG) defuzzication to calculate the output fuzzy
signal, the advantage of this method is its simplicity in
reducing the complexity of the calculations Lihao (2016).
Some of the fuzzy rules of the ISSMC are shown in Table
1, where RN is the rule number, L is the Low and H is
the High. The fuzzy rule is constructed from 27 individual
fuzzy rules.

Table 1. Some examples of fuzzy rules used by
the ISSMC level.

RN Tdemand SOC VS Mode

1 L H H Mode1
2 H L L Mode2
. . . . .
. . . . .
27 L L L Mode4

3.2 Intelligent Power Distribution and Optimization
Controller (Level 2: IPDOC)

Once level 3 has selected the appropriate mode, this level
of control manages and optimizes the power distribution
between the two different sources based on new proposed
formula to update the proposed fuzzy controller. There-
fore, the mode of operation is considered as an input for
the second level of control. There are five input variables
at this control level: actual vehicle torque for the Learning
Adaptive Algorithm (LAA) block and mode of operation
with the same three inputs of the third level (speed of the
vehicle, torque demand, SOC) for the Fuzzy Management
Controller (FMC) block. The two output variables of level
2 are TICE,SP and TEM,SP . This level consists of three
blocks. The FMC block splits the required torque between
EM or/and HM via ICE (cf. section 3.2.1). The proposed
LAA block based on a neural network is used to update
FMC parameters. The Global Vehicle Actual and Optimal
Efficiency Calculation Algorithm (GVAOECA) block is
used to calculate the total actual and the optimal efficiency
for the vehicle based on the elementary efficiencies of the

EM, battery, ICE, HP, HM and transmission. The main
contributions of this level are: (i) optimize the power
distribution between EM or/and HM via ICE; (ii) tune the
optimal parameters of the fuzzy controller based on neural
network optimization; (iii) find the best combination of
power distribution between different energy sources and
maximize hybrid vehicle overall efficiency; (iv) optimize
centers and widths of membership functions while taking
into account the system constraints, speed profile and road
slope; (v) and generates the set point for the first level. The
block diagram of the proposed level 2 block is presented
in Figure 5.

Fig. 5. Block diagram of the proposed level 2.

Proposed Fuzzy Management Controller (FCM)
The design of the FMC must achieve two objectives. One
is to make the ICE and EM operate at suitable points
to increase overall system efficiency, and the second is
to make the control strategy become more concise and
convenient. It has four inputs variables and two outputs
variables. The rules of the proposed fuzzy controller would
be modified by observing the control surfaces determined
by the inputs and outputs. In addition, from the simulation
results, the rules of the fuzzy controller can be also
modified. Some of the fuzzy rules are shown in Table 2.
The input variables are splitted into two levels (cfa. level
2 and 3) so as to reduce the number of the fuzzy rules,
from 74 rules to 27(which decrease the rules combination
and thus the analysis complexity).

Table 2. Some examples of the used fuzzy rules
of FMC.

RN Mode Tdemand SOC VS TEM,SP TICE,SP

1 Mode 1 H H H H L
2 Mode 2 H L L L H
. . . . . . .
. . . . . . .
27 Mode 3 H H H Mid Mid

The proposed FMC inferred output for the ICE torque
(TICE) and EM torque (TEM ) based on COG given by,

TICE =

∑c
j=1mICE,jσICE,j1σICE,j2∑n

j=1mICE,jσICE,j2
(6)

TEM =

∑c
i=1mEM,iσEM,i1σEM,i2∑c

i=1mEM,iσEM,i2
(7)

where, σICE,j1 and σEM,i1, σICE,j2 and σEM,i2 are the
mean and the standard deviation of the GMF of the output
variable for the ICE and the EM, respectively, which
are two adjustable parameter, mICE,j and mEM,i are
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the inferred weights of the jthand ith output membership
function for the ICE and the EM, respectively, c is
the number of fuzzy rules. The mean and the standard
deviation of the output variable are optimize based on the
proposed LAA presented in the following section.

Proposed Learning Adaptive Algorithm (LAA)
This section presents in details the proposed algorithm in
order to ensure the learning adaptive algorithm working
with the FMC block. In order to optimize the output of
the proposed FMC based on NN. We first identify the
parameter sets involved in the premise and consequence
control logic, and use Theorem below to updates the
parameter value.

Theorem: The parameters required by the FMC, shown
in equations (6) and (7) are updated by the proposed LAA,
if the mean and the standard deviation of the membership
function satisfy the following:

σk+1
ij1 = σk

ij1 − ζk
t+s∑

k=t+1

N∑
j=1

(
ekedµtd,ij + ekeffµeff,ij

)
(8)

σk+1
ij2 = σk

ij2 − ζk
t+s∑

k=t+1

N∑
j=1

(
ekedµtd,ij + ekeffµeff,ij

)
(9)

where, σij1 is σICE,j1 and σEM,i1 for (6) and (7), and σij2
is σICE,j2 and σEM,i2 for (6) and (7) which are the mean
and the standard deviation of the GMF for ICE and the
EM, respectively. etd and eeff are the error functions for
the torque demand and the vehicle total efficiency which
are defined in (17). µtd,ij and µeff,ij are the weights of the
ith rule for the jth training pattern defined in (16). ζk is
the learning rate defined in (14). k the iteration index. t
is the trailing edge of the moving time-window over which
the prediction error is minimized and s is the window of
learning. For off-line learning we select t = 1 and s = P ;
where P is the size of the training set, which is usually
much larger than the largest multi-step-ahead prediction
horizon needed in practice Gupta (2015). The prediction
accuracy deteriorates very quickly with increasing P. For
on-line learning, s can be selected to be sufficiently large so
as to include the largest possible prediction horizon Gupta
(2015).
Proof. The proof can be given as the following. Assume
the objective function given by,

Ek =
1

2

N∑
j=1

(ykj − ŷkj )2 (10)

where ykj and ŷkj are the jth calculated output and desired
output, respectively, N is the number of training itera-
tions. From equations (6) and (7), the calculated output
yj is a function of consequent parts (Ωi) given by,

yj =

c∑
i=1

µijΩi with:

c∑
i=1

µij = 1 1 ≤ j ≤ N (11)

where Ωi is the consequent part of the ith rule. For a
moving window of s points in a system with N outputs to
be predicted, the following objective function is optimized:

ξ(t) ≡
t+s∑

k=t+1

Et,k =
1

2

t+s∑
k=t+1

N∑
j=1

(y
k/t
j − ŷkj )2 (12)

where the error Et,k depends both on the location of the
window and the prediction point within the window. The
objective of the proposed learning strategy is to minimize
the objective function (10). To simplify the expressions,
the variable t is omitted from the equations. Using a
gradient-descent method, the NN weights are updated
using the partial differential equation.

∆Ωi ≡ −ζk
t+s∑

k=t+1

(
∂Ek

∂Ωi

)
(13)

where ∆Ωk
i is the correction value for Ωk

i at instant k, ζk

is the learning rate at instant k given by,

ζk+1 =

∥∥∥∥ ∆Ωk

∆Ωk−1

∥∥∥∥ ζk (14)

where ‖•‖ denotes the norm value. In view of the predic-
tion error defined by (12) and from (10), the error gradient
with respect to the weights can be obtained by using the
Chain rule ?. Chain rule is used to calculate the derivative
of the composition of two or more functions. From (10),
(11) and (12), we obtain,

∆Ωi = −ζk
t+s∑

k=t+1

N∑
j=1

(ykj − ŷkj )µk
ij (15)

As mentioned in Jain (1988), µij could be computed
to minimize the objective function expressed by (10) as
follows;

µk
ij ≡

 c∑
g=1

(
ekij
ekgj

)2
−1

1 ≤ i ≤ c , 1 ≤ j ≤ N (16)

where eij (egj) is the error between the jth desired output
of the system and the output data of real system of the ith

rule with the jth (gth) input data. For the studied HHEV,
we consider the error functions defined as the following,

ektd = T k
demand − T k

actual ; ekeff = ηopt − ηhev (17)

where T k
demand is the total torque demand required to drive

the vehicle, T k
actual is the total actual wheel torque, ηopt

and ηhev are the optimal and the actual efficiency of the
hybrid vehicle, respectively. A sub-objective of the overall
optimization algorithm consists to maximize the efficiency
of the hybrid vehicle (18).

ηhev =

∫ dc

0
Phev∫ dc

0
PICE +

∫ dc

0
PEM

(18)

where dc is the driving cycle interval length, Phev is
the power supplied into the vehicle, PICE is the power
consumed by the ICE, PEM is the power consumed by the
EM and supplied by the battery, with PEM = IbatVbat,
where Ibat and Vbat are the battery current and voltage,
respectively. From equations (10) and (17), the total
objective function given by,

Ek =
1

2

N∑
j=1

[(ektd)2 + (ekeff )2] (19)

Consequently, as a result of the learning strategy, the algo-
rithm adapts parameters of strategy to minimize the ob-
jective function and maximize the total vehicle efficiency.
In this paper, we choose the highest theoretical efficiency
of the EM and the ICE, which are of about 0.9 and 0.34,
respectively, but in the future work, we will calculate it
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based on the EM and the ICE current optimal efficiency.
From equation (13), the parameters of the proposed FMC
with proposed LAA using the following,

σk+1
ij1 = σk

ij1 + ∆σk
ij1, σk+1

ij2 = σk
ij2 + ∆σk

ij2 (20)

where σk
ij1 and σk

ij2 are the mean and the standard
deviation of the function which are adjustable parameters
of the jth membership function of the ith fuzzy rule. Based
on equations (15), (17), and (19), we can re-write the mean
and the standard deviation of the GMF which given in
(20) as equations (8) and (9) which given in the Theorem.
From the derived theorem, it can be seen that a novel
hybrid algorithm is proposed to create a fuzzy neural
network, which takes the effect of the vehicle dynamics
into consideration, since the learning strategy is based on
the global vehicle efficiency and the required torque.

3.3 Local Fuzzy Tuning Proportional-Integral-Derivative
Controllers (Level1: LFPIDC)

The objective at this level is to regulate the set points
of EM and HM via ICE, to give a good control tracking
performance. As mentioned before, level 2 (cf. section
3.2) permits to manage optimally the power distribution
between the different sources during operation mode, while
sending out reference torque signals to each individual
hybrid vehicle subsystem (e.g., ICE, EM, battery, etc.),
level 1 with LFPIDC ensures that this reference torque
signals are tracked as accurate as possible. In addition,
the low level control strategy based on LFPIDC has the
ability to keep the hybrid vehicle system states stable even
in the presence of uncertainties. In this level, torques of the
EM and the ICE are controlled by a PID-fuzzy logic based
controller Ohri (2015). The purpose of this section is to
study the adaptive tuning of a fuzzy PID controller, which
combines the traditional PID controller and fuzzy control
algorithm. The initial PID controller parameters are cal-
culated using Ziegler-Nichols step response method, then
these parameters are optimized by fuzzy tuning. Com-
pared to work done on fuzzy PID controllers given in Ohri
(2015), the proposed LFPIDC gives better performance
for special processes (nonlinear, highly uncertainties and
unsteady behavior).

4. SIMULATION RESULTS AND DISCUSSION

To verify the control performance of the proposed overall
control and optimal energy management strategy, simu-
lation results under different variable road slope condi-
tions, with a simulator based on MATLAB/Truckmaker
are used. In order to develop a new controller and to
evaluate its performance, an accurate and reliable model
of the vehicle is required. For implementing and testing
the proposed strategy, a realistic model of the BUSINOVA
bus is needed. The model is implemented by using Truck-
Maker software (cf. Figure 6). Its key features are given
as the following: The software is plug and play, allows
model data customization and power train configuration
customization. In addition, it has an easy graphical user
interface. TruckMaker software has been used for:

• Fuel consumption evaluation, fuel economy, emis-
sions, and vehicle drivability.
• Simulation of a single component and simulation of a

component in the loop.

• Software in the loop.

Fig. 6. TruckMaker test platform.

To prove the effectiveness of the proposed overall control
architecture for optimal energy management, proposed
strategy is compared with PMP strategy already existing
in the literature Panday (2016). The desired and the actual
bus speed profile is shown in Figure 7. Figure 8 shows
the driver torque demand and the required wheel torque
for the proposed energy management strategy and PMP
strategy Panday (2016).
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For the simulation runs, the initial SOC, driving cycle
and all other parameters remain the same. From Figures
7 and 8, it may be seen that the vehicle output speed
and required wheel torque of the vehicle are similar to
the set point of the drive cycle for the proposed energy
management strategy, on the other hand, the PMP strat-
egy Panday (2016) cannot give good responses. Figure 9
depicts the progress of SOC (from initial to final state)
using proposed strategy and PMP strategy Panday (2016).
This information may be used to make appropriate control
decisions to improve fuel economy.
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Fig. 9. SOC profiles for proposed energy management
strategy and PMP strategy Panday (2016).

The proposed, the SOC values begin at 0.95 and finish at
0.951, but with PMP strategy Panday (2016), SOC values
begin at 0.95 and finish at 0.95011. The net fluctuation
is 0.00011. Therefore, we can see that during the driving
cycle, the SOC level is kept higher when using proposed
strategy, instead of using PMP strategy Panday (2016).
Energy consumed by the ICE [KJ] for the online proposed
strategy and PMP strategy Panday (2016) are given in
Figure 10.
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Fig. 10. Consumed energy by ICE [KJ] for proposed en-
ergy management strategy and PMP strategy Panday
(2016).

Total energy consumed by the vehicle for these controllers
is given in Figure 11 which shows that the proposed energy
management strategy is better w.r.t. to PMP strategy
Panday (2016) controllers for reducing total energy con-
sumed (fuel consumption and battery discharge), which
increases the efficiency of the vehicle.
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Fig. 11. Total energy consumed by the vehicle [KJ] for
proposed strategy and PMP strategy Panday (2016).

To have a more specific comparative analysis, the variation
of SOC, and the total energy consumption for a typical
driving cycle are shown in Table 3, where FEC is the Fuel
Energy Consumption by ICE (KJ).

Table 3. Comparison of results for proposed
IHHCS and PMP Panday (2016) strategies.

Control Strategy FEC by ICE (KJ) SOC (100%)

PMP 5510 95∼95.011
IHHCS 3732 95∼95.100

From Table 3, it is seen that the proposed IHHCS kept
SOC higher than PMP Panday (2016) and reduce the fuel
consumption up to 30% compared to PMP method Panday
(2016).
From Figures 7 to 11, simulation results indicate that the
proposed online energy management control method can
achieve increased energy efficiency. From the simulation
results, it can be seen that the proposed IHHCS and OFLC
based energy management method can achieve better en-
ergy efficiency compared with traditional SF and PMP
strategies. In addition, we observe that, all power sources
(battery and the ICE) can be operated within their desired
working ranges while satisfying the load demand.

5. CONCLUSIONS AND PROSPECTS

The paper has presented a methodology to design an
online implementable strategy based on the fuzzy neural
control theory. In this paper, an IHHCS strategy to man-
age the power splitting within a HHEVs is presented. It
can be easily implemented in real time because it does not
need prior information about future driving conditions and
can online self-tune the parameters of the proposed fuzzy
controller to adapt to changing conditions. The proposed
IHHCS consists of three control levels. The first level uses
fuzzy PID to track the set points of EM and ICE. At
the second level power source splitting decisions are made
between the EM and ICE based on adaptive NN fuzzy
strategy. Finally, the third level has been developed by
fuzzy strategy to decide the optimal mode of operation.
Through simulation, the following have been verified; (i)
an accurate and reliable model of the BUSINOVA bus
is designed by TruckMaker software; (ii) the proposed
fuzzy logic controller is used to effectively split the torque
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between EM and HM via ICE; (iii) the proposed fuzzy
controller parameters are found by optimization; (iv) an
online learning control strategy based on fuzzy neural-
learning has been proposed to minimize the fuel con-
sumption for a HHEVs and maximize the global vehicle
efficiency; (v) it can be used for both offline and online; (vi)
rate of charge of the battery is limited to minimize aging
effects; (vii) ICE is operated near its optimal range;(viii)
keeping SOC within the range which promotes battery
longevity. Finally, a simulation was provided and the de-
signed controller was proved good performance.
It is planned in near future to implement the overall pro-
posed control strategy on the actual BUSINOVA platform.
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