
Robotics and Autonomous Systems 88 (2017) 51–70

Contents lists available at ScienceDirect

Robotics and Autonomous Systems

journal homepage: www.elsevier.com/locate/robot

Reactive versus cognitive vehicle navigation based on optimal local
and global PELC∗

Lounis Adouane
Clermont Auvergne University, Institut Pascal, UCA/SIGMA - UMR CNRS 6602, France

a r t i c l e i n f o

Article history:
Received 19 October 2015
Accepted 4 November 2016
Available online 16 November 2016

Keywords:
Autonomous vehicle navigation
Hybrid (reactive/cognitive) control
architecture

Obstacle avoidance
Limit-cycle approach
Local and global path planning
Multi-criteria optimization
Optimal planning

a b s t r a c t

This paper addresses the challenging issue of determining the most suitable control strategy (planning–
decision–action and their interactions), for autonomous navigation of vehicles which must deal with
different environments contexts (e.g., cluttered or not, dynamic or not, etc.). The paper’s main proposals
are decomposed into two main parts: Firstly, the proposition of reliable and flexible components to
perform short and long-term planning: at beginning, a generic and safe path planning-based on Parallel
Elliptic Limit-Cycle (PELC) and its multi-criteria optimization (PELC∗) have been proposed to perform
either reactive or cognitive navigation. Afterward, it is proposed to suitably sequence several PELC/PELC∗
in order to obtain an optimal global path-based on PELC (gPELC∗). Secondly, this paper proposes an
overall Hybrid (reactive/cognitive) multi-controller architecture for autonomous navigation using PELC∗
and gPELC∗. This architecture has been designed in order to use a uniform set-points convention and a
common control law to perform several sub-tasks (e.g., obstacle avoidance, target reaching/tracking, path
following, etc.). Amultitude of simulations and a real experiment have been performed in order to confirm
the potentialities of the overall proposed methodology.

© 2016 Elsevier B.V. All rights reserved.

1. Introduction

Toperform fully autonomous robot navigation,while having ac-
curate perception and localization capacities [1–3], the robotmust
also have the ability to be controlled online in different kinds of
environments (e.g., cluttered or not, dynamic or not, uncertain or
not, etc.) and to react safely to unpredictable events. Thus, the
used control architecture must permit us to answer this important
question ‘‘How do we reach safely and efficiently a predetermined
location in an environment while taking into account available en-
vironmental knowledge (the road limits for instance) and reacting
online to unpredictable events (e.g., other robots, obstacles, etc.)?’’.

Furthermore, it is not sufficient to guarantee only the reliability
and the safety of the navigation; the robot must also ensure, in
transportation applications for instance [4,5], smooth navigation
for the comfort of the passengers. In [6], the author character-
izes this smooth navigation while using a cost function which
reflects the trade-off between the travel time and the integral of
acceleration (which characterizes the jerking amount of angular
and linear robot velocities). Fully autonomous navigation needs
therefore to satisfy simultaneously amultitude of criterion. For this
aim it is important to have a reliable, safe and flexible control archi-
tecture [7]. Several navigation strategies (using dedicated control
architectures) have been proposed in the literature. They permit

E-mail address: Lounis.Adouane@univ-bpclermont.fr.

autonomous navigation even in dynamic and cluttered environ-
ments. This means that ‘‘obstacle avoidance’’ function is always
an important primitive and is tightly inherent to the performed
autonomous navigation strategy. Thus, special attention should
be taken for its development [7]. The generic proposed obstacle
avoidance primitive will be detailed in Section 3.1.1.

1.1. Reactive versus cognitive control architecture

Control architectures can be split into two categories: Cognitive
and Reactive. The cognitive (or deliberative) architectures make
their main focus on the path/trajectory1 planning and re-planning
[8], while generally taking into account the overall environment
knowledge. The obtained trajectory takes into account all obstacle
configurations (and maybe their dynamic) in the planning step. In
fully cognitive navigation, once a trajectory is obtained, the robot
follows it as accurately as possible using the dedicated or generic
control laws, for instance using the well-known laws proposed in
[9] or [10]. A multitude of methods exist in the literature to deal
with path/trajectory planning, among them: Artificial Potential
Field (APF) [11]; Voronoï diagrams [12]; visibility graphs [13]; nav-
igation functions [14] or planning based on grid map [2]; Rapidly-
exploring Random Tree (RRT) [15], Sparse A∗ Search (SAS) [16]. It

1 It is to be noted that the term trajectory or path are used according, respectively,
if the time is taken or not into account during the planning phase.

http://dx.doi.org/10.1016/j.robot.2016.11.006
0921-8890/© 2016 Elsevier B.V. All rights reserved.

http://dx.doi.org/10.1016/j.robot.2016.11.006
http://www.elsevier.com/locate/robot
http://www.elsevier.com/locate/robot
http://crossmark.crossref.org/dialog/?doi=10.1016/j.robot.2016.11.006&domain=pdf
mailto:Lounis.Adouane@univ-bpclermont.fr
http://dx.doi.org/10.1016/j.robot.2016.11.006

52 L. Adouane / Robotics and Autonomous Systems 88 (2017) 51–70

is commonly used in cognitive control architectures a pre-planned
reference trajectories, whichmeans that they are properly selected
before robot movement [17]. The majority of the cited techniques
could be used even for short or long-termpath/trajectory planning.
In the first case, these techniques could be used for reactive navi-
gation. The focuswill bemade inwhat follows on the case of global
path/trajectory planning to perform cognitive navigation (from the
initial robot configuration to a desired final configuration in the
environment). APF methods [11,14] are among the most dissem-
inated works in the literature due mainly to their simplicity and
intuitive use. For instance, authors in [18] used this technique for
planning and re-planning missions for a group of mobile robots in
cluttered and dynamic environment. Although the obtained results
gave an interesting tool for decision making (which trajectory to
take by each robot) in complex context as the multi-robot and
multi-target reaching, the obtained trajectories did not take into
account neither the robots’ structural constraints nor the effective
obstacles shapes. Therefore, in certain configurations the planned
mission cannot be achieved. It is to be noted also that the main
drawbacks of the APF techniques are linked to the oscillations and
local-minimum configurations [19]. Several other techniques, use
explicitly the obstacles shapes/dimensions to obtain the suitable
robot’s path. For instance, Voronoï diagrams [12] permits to the
robot to navigate at equidistant value from all the surrounded
obstacles. The obtained path corresponds therefore to the safest
path, but it does not integrate, with straightway, neither other
optimal criteria nor the robot’s kinematics constraints. A large class
of road-map based techniques [15,16] uses optimization process to
choose one trajectory among a set of admissible ones [20–22]. For
instance, optimal RRT (symbolized by RRT∗) [22] permits to obtain
a random tree containing an important number of admissible tra-
jectories which could take into account the robot kinematics con-
straints. Once the overall tree is obtained, the algorithm consists to
choose the optimal trajectory according mainly to a safety criteria
and/or to the minimum path length. In RRT as well as in RRT∗,
each branch of the tree is expanded in privileged direction given
by a probabilistic process [15,22]. The new branches are obtained
usually using simple maneuvers, while maintaining the robot ve-
locities constant (linear and angular) for a certain amount of time
δT . According to the number of iterations but notably also to the
number of the chosen discrete velocities values and to δT , the CFree
environment could be explored exhaustively or not. In fact, more
the number of discrete possible velocities is high and δT small,
more is important the explored CFree and consequently also the
time to obtain the result. In the above cited methods, it is possible
to deal with a changing environments while regularly re-planning
the robot’s trajectory [23,24]. Therefore, in real motion conditions
where the environment could be very cluttered, uncertain and/or
highly dynamic, these methods may not be efficient, due among
others things, to significant computational time related to these
planning and re-planning phases [7,22,25].

The other part of the literature, categorized as reactive, con-
siders that a robot needs to respond in real time to its current
perceptions [26–28] and requires therefore less knowledge about
the overall environment state. Local sensor information is used
rather than a prior important knowledge on the environment [29–
31]. The robot reacts therefore with stimuli-response behavior
(generally qualified as bio-inspired [32]) and it does not need
any important planning process to achieve the navigation. In fully
reactive navigation, at each sample time, the robot must follow a
defined set-points, according to its local perceptions and current
objectives (for instance, reach a pre-defined location). The obsta-
cles/walls/pedestrians/etc. are therefore discovered and avoided
in real time. In [11] the author proposes a real time obstacle
avoidance approach based on the principle of artificial potential
fields. He assumes that the robot’s actions are guided by the sum

of attractive and repulsive fields. In [27] author extends Khatib’s
approachwhile proposing specific schemamotors formobile robot
navigation. Another interesting approach, based on a reflex behav-
ior reaction, uses the Deformable Virtual Zone (DVZ) concept, in
which the robot’smovements depend on risk zone surrounding the
robot [33]. If an obstacle is detected, it will deform its DVZ and the
approach consists of minimizing this deformation by modifying
the control vector. This method deals with any obstacle shape,
however, it suffers as schemamotors from local minima problems.
In general, this school of thought (the reactive one) does not
require high computational complexity since the robot’s actions
must be given in real time according to local perceptions [34].
Obviously while taking this approach for robot’s navigation, the
overall robot movement (from its current robot location to the
final desired location) cannot be considered as optimal, mainly
if the environment is complex with a multitude of obstacles and
maybe trapped regions [35]. In fact, since the robot’s actions are
guided only by local perceptions, the global optimality cannot be
demonstrated in advance.

1.2. Hybrid control architecture

More and more control architectures exhibiting hybrid struc-
ture (reactive/cognitive) appear in the literature. This allows to
take the advantages of the both structures while minimizing their
drawbacks [36–40]. An interesting survey of 22 control architec-
tures has been given in [39], highlighting among other things, how
developments for Unmanned Grounded Vehicles (UGVs) architec-
tures have been extended for autonomous underwater vehicles
(the addition of the 3D navigation and the specificity of the sea
environment). Usually in the literature, a consensus is adopted
for the structure of hybrid control architecture which is generally
structured in three layers: the highest level is responsible for mis-
sion planning and re-planning; the intermediate layer activates the
low-level behaviors and permits passing of parameters to them;
while the lowest level layer is the reactive layer and contains the
physical sensor and actuator interfaces. The cognitive part (high-
est level) contains generally a symbolic world model (based on
artificial intelligence concepts), which develops plans and makes
decisions on theway to perform the robot’s objectives. The reactive
part (the two other lower levels) are responsible for reacting to
local events without complex reasoning. Nevertheless, generally
the structural conception of these hybrid architectures remain too
complex to manage the different levels of hierarchy imposed by
this kind of architectures [41–43]. They are also low harmonized
to deal with the effective set-points to send to the robot actuators
(lowest level). Efforts have concentrated on the conceptual aspects
(using for instance themulti-agent paradigm tomanage themulti-
layered proposed architectures [44–46]) and less on the overall
architecture simplicity, genericity and its effective implementation
on the robot [47,18]. Indeed, even if the control architecture must
show a good level of knowledge abstraction and decision, it is
important to translate them in terms of low-level robot control
set-points to exhibit clearly its effects on the robot’s movements,
which permit at its turn to attest on the safety and on the overall
control architecture stability [31,48].

This paper proposes a new Homogeneous and Hybrid (reac-
tive/cognitive) Control Architecture (HHCA) for vehicles navigating
in different kinds of environments (cf. Section 4). This architecture
permits to simply link the set-points defined by the cognitive or
reactive levels to the effective control of the vehicle’s movements.
It is to be noted that the proposed hybrid control architecture uses
a new proposed flexible and safe limit-cycle trajectories, called
Parallel Elliptic Limit-Cycle (PELC, cf. Section 3.1.1) to perform
either reactive (cf. Section 4.4.1) or cognitive (cf. Section 4.4.2)
vehicle’s navigation. The proposed PELC, could be used either as

L. Adouane / Robotics and Autonomous Systems 88 (2017) 51–70 53

(instantaneous or short term) a local planner or as a global planner
(more cognitive approach) when the overall environment is well
known. The proposed PELC constitutes therefore a homogeneous
and accurate tool to define the vehicle’s behaviors and missions.
It is important to mention also that either in cognitive or reactive
mode, the vehicle is controlled with the same control law (cf.
Section 4.2). The proposed overall control architecture takes into
account: robot structural constraints (e.g., nonholonomy); avoid
command discontinuities and set-points jerking, etc. Thus, the ef-
ficiency, the safety and the stability of the overall control architec-
ture could be rigorously demonstrated and analyzed. Otherwise, an
appropriate hierarchical process of selection is defined to manage
the different navigation contexts (cf. Section 4.4.3).

The rest of the paper is organized as follows. Section 2 presents
the adopted overall navigation framework and the specification of
the task to achieve. In Section 3 the different proposed elementary
components for planning will be detailed before to focus on the
multi-criteria optimization to perform optimal local and global
path planning. Section 4 gives the details and the specificities of the
proposed hybrid control architecturewhile presenting its different
constituting modules. Section 5 is devoted to the description and
the analysis of an extensive simulation results and first experi-
ments. This paper ends with some conclusions and further work.

2. Overall navigation framework definition

Autonomous vehicle navigation aims, in the proposed generic
framework, to lead the vehicle from its initial configuration, to a
final configuration (called final target) while avoiding any obstacle
(which could have different shapes, cf. Fig. 1). This navigation
could be done even with reactive control (while acting online
according to the vehicle’s local perception, cf. Section 4.4.1) orwith
cognitive control (while following an already planned trajectory,
cf. Section 4.4.2). The desired vehicle’s movement needs to be safe
and smooth along all its displacement. One supposes in the setup
that the vehicle and the final target to reach are surrounded by
circle shapes with a radius RR and RT respectively (cf. Fig. 1). For
the obstacles/walls, it is supposed that they can be surrounded
by appropriates ellipses (cf. Fig. 1), given by Eq. (1). An ellipse is
defined in what follows by:

a(x− h)2 + b(y− k)2 + c(x− h)(y− k) = 1 (1)

where:

• h, k ∈ R, are the coordinates of the ellipse center,
• a ∈ R+, is related to the half-length A = 1/

√
a of the

ellipse’s longer side (major axis),
• b ∈ R+, is related to the half-length B = 1/

√
b of the

ellipse’s shorter side (minor axis), thus b ≥ a,
• c ∈ R, is related to the ellipse orientation (if a ̸= b) Ω =

0.5atan(c/(b− a)) (cf. Fig. 1). When a = b Eq. (1) becomes a
circle equation (Ω will not give thus anymore information).

The Surrounded Ellipse’s (SE) parameters (h, k, A, B and Ω)
(cf. Eq. (1) and Fig. 1) can be obtained by the mobile robot either
offline (using for instance a roadmap of the static environment) or
online using for example a camera positioned in the environment
[49] or the robot’s telemetric sensors [50]. Among the challenging
aspects when the robot navigates in fully reactive way (thus with
discovering online its environment, cf. Section 4.4.1), is to update
smoothly and efficiently the ellipses’ parameters as the robot dis-
covers the entire shape of the obstacles. In order to perform this
important perceptive functionality, an appropriate weighted least
square method, on the range data given by telemetric sensors, has
been used in [51]. An extension of this last approach while using
Extended Kalman Filter and an appropriate sub-optimal heuristic
method has been developed in [50] and [52].

Fig. 1. Vehicle’s pose and its perceptions for mainly a reactive navigation (cf.
Section 4.4.1). The straight line ‘‘l’’ and the distance DROi are used in Algorithm 3
to obtain the most obstructing obstacle. The parameters (A, B and Ω) characterize
the SEi and the PEIi has a constant offset Kp w.r.t. SEi (cf. Section 3.1.1).

Fig. 2. Different shapes to surround and to safely avoid obstacles. (a) and (b)
Interpolated wall using, respectively, a circle and an ellipse shape. (c) Difference
between Parallel Ellipse and Ellipse of Influence (cf. Section 3.1.1).

It is to be noted that the choice to surround obstacles by an
ellipse shape rather than a circle, as used in several works (as given
in [53,54] or [55]), ismotivated by the fact having onemore generic
and flexible component to surround and fit accurately different
obstacles shapes. Among the examples of shapes which can be
appropriately fitted with an ellipse and less by a circle is a wall (or
in general, any longitudinal or thin objects). Fig. 2 shows this kind
of configuration. In fact, if wewould like to surround thewall given
in this figure by an appropriate circle, this one will have a large ra-
dius which induces longer path to avoid it safely [53] (cf. Fig. 2(a)).
Fig. 2(b) shows that the ellipse better fits the shape of this wall.
This figure shows also uncertain perceptions obtained by infrared
sensors on one side of the wall (left side). Several examples of
vehicle navigation in cluttered andurban/structured environments
will be shown in Section 5. These simulationswill highlight, among
other things, the validity and the relevance to surround different
obstacles/walls/sidewalk/etc. by appropriate ellipses shapes.

After introducing the overall navigation framework and the
different conventions, let us give the details of the main proposed
components to achieve autonomous vehicle navigation.

3. Reliable path planning based on Parallel Elliptic Limit-Cycle
(PELC)

Before giving the details about the proposed optimal local and
global path planning (cf. Section 3.2), let us introduce first in
Section 3.1.1 the common used elementary safe path (for reactive
and/or cognitive navigation), based on a newgenericmathematical

54 L. Adouane / Robotics and Autonomous Systems 88 (2017) 51–70

formulation of limit-cycles. In Section 3.1.2, an appropriate refer-
ence frame is proposed to define the vehicle suitable behavior (e.g.,
attraction, repulsion, avoidance, following).

3.1. Generic components

3.1.1. Elementary PELC
The navigation methodologies based on limit-cycles have been

used in the literature to perform mainly intuitive and efficient
obstacle avoidance behavior [53–56]. They are defined according
to a circular [55] or an elliptic [57] periodic orbit (in the case of an
elliptic orbit, this orbit corresponds to an Ellipse of Influence (EI),
as given in Fig. 2). These periodic orbits can guarantee, if they are
well-dimensioned (far enough from any obstacle) and accurately
followed, to avoid any obstructing obstacle. Themodeling of Limit-
cycles is close to Dynamical System approach (DS, by dynamical
systems it is meant a coupled set of ‘‘n’’ autonomous first-order
differential equations) [58]. This well-known methodology allows
while following its trajectories (DS set-points) to safely avoid ob-
stacles by bypassing them. Nevertheless, DS requires very complex
mathematical modeling to avoid any obstacle’s shape. Contrary to
that, the defined PELC does not need any complex computation,
from the moment that the parameters of the surrounded ellipse
are obtained ((h, k), A, B, Ω , cf. Eq. (1) and Fig. 1). In addition
to obstacle avoidance, the proposed PELC can be easily used for
several vehicle navigation sub-tasks (cf. Section 4.3). Therefore, it
constitutes a uniform tool to perform safe and reliable navigation.
Thework given in [57] has permitted us to extend possible circular
orbital limit-cycles (COLC) to elliptical orbital limit-cycles (EOLC,
represented by PEI in Fig. 1), where COLC is only a particular case
of EOLC when the major axis is equal to the minor axis. In this
paper, an evenmore generic formulation of limit-cycle trajectories
is proposed, permitting us to obtain an orbital Parallel Elliptic
Limit-Cycle (PELC). This PELC has a constant offset according to the
surrounded ellipse (cf. Fig. 1). Before giving more details about the
new proposed PELC, let us give a short definition of the general
principle of parallel curves, frequently called for mathematical
definition ‘‘offset curves’’ [59]. These curves are obtained from a
base curve by a constant offset, either positive or negative, in the
direction of the curve’s normal. The two branches of the parallel
curve at a distance Kp away from a parametric representation of
the base curve (f (t), g(t)) are given by:

x = f ±
Kpġ√
ḟ 2 + ġ2

; y = g ∓
Kp ḟ√
ḟ 2 + ġ2

; (2)

where ḟ = df /dt and ġ = dg/dt . It is important to mention that a
parallel curve to an Ellipse is not an Ellipse (but an equation of 8th

order) [60], except obviously if the offset Kp = 0.
The differential equations defining the proposed PELC are given

as follows (cf. Fig. 3(a)):

ẋs = rys + µxs(1− Ψ)
ẏs = −rxs + µys(1− Ψ) (3)

where:

• Ψ = [4(z21 + 3z2)(z22 + 3z1z3) − (z1z2)2 + 18z1z2z3]/(9z3)2,
with: z1 = x2s +y2s −K 2

p −A2
−B2; z2 = B2x2s +A2y2s −A2K 2

p −

B2K 2
p − A2B2 and z3 = (ABKp)2.

• (xs, ys) correspond to the position of the vehicle according to
the Surrounded Ellipse (SE) center (cf. Fig. 1).
• r = 1 for clockwise trajectories (cf. Fig. 3(a)) and r = −1 for

counter-clockwise trajectories (cf. Fig. 3(b)).
• A and B characterize, respectively, major and minor SE axes

(cf. Fig. 1).

(a) Clockwise.

(b) Counter-clockwise.

Fig. 3. Shape possibilities for the used Parallel Elliptic Limit-Cycles.

• Kp corresponds to the offset of the PELC with regards to SE.
This offset is equal generally to the dimension of the vehicle
(RR) (cf. Fig. 1) plus a certain margin which corresponds to
a safety tolerance including: perception uncertainty, control
accuracy, etc.
• µ ∈ R+ a positive constant value which allows us to

modulate the convergence of the PELC. The convergence is
as slow as µ is smaller, which permits us also to obtain
smoother PELC (cf. Fig. 4).

The PELC given by Eq. (3) could also be defined according to an
absolute reference frame (cf. Fig. 1). Indeed, it is enough to apply
a translation (h, k) and a rotation Ω w.r.t. this absolute reference
frame. In Fig. 3 (a) and (b), the shown PELCs are characterized by: a
center (1, 1), i.e., h = 1 and k = 1; an orientation Ω = π/4; a half
major andminor axes equal respectively to A = 1 and B = 0.25; an
offset Kp = 0.5, and finally µ = 1. It is observed that the PEI given
by (h, k, Ω , A, B, Kp)= (1, 1, π /4, 1, 0.25, 0.5) is a periodic orbit.

The trajectory which has this kind of periodic orbit is called a
Parallel Elliptic Limit-Cycle (PELC). The trajectories from all points
of the XGYG global reference frame, including inside the PEI, move
toward it (cf. Fig. 3). To demonstrate analytically the validity of
the result for any initial state of the PELC, the following Lyapunov
function is used:

V (x) = (1/2)(x2s + y2s). (4)

L. Adouane / Robotics and Autonomous Systems 88 (2017) 51–70 55

Fig. 4. Reference frame linked to each PELC and different PELC shapes according to
the value of µ. JDistanceToPTi will be used in Section 3.2.1 as a sub-criteria to evaluate
each PELC.

V (x) gives thus an indication of the distance progress between the
point (xs, ys) and the origin (0, 0). The derivative of V (x) along the
trajectories of the system is given by:

V̇ (x) = xsẋs + ysẏs.

After replacing ẋs and ẏs with equations given in (3), it is obtained
finally:

V̇ (x) = µV (x)(1− Ψ). (5)

Knowing thatµV (x) is always positive, the sign of the derivative of
V̇ (x) is defined:

• Negative if (1−Ψ) < 0, thus if the initial condition (xs0, ys0)
is outside the PEI (given by equation Ψ = 1), which means
that V (x) will decrease since (1− Ψ) < 0,
• Positive if the initial condition is inside the PEI (1−Ψ) > 0,

which means that V (x) will increase.

Therefore, according to this two ensured behaviors of V (x) (neg-
ative or positive progress) according where the point is (outside
or inside the PEI given by Ψ = 1), allows us proving that Ψ =

1 is always a periodic orbit of the PELC. One can also say from
Eq. (5) that, higher is the value ofµ, more is the limit-cycle velocity
converges toward its periodic orbit (the opposite is true, cf. Fig. 4).

It is important to notice that contrary to a standard Ellipse
of Influence (EI, as defined in [57] (cf. Fig. 2(c))) the PEI (the
PELC final orbit attractor) allows to always guarantee an effective
minimal distance w.r.t. the contours of the ellipse surrounding the
obstacle (SE in Fig. 2(c)). This constant offset is equal to Kp as given
above. Indeed, while using the formulations given in [57], the EI is
obtainedwhile fixing its halfmajorAlc andminor Blc axes according
to (A, B) of the SE, it was used Alc = A + Kp and Blc = B + Kp.
Nevertheless, this formulation permits us to ensure accurately this
minimal distance (Kp) only in 4 points corresponding to minor and
major end-point axes, as given in Fig. 2(c). Indeed, in this figure
it is shown the difference between obtained PEI and EI, when:
A = 1m; B = 0.05m and Kp = 0.25m. As maximum difference,
a maximal error of 0.1m is obtained, which corresponds to an

error rate of 40%, which is, too important if we want to ensure
safe vehicle navigation in all situations. Obviously we can increase,
according to this maximum error rate, the value of Kp, but this will
not lead to an optimal path length. It is also important to note that
the error rate is as big as the obstacle is more longitudinal (i.e.,
A ≫ B). The proposed PELC allows, in addition to having safer
and reliable navigation, to obtain smooth and flexible navigation
in different environments (e.g., cluttered or not, structured or
not, cf. Section 5). For instance, the walls/sidewalks limits in an
urban environment could be surrounded by a very thin PEI (cf.
Section 5.1.1).

Once the formulation and the interesting features of the pro-
posed PELC have been given, let us introduce in the following
Section 3.1.2 the details of their use for obstacle avoidance as well
as for simple attractors toward specific targets in the environment.
These PELC trajectories will constitute therefore a common tool for
different vehicle’s behaviors, and it will be used either for reactive
or cognitive navigation (cf. Section 4.4).

3.1.2. References frame linked to the task achievement
For simple and efficient description of vehicle navigation in any

kind of environment, it is proposed in what follows a specific ref-
erence frame assigned for each obstacle / wall / target / etc. inside
the considered environment (or at least for each element inside the
vehicle’s field of view). These specific references frames will guide
the vehicle behaviors and permit us to evaluate the success of the
current achieved sub-task (e.g., wall following, obstacle avoidance,
target reaching/tracking, etc.). Each elementary reference frame
will orient thus locally the achievement of the vehicle navigation
toward its final objective. A kind of analogy could be established
with robot manipulator modeling. In fact, when we would like to
control the movement of a robot end-effector (w.r.t. its base), it
is assigned for each articulation an appropriate reference frame
while using dedicated conventions [61,62]. These local reference
frames are mainly used to express simply the local elementary ar-
ticulations’ movements (translation / rotations) in order to obtain
the desired final end-effector movement. The context of vehicle
navigation is obviously different but the proposed reference frames
will similarly lead to make a reasoning on the efficiency of the
vehicle movements in order to reach its final objective. To define
each specific reference frame, it is mandatory to fix its center and
its axes orientation. These will be specified in what follows.

Let us start to define the reference frame linked to each obstacle
(wall or any object which could obstruct the vehicle’s movement).
These one will have a specific reference frame (ℜOT) permitting
us to define the obstacle avoidance sub-task achievement while
knowing the localization of the vehicle according to it (cf. Sec-
tion 4.4).ℜOT is obtainedwith a simple geometric construction and
has the following features (cf. Fig. 4):

• XOT axis connects the center of the obstacle (xO, yO) to the
center of the final Target (xf , yf). This axis is oriented toward
this target.
• the YOT axis is defined by two points PT1 and PT2, which

correspond to the tangent points between the two straight
lines coming from the final target (xf , yf) and the Parallel
Ellipse of Influence (PEI). YOT axis is orientedwhile following
trigonometric convention.

The axes XOT and YOT intersect on the pointOOT = (xOT , yOT) and
they have an angle ϕ between them. To guide the vehicle’s future
movements (cf. Section 4.4), it is important to define its localization
w.r.t.ℜOT . One needs, therefore, tomake a transformation from the
global reference frame XGYG to the local reference frame XOTYOT .
Knowing that XOTYOT is not necessarily orthogonal, it proceeds
with two steps:

56 L. Adouane / Robotics and Autonomous Systems 88 (2017) 51–70

1. Transformation of the vehicle localization (x, y)G from the
global reference frame to an Intermediate orthonormal ref-
erence frame which has as center (xOT , yOT) and X axis =
XOT . The following homogeneous transformation is used (cf.
Fig. 4):⎛⎜⎝x
y
0
1

⎞⎟⎠
OTI

=

⎡⎢⎣cosα − sinα 0 xOT
sinα cosα 0 yOT
0 0 1 0
0 0 0 1

⎤⎥⎦
−1⎛⎜⎝x

y
0
1

⎞⎟⎠
G

. (6)

2. Once xOTI and yOTI are obtained for this Intermediate trans-
formation, we can obtain finally the localization of the vehi-
cle (xRO, yRO) w.r.t. ℜOT as follows (cf. Fig. 4):⎧⎪⎨⎪⎩

xRO = xOTI − yOTI
cos(ϕ − α)
sin(ϕ − α)

yRO =
yOTI

sin(ϕ − α)
.

(7)

It is to be mentioned that (ϕ − α) ̸= 0 modulo π . It is always
true because the axes XOT and YOT are never parallel (or co-linear)
from the moment that: (xf , yf) is outside of the PEI attributed to
the considered obstacle and that the obstacle exists effectively (its
A and B features ̸= 0). According to that, sin(ϕ−α) (used in Eq. (7))
is always ̸= 0.

The main idea to use this essential component (ℜOT) is to
determine which PELC parameters, the vehicle must follow to
avoid for example an obstacle. In fact, once the transformation
from the global frame XGYG to the local reference frame XOTYOT
is obtained, it is enough for instance to check the sign of the
vehicle’s localization according to the axis XOT to assign the vehicle
appropriate behavior (cf. Section 4.4). For instance, if the sign of xRO
is negative, the vehicle must follows the defined PELC (to avoid the
obstacle) and if positive the vehicle can consider that the obstacle
is not an obstructing obstacle and can go thus straight toward its
final target (cf. Fig. 4). At the condition obviously that there is no
other constrained obstacle; if not, the process will be reiterated
(cf. Section 4.4.1).

In previous works [55,57], the sign yRO (ordinate of the robot in
ℜOT) has been used to determine the right direction to avoid the
obstacle. If yRO ≥ 0 then apply clockwise limit-cycle direction else
apply counter-clockwise direction (cf. Fig. 3). This simple rule per-
mits to reduce the length of robot trajectory in the case where the
obstacle is surrounded by a circle. In Section 3.2.1, the optimality
of the followed PELC will be presented while determining its best
direction and shape. This will be done while obtaining the optimal
value of µ (cf. Eq. (3)).

It is important to note that each final target T = (xf , yf) in the
environment will be assigned also a reference frame (ℜT) which
has as a center (xf , yf) and as axes, orthogonal one, oriented as
the axes of the global reference frame. This description permits
the homogenization of using these references frames for all the
objects/targets present in the environment. Thepertinence of these
references frames will be shown notably in the following section.

3.2. Optimal local and global path planning

It is proposed in what follows to obtain a generic way to en-
hance the use of the already presented PELC, to perform opti-
mal: local obstacle avoidance as well as global robot navigation
in cluttered environments. These optimized components (PELC∗
(cf. Section 3.2.1) and gPELC∗ (cf. Section 3.2.2)) will be afterward
integrated in a Hybrid (reactive/cognitive) multi-controller archi-
tecture (cf. Section 4) and will constitute a homogeneous way
to obtain the vehicle’s set-points. It is to be noted that further
discussions about the proposed multi-criteria optimization will be
given in Section 3.2.3.

3.2.1. Local path generation based on PELC*
Knowing the features of the Surrounded Ellipse (cf. Fig. 1) (i.e., h,

k,Ω , A and B) and the desired offset (safe distance Kp (cf. Eq. (3))) to
the obstacle, it is shown in what follows how to obtain the optimal
value ofµ∗ which permits us tominimize amulti-criteria function.
This latter, called J (cf. Eq. (8)), gather different important sub-
criteria linked to the features of the corresponding PELC path. In-
deed, according to the value ofµ in the PELCEq. (3), the shape of the
obtained limit-cycle can converge quickly or not to the assigned
PEI (cf. Fig. 4), but what is the optimal value of µ∗ to minimize
the multi-criteria J? It is important to note that J evaluates the
obtained PELC path while taking into account: the vehicle kine-
matic constrains, the actual applied control law (cf. Section 4.2),
the initial vehicle configuration (x, y, θ) (cf. Fig. 1) and its final
reached configuration (corresponding in what follows to the PELC
configuration when it reaches the axis YOT (obstacle) or YT (final
target) (corresponding to JDistanceToPTi and JDistance_gPELC_FinalTarget in
Fig. 4 and Eq. (12) respectively)). These considerations permit us
to obtain new planned paths based on PELC which can be actually
followed by the vehicle.

J = w1JDistanceToPTi + (1− w1)JPELCLength + w2JPELCCurvature
+w3BoolMaximumCurvature + w4BoolCollision

(8)

where:

• wi | i = 1..4 ∈ R+ are constants permitting to give the
right balance between the different sub-criteria character-
izing the computed PELC. The criteria J is defined therefore
according to the vector WPELC = {w1, w2, w3, w4}. It is to
be noted that the weight w1 ∈ [0 1] and permits, as given
in Eq. (8), to balance between the values of JDistanceToPTi and
JPELCLength sub-criteria.
• JDistanceToPTi corresponds to the distance between the final

reached position of the computed PELC and one among the
points PTi | i = 1..2 (chosen according to whether the PELC
is obtained for clockwise or counter-clockwise avoidance
(cf. ‘‘r ’’ in Eq. (3)). For instance, Fig. 4 shows the value of
JDistanceToPTi=2 for a counter-clockwise PELC with µ = 0.1.
• JPELCLength corresponds to the curvilinear length of the ob-

tained PELC. It is computed using the following equation.

JPELCLength =
∫ sf

s0

ds (9)

where s0 and sf correspond respectively to initial and final
curvilinear abscissa of the obtained PELC.
• JPELCCurvature characterizes the PELC curvature along its length.

It is computed using the following equation.

JPELCCurvature =
∫ sf

s0

C(s)2 ds (10)

where C(s) is the curvature at the abscissa s, C(s) = 1/ρ(s)
with ρ(s) the radius of curvature at s abscissa.
• BoolMaximumCurvature corresponds to a Boolean value, which

is equal to 1 if the maximum possible vehicle curvature is
reached (cf. Section 4.2). It is to be noted that the weightw3,
linked to this sub-criteria, is a big positive value so that the
overall criteria J will be highly penalized if the obtained PELC
has at least one configuration where the vehicle must attain
its maximum curvature (maximum steering angle) [63].
• BoolCollision corresponds to a Boolean value, which is equal to

1 if the vehicle collides with at least one Surrounded Ellipse
in the environment (cf. Fig. 1). It is to be noted that the
weight w4, linked to this sub-criteria, is a very big positive
value −→ ∞ so that the overall criteria J −→ ∞ if any
obstacle is collided.

L. Adouane / Robotics and Autonomous Systems 88 (2017) 51–70 57

To obtain µ∗ optimizing the PELC (cf. Eq. (3)) according to the
multi-objective function J , the parametric optimization ∂ J/∂µ = 0
should be computed. The mathematical formulation of this prob-
lem is highly non-linear, and the analytic solution is therefore
complex to get. In this paper a numerical optimization (using
iterative dichotomy for instance) is used to obtain µ∗.

An important assumption in the proposed optimization is the
fact that the vehicle, in order to perform its navigation, must
deal with sequentially only one obstacle/target at a time, until
reaching its corresponding axis YOT (or YT), and switching to the
other obstacle/target and so on until reaching the YT axis of the
final target. In each elementary optimization, the obtained PELC∗
will permit either an obstacle avoidance behavior or an attraction
toward a target. In these two optimizations, the parameters of the
obtained PELC∗ are respectively:

• PELC∗((h, k), Ω, (A, B, Kp), µ∗), where h, k, Ω, A and B are
the features of the detected obstacle and Kp the desired safe
distance to this obstacle.
• PELC∗((xf , yf), 0, (ξ, ξ , ξ), µ∗), where (xf , yf) is the position

of the final target to reach and ξ is a very small value−→ 0.

This common description based on PELC permits us to have a
homogeneous way to perform all the possible vehicle behaviors
(i.e., obstacle avoidance and target reaching). Indeed, since in all
the cases, the PELC will converge toward its PEI, it is enough to tell
that even for the target reaching behavior, a PELC could be used
efficiently. It is to be noted, as given in Section 2 and in Fig. 1, the
main target to reach has a radius RT , which means that the target
is considered reached as soon as the robot-target distance is lower
than RT .

These two elementary behaviors will be used to deal with
different environments (cf. Sections 4.4 and 5.1) while performing
either reactive or cognitive navigation, but first, let us introduce
the proposed methodology to obtain long-term vehicle planning
while using a sequence of appropriate PELC.

3.2.2. Global path generation based on gPELC*
This subsection has as objective to present the proposed opti-

mal overall methodology, based on PELC, to lead the vehicle from
its initial posture P0 = (x0, y0, θ0, γ0) (cf. the used vehicle model
in Section 4.2) to a final assigned posture Pf = (xf , yf , Ξ , Ξ),
where (xf , yf) corresponds to the position of the final target and
Ξ symbol means here, any real value. Indeed, in this paper, the
values of the final vehicle’s heading θf and front wheels angle γf
are not imposed. The optimalmethodology aims to connect several
PELC to reach Pf while allowing us to guarantee the safety and
the smoothness of the obtained global path-based on PELC (called
gPELC). The targeted smooth path will permit to generate smooth
set-points for the control law, allowing thus to avoid the actuators
jerking which ensures the passengers’ comfort and preserves the
actuators’ lifetime [6]. Obviously, the aim of the proposed optimal
methodology is to ensure also the continuity of the vehicle heading
θ and the wheels orientation γ (cf. Fig. 7), even at the connection
point between the PELCs.

To formalize the optimal path planning using a sequential con-
catenation of PELCs (gPELC∗), let us use Graph Theory [64,65],
through a shortest-path problem to optimize the several possible
gPELCs. In graph theory, the shortest-path problem corresponds to
finding a path between any two vertices (or nodes) in a graph such
that the sum of the weights of its constituent edges is minimized.
It is shown in Section 3.2.1 that according to the value of µ the
shape of the obtained PELC changes (cf. Fig. 4) and consequentially
the value of J (cf. Eq. (8)). The main idea is therefore to obtain the
sequence of elementary PELC (with appropriate values of µ and
direction (clockwise or not, according to the value of r in Eq. (3))

which permit us to minimize the sum of costs leading the vehicle
from P0 to Pf .

It is supposed in what follows the presence of N obstacles in
the environment, each one has an identification number id and is
surrounded by an appropriate Parallel Ellipse of Influence (PEIid, cf.
Fig. 1). PEIid is characterized by [(hid, kid), Ωid, (Aid, Bid, Kp id)] (cf.
Eq. (1) and Section 3.1.1). id corresponds to the identifier of the
obstacle id = {1, . . . ,N} or to id = f if the PEI is linked to the
final target. For easy understanding of the proposed overall optimal
planning given in Algorithm 1, some definitions / conventions will
be given below to formalize the optimization problem, using graph
theory, more specifically while using a Tree structure:

• A Tree (T) is a directed rooted Graph in which any two
vertices are connected by exactly one path (without closed
loops (cycles)). The tree T is characterized by T = (V, E),
where V and E are respectively the set of all vertices and all
the edges of the obtained T.
• Each vertex vj ∈ V is characterized by a state vj ≡

[(xj, yj, θj, γj), Parent(vj))] = [Pj, vi] (where Pj corresponds
to the vehicle’s set-point when it will reach the vertex vj).
The tree root v0 does not have any parent, v0 ≡ [P0, 0]. The
vertex v0 alone corresponds to level 0 (Level0) of T and is
characterized by a set of vertices represented by S0 = {v0}.
Si will correspond therefore to Leveli of the tree and will
contain all the children vertices generated from vertices of
Si−1 set. Each vertex vj ̸= v0:

– holds, as given above, the value of its parent vi in T.We
can write thus vi = Parent(vj) and vj = Child(vi), vi and
vj are adjacent vertices.

– contains the final state of one PELCj
i (when first reach-

ing the Y axis of the reference frame vj). The symbol
‘‘ ’’ expresses the fact that the considered vertex vj
is defined w.r.t. the reference frame linked to one
obstacle or to the final target (cf. Section 3.1.2). In that
case, it is written: vj ℜid.

• Each edge eji ∈ E is characterized by a state eji ≡ [PELC
j
i, J

j
i],

where PELCj
i ≡ PELCj

i(PEIid, r, µ) corresponds to a Parallel
Elliptic Limit-Cycle linking the vertex vi to vj ℜid. This
PELCj

i has as the initial state, the posture defined in vi and as
final state, the posture defined in vj. PELC

j
i is characterized

also by r and µ which correspond respectively to the PELC
direction and specific shape (cf. Section 3.1.1 and Fig. 4).
PELCj

i permits to reach vj from vi (cf. Eq. (3)). The edge eji has
aweight J ji ≡ J ji (PELC

j
i) corresponding to the PELCj

i cost given
by Eq. (8).
• The number of children (or also growing branches/edges)

from each vertex vi is fixed in the proposed Algorithm 1
through the pre-fixed constantm ∈ N+. This algorithm pro-
poses to generate m PELC in each direction (clockwise and
counter-clockwise, i.e., r will be equal to±1 respectively in
Eq. (3)). In each direction, several PELCs are generated for
each µ value given in a predefined set Sµ = {µ1, . . . , µm}.
Each generated PELC will be defined either according to the
final target or to the obstacleid (cf. Algorithm 1). It is to be
noted that if m = 1, the idea is to generate an optimal
PELC∗ (cf. Section 3.2.1) in clockwise and another in counter-
clockwise direction respectively. Furthermore, if m > 1,
then the chosen fixed values of µ are those which show
the large shape possibilities of the PELCj

i (slow and quick
convergence toward the PEIid (cf. Fig. 4), where vj ℜid).
For example if the slow and quick convergence correspond
respectively to µmin and µmax, then the m values of µ ∈

Sµ will be given by {µmin, µmin + δµ, . . . , µmin + (m −

58 L. Adouane / Robotics and Autonomous Systems 88 (2017) 51–70

1)δµ, µmax}, where δµ = ((µmax − µmin)/m). Obviously,
more is important the value of m closest is gPELC∗ to the
optimal effective path (linking P0 to Pf). It is to be noted that
if T has n+1 vertices, therefore Twill have n edges. The tree’s
size, given by |E|, corresponds to the number of edges. The
number of vertices if each vertex generates 2m children is
given by the following formula:

1+ 2m+ (2m)2 + · · · + (2m)h =
(2m)h+1 − 1

2m− 1
(11)

where h corresponds to the greatest level in T (called also
the height of the rooted tree).
• A valid global path, defined by gPELCn, is a path which

starts from v0 and reaches the vertex vn (linked to the
reference frame attributed to the main targetℜf , it is noted
therefore vn ℜf)without any obstacle collision. The gPELCn
is obtained from an oriented graph given by a sequence of
vertices (v,v1, . . . , vn) ∈ V n such that vi−1 is adjacent to vi
and i ∈ {0, 1, . . . , n}. gPELCn is a path of length n from v0 to
vn. It is to be noted that the indexes given to vi are variables
and are not related to any canonical labeling of the vertices
but only to their position in the sequence.
• The optimal path gPELC∗ is a valid global path that over all

possible gPELCn minimizes the function:

G =
n∑

i=1

J ii−1 = w1G1 + (1− w1)G1Bis + w2G2

+w3G3 + w4G4 + w5JDistance_gPELC_FinalTarget

(12)

where:

– wi | i = 1..4 ∈ R+ are the constants defined in
Eq. (8), permitting to give the right balance between
the different sub-criteria characterizing each elemen-
tary computed PELC, to give form to a gPELC. w5 ∈ R+
permits to give more interest to the gPELCn which
has a closest final point (gPELCn(sf) where sf , the final
curvilinear abscissa of gPELCn) to the final target Pf .
This last information is embedded in the sub-criteria
JDistance_gPELC_FinalTarget.

– The global criteria G is defined therefore according to
the vectorWgPELC = {w1, w2, w3, w4, w5} and the sum
of the elementary sub-criteria (cf. Section 3.2.1):
◦ G1 =

∑n
i=1J

i
(i−1)DistanceToPTi

◦ G1Bis =
∑n

i=1J
i
(i−1)PELCLength

◦ G2 =
∑n

i=1J
i
(i−1)PELCCurvature

◦ G3 =
∑n

i=1J
i
(i−1)BoolMaximumCurvature

◦ G4 =
∑n

i=1J
i
(i−1)BoolCollision

To summarize, the idea to obtain the optimal gPELC∗ (cf. Algo-
rithm 1) is to get the optimal sequence of elementary PELC to reach
the main target Pf . The proposed Algorithm 1 permits to obtain
a tree T, containing vertices linked with PELC without collisions,
and with each edge weight obtained while using Eq. (8). Each valid
gPELC permits to start from the vertex v0 to reach vertices ℜf .
The gPELC∗ is the one which minimizes G (cf. Eq. (12)). Finally, the
gPELC∗ contains the optimal sequence of local PELCj

i (with their
values rj andµj). Generally, once the tree T is available, the optimal-
path from the root v0 to a vertex vn (vn ℜf) can be obtainedwhile
using for instance, tree-search-based on Dijkstra’s algorithm [66]
or the well-known Bellman–Ford algorithm.

In order to better explain the main steps of Algorithm 1, an
enough simple environment has been used to perform gPELC*
(cf. Fig. 5). As shown in this figure, Algorithm 1 proceeds first
with trying to reach the main final target starting from the initial
vehicle configuration by using the different PELC(µ) with different

Algorithm 1: Overall proposed methodology to obtain gPELC∗

Data: Initial vehicle state; Environment features: Obstaclesid=1,..,N
and Final target position; Sµ = {µk=1,...,m} the set of possible µ

values.
Result: gPELC∗ (optimal global Parallel Elliptic Limit-Cycle)

1 //Initialization
2 S0 = {v0}; //The set of the vertices at Level0 of the tree T//
3 i = 0;
4 while Not all the vertices of Si m Rf do
5 i = i+ 1;
6 //Compute all the PELC: starting from vertices given in Si−1

(which are not m withRf) and targetingRf //

7 PELCf
[j=1,...Card(Si−1)]

(PEIf , r = ±1, Sµ);

8 forall the Obtained PELCf
j do

9 if It does not collide with any obstacle then
10 //vf# exists thus, where ‘‘f#’’ corresponds to the index

number of the vertex m Rf . This implies that a valid
global path could be obtained while knowing all the
antecedents vertices of vf#//

11 Si ← vf#; //Add the vertex to the tree T//

12 ef#j ← J(PELCf
j (PEIf , r, µk)); //Compute the weight of

the edge ef#j //
13 else
14 Obtain the id of the first obstructing obstacle (cf.

Algorithm 3);
15 //Compute all the PELC: starting from the vertex vj and

finishing inRid//

16 PELCidrµ
j (PEIid, r = ±1, Sµ); //Where the index number

‘‘idrµ ’’, is linked to the value of r and µ, corresponds to
the vertex index m Rid//

17 if It does not collide with any other obstacle then
18 if Exhaustive Expanding Tree then
19 //Add all valid vertices

20 Si ← vidrµ ;

21 eidrµj ← J(PELCidrµ
j (PEIid, r, µk));

22 else
23 //Add only the optimal vertex in each

24 direction (clockwise and counter-clock.)//

25 Si ← v∗;

26 ej ← J∗;

27 end
28 end
29 end
30 end
31 end
32 //Apply Dijkstra’s algorithm [66] on the obtained final tree T//
33 gPELC∗ = DijkstraAlgorithm(T);

possible values of µ (taken from the set Sµ which contains only
one value in this simple example) this corresponds to lines 6 and
7 in Algorithm 1. Since this PELC path (numbered (1) and plotted
with ‘‘+’’ symbols to mean invalid PELC, cf. Fig. 5) collides with
obstacle O2, this PELC is stopped and its termination (defined by a
vertex/node)will not be subject to future extension. After that, two
other PELC(µ) are computed (in clockwise and counter-clockwise)
in order to avoid the first obstructing obstacle (cf. lines 14 to 16 in
Algorithm 1). The first PELC (numbered (2)) is stopped because it
collides with O1 and not more extension will be possible from this
PELC (cf. line 17), and the second (numbered (3)) corresponds to a

L. Adouane / Robotics and Autonomous Systems 88 (2017) 51–70 59

Fig. 5. Example of simple simulation highlighting the main steps of Algorithm 1.
PELC paths given by ‘‘+’’ symbols mean invalid PELCs. The others elementary PELC
in dotted colored lines show valid PELCs. The arrows given in solid lines correspond
to the final PELCs configurations.

valid PELC and could be extended, and so on until reaching finally
the reference frame related to the main target.

It is to be noted that the proposed planning based on gPELC∗
(cf. Algorithm 1) uses as RRT∗ [22] a tree of admissible paths
(i.e., without collisions) while using elementary PELC, but contrary
to RRT∗, each individual path (branch) is, in addition to be safer,
is also the most suitable (in certain cases, the optimal one (cf.
Section 3.2.1)) to avoid each obstacle. The obtained overall path-
based on gPELC∗ is therefore closer to the effective optimal path
leading the robot toward its final destination. The computation
time is also much smaller w.r.t. RRT∗, mainly due to the reasoning
proposed for the tree expansion (cf. Algorithm 1), whereas the
tree in RRT∗ is only expanded (randomly) by a constant length,
depending on the adopted constant robot’s velocities and δT (cf.
Section 1.1). Some other comments onAlgorithm1 are emphasized
in what follows.

The Else block given between line 13 and 29 of Algorithm 1,
expresses the fact that, when an obstacleid obstructs one extended
PELCf

i then this obstacleid will be selected as an intermediate orbit
(before reaching the Y axis of ℜf). This will be done while com-
puting another PELCid

i , starting from the same vertex vi but aiming
to terminate in the Y axis of ℜid before adding a new vertex to T,
permitting us to explore further this new branch. Nevertheless, if
this new computed PELCid

i collides with any other obstacle (before
reaching the Y axis of ℜid), this branch is terminated without
adding any new vertex to T. This choice is made to avoid certain
infinite loops and to reduce the number of combination given by
Algorithm 1. This supposition has been also made because if an-
other collision is taken into account, it is obligatory to take this new
obstacle id as a new intermediate orbit, which is in contradiction
with the first supposition, consisting of addressing the case of
the first obstacleid only because it is the first obstructing obstacle
which does not allow PELCf

i to reach the Y axis of the main target
ℜf (from the vertex vi).

Inside this same Else block (line 13 to 29) there is also an
important characteristic to highlight. It corresponds to the If block
(between line 18 and 27) permitting to apply either an Exhaustive
Expanding Tree (EET) or not. If yes, this corresponds to adding to
the tree all the valid vertices and if no, then adding only the optimal
vertices. Consequently, in the first case, the number of branches
(PELC) from the vertex vi−1 ℜi−1 to the reference frame ℜi could
be at maximum equal to 2m (if all the computed PELC are valid)
and in the second case, the maximum number of branches from
vi−1 is 2 (which correspond respectively to the optimal PELC∗ for

clockwise and counter-clockwise directions). The main objective
of the second case is to reduce the number of possible expanding
branches at each iteration of Algorithm 1. The aim is obviously to
reduce the overall computation time to obtain the gPELC∗. In this
last version, the number of explored states is reduced but does not
guarantee to have such a good solution gPELC∗ as given by EET. This
result will be highlighted in the simulations given in Section 5.1. In
that simulations, it is shown also that the solutions obtained with
only optimal vertices expanding are generally not so far from the
effective gPELC∗ (given by EET).

3.2.3. Multi-criteria optimality discussion
It is important to notice that as almost all multi-criteria op-

timization problem, there does not exist a single solution that
simultaneously optimizes each sub-criteria [67,68]. The objective
functions are said, in this situation, to be conflicting and there
exists a (possibly infinite) number of Pareto optimal solutions. It
is necessary therefore to define Pareto frontier with acceptable
trade-offs between the different sub-criteria [67]. Precise analysis
of the appropriate balance between each sub-criteria will be the
subject of future work.

Nevertheless, according to the formalization of J (defined in
Eq. (8)), it is important to highlight certain general tendencies:
for instance, bigger is the value of µ bigger is the value of
JPELCCurvature (until reaching its maximum value) and lowest is the
value JDistanceToPTi (until reaching its lowest value 0). In addition, it is
important to say that JPELCLength has a global minimum for a specific
value of µ. The other two sub-criteria (BoolMaximumCurvature and
BoolCollision) are Boolean values obtained according respectively if
the computed PELC reaches themaximumpossible vehicle turning
circle or if this PELC passes through at least one Surrounded Ellipse
in the environment (cf. Section 3.2.1). Hence, according to the
definedmulti-criteria optimization problem, the general tendency
of each sub-criteria, and also to the fixed priority between the
different sub-criteria (according to the values of wi | i = 1..4) a
straightforward sub-optimal solution PELC*(µ∗) can be obtained
while using numerical optimization (iterative dichotomy for in-
stance). Regarding the global optimization based on gPELC*, the
complexity is slightly increased w.r.t. PELC* planning, but remains
controllable (cf. Section 3.2.2).

Among themain interests of the proposed local and global path
planning is the possibility to take into account the vehicle kine-
matic constraints (e.g., its non-holonomy), its initial configuration
as well as the used control law. Thus, the performed multi-criteria
optimization permits us to lead toward very efficient safe path
while permitting to take into account the most pertinent path
features: smoothness, length and the precision to reach the final
target (given by JDistance_gPELC_FinalTarget in Eq. (12)).

Inwhat follows, aHomogeneous andHybrid (reactive/cognitive)
Control Architecture (HHCA) will be proposed and detailed. This
architecture uses notably the definition of optimal PELC∗ and
gPELC∗ to have a homogeneous way to obtain the vehicle’s set-
points.

4. Homogeneous and Hybrid Control Architecture (HHCA)

The proposed Homogeneous (in terms of used set-points and
control law) and Hybrid (reactive/cognitive) Control Architecture
(HHCA, cf. Fig. 6) aims to simplify, manage and control either
reactive or cognitive vehicle navigation (cf. Section 1). By reactive
(cf. Section 4.4.1), it is mainly meant that the navigation of the
vehicle is done with the minimum information on the environ-
ment, whereas cognitive control is based on quasi-full knowledge
on the environment. Obviously, when this knowledge is available,
the cognitive control permits to lead generally to optimal (or sub-
optimal) robot navigation. Nevertheless, it needs a lot of processing

60 L. Adouane / Robotics and Autonomous Systems 88 (2017) 51–70

Fig. 6. The proposed Homogeneous and Hybrid Control Architecture (HHCA) for mobile robot navigation.

time to reach this solution which could lead, in certain cases, to an
unusable approach (cf. Section 1).

To guarantee the multi-objective criteria linked to the naviga-
tion of a vehicle in cluttered environment (cf. Section 1), control
architectures can be elaborated in a modular and bottom-up way
as introduced in [26] and so-called behavioral architectures [34].
These techniques are based on the concept that a robot can achieve
a complex global task while using only the coordination of several
elementary behaviors. In fact, to tackle this complexity, behavioral
control architecture decomposes the global control into a set of ele-
mentary behaviors/controllers (e.g., attraction to a target, obstacle
avoidance, trajectory following, etc.) to master better the overall
robot behavior.

The proposed HHCA allows, in addition to manage the interac-
tions between different elementary controllers, it permits also to
guarantee the stability of the overall control architecture and the
smoothness of the vehicle trajectory. The different blocks compos-
ing this architecture are detailed below.

4.1. Perceptive and environment characteristics

While using exteroceptive vehicles’ sensors and any already
known data on the environment, the blocks numbered 1 to 3
in Fig. 6 are in charge of detecting/localizing/characterizing any
important features in the environment. Mainly these blocks must
provide the list of all perceived obstacles (or known according
for instance to a road map) and the target to reach. Any possible
obstructing object (obstacle/wall/pedestrian/ etc.) is characterized
as specified in Section 2 by an Ellipse given by the parameters
(h, k, Ω, A, B) which could be obtained either offline or online.

4.2. Uniform used control law

Before presenting the used control law, it is important to know
the robot’s model. The used robot corresponds to a tricycle vehicle
[69]modeled according to thewell-knownkinematicsmodel given
by Eq. (13).⎧⎨⎩ẋ = v cos(θ)

ẏ = v sin(θ)
θ̇ = v tan(γ)/lb

(13)

where (x, y, θ) is the posture (configuration state) of the vehicle
at the point Om (origin of the local reference frame XmYm linked
to the vehicle (cf. Fig. 7)), γ is the orientation of the equivalent
front wheel (cf. Fig. 7), v is the linear velocity of the vehicle at

Fig. 7. Vehicle and target configuration in Global and Local reference frames.
Control variables according to Lyapunov synthesis are also shown.

Om and lb is the vehicle’s wheelbase. v and γ are the two control
inputs of the vehicle (cf. Eqs. (17) and (18) respectively). According
to Fig. 7, wb corresponds to the track width of the vehicle and Icc
the instantaneous center of curvature of the vehicle trajectory. The
radius of curvature rc is given by:

rc = lb/tan(γ) (14)

and cc = 1/rc is the curvature of the vehicle trajectory.
The used control law [70] aims to drive the vehicle toward

specific targets (static or dynamic) in the environment. At each
sample time the tracked target is defined by a posture (xT , yT , θT)
and a velocity vT (this velocity could be= 0 if the target is static). It
will be shown in sub-Section 4.3 that different vehicles behaviors
will be described with a uniform way where the vehicle has to
reach/follow/track a specific target set-points. In order that the
paper becomes at maximum self-content, let us give in summary
themain elements of synthesis, using a Lyapunov formulation [71],
the used control law [70]. The adopted Lyapunov function V is
given by Eq. (15) (cf. Fig. 7):

V =
1
2
Kdd2 +

1
2
Kld2l + Ko[1− cos(eθ)]

=
1
2
Kdd2 +

1
2
Kld2sin2(eRT)+ Ko[1− cos(eθ)] (15)

L. Adouane / Robotics and Autonomous Systems 88 (2017) 51–70 61

where the initial values of eRT and eθ must satisfy the following
initial conditions [70]:

eRT ∈] − π/2, π/2[and eθ ∈] − π/2, π/2[(16)

The Lyapunov function (15) is therefore a function of three pa-
rameters which depend on: the distance d between the target and
vehicle’s position; the distance dl from the vehicle to the target line
(line that passes through the target position with an orientation
equal to the target orientation), this term is related to the Line
of Sight and Flight of the target [72]; and the orientation error eθ

between the vehicle and the target.
The desired linear velocity v and the front wheel orientation γ

of the vehicle which permits to asymptotically stabilize the error
vector (ex, ey, eθ , (v − vT)) toward zero (permitting therefore to
have V̇ < 0) are given by:

v = vT cos(eθ)+ vb (17)
γ = arctan(lbcc) (18)

where vb and cc are defined by:

vb = Kx [Kdex + Kld sin(eRT) sin(eθ)+ Ko sin(eθ)cc] (19)

with:

cc =
1

rcT cos(eθ)
+

d2Kl sin(eRT) cos(eRT)
rcT Ko sin(eθ) cos(eθ)

+ Kθ tan(eθ)

+
Kdey − Kld sin(eRT) cos(eθ)

Ko cos(eθ)
+

KRT sin2(eRT)
sin(eθ) cos(eθ)

(20)

K = (Kd, Kl, Ko, Kx, Kθ , KRT) is a vector of positive constants defined
by the designer. Accurate analysis of this stable and efficient con-
trol law is given in [70] and [5].

Knowing the used common control law permitting to reach any
static or dynamic target with stable way, let us present in what
follows, how to perform different navigation sub-tasks using ap-
propriate and commondefinition of target set-point configurations
(xT , yT , θT , vT).

4.3. Sub-tasks to achieve based on homogeneous set-points definition

As described in the introduction of Section 4, the design of
bottom-up approach requires to decompose the overall complex
task into a multitude of sub-tasks to achieve (e.g., obstacle avoid-
ance, wall following, target reaching, etc.). According to the el-
ementary sub-task to achieve in reactive or cognitive way (cf.
Section 4.4) it has been noted in general that the vehicle has to ei-
ther follow/track a path/trajectory or reach/track a static/dynamic
target to perform the assigned sub-task. As examples of tasks
definition using target reaching or path following, one can cite:
safe vehicle navigation in urban environment through pre-defined
static targets [5] or the task consisting tomaintain a formationwith
a group of robots while using dynamic virtual targets [73]. Still
for multi-robot formation task, the Leader while avoiding safely
an obstacle, transmits its trajectory which must be tracked by the
Followers [74].

The two main behaviors (path following and target reaching)
will be shown throughout respectively Sections 4.3.1 and 4.3.2.
These two subsections will give a homogeneous way to define
different set-points (xT , yT , θT , vT). It is noticed that the set-points
configurations are taken within PELC-generated trajectories. In-
deed, the proposed HHCA architecture contains different set-point
blocks which have as input the PELC already defined either locally
(block number 4 in Fig. 6 for reactive navigation (cf. Section 4.4.1))
or globally (block number 8 in Fig. 6 for cognitive navigation (cf.
Section 4.4.2)). Once these set-points are obtained, the common
control law defined in Section 4.2 is used to stabilize the error to
zero.

T

(a) Target based on Frenet frame.

(b) Target based on Euclidean distance.

Fig. 8. Target set-points definition w.r.t. (a) Frenet reference frame or (b) Euclidean
distance.

4.3.1. Path following set-points based on Frenet reference frame
Once a path is obtained using PELC, in certain situations (e.g.,

static environment) it is enough for the vehicle to follow it as
accurate as possiblewithoutmodifying this initial planning. In that
situation, it is used a Frenet reference frame [10] to extract the
vehicle’s set-points. The target set-point, at each sample time, is
given by (cf. Fig. 8(a)):

• A position (xT , yT) corresponding to the closest position in
the pre-planned PELCw.r.t. the origin of the reference frame
XmYm. (xT , yT) point corresponds to the origin of Frenet
reference frame XFYF .
• An orientation θT corresponding to the tangent of the PELC

w.r.t. XGYG reference frame.
• A velocity vT which could be constant or variable indiffer-

ently.

4.3.2. Target reaching/tracking set-points
When the environment is not very well known or dynamic, it

is better to navigate reactively (cf. Section 4.4.1). In that situation,
the current PELC takes as initial configuration, at each sample time,
the current vehicle configuration. The target set-point is given, at
each sample time, by (cf. Fig. 8(b)):

• A position (xT , yT) corresponding to the intersection be-
tween the circle (which has as origin the reference frame
XmYm and as radius RS) and the planned PELC.
• An orientation θT corresponding to the tangent to the PELC

w.r.t. XGYG reference frame at the intersection point (xT , yT).
If RS = 0, the vehicle has to apply only an orientation
control. Indeed, since the robot is already on the current
computed limit-cycle (ex and ey will be equal therefore to
0 in Eqs. (17) and (18)), the robot has to only control its
heading w.r.t. θT . This simple case of reactive control is
shown in [55,57].
• A velocity vT which could be constant or variable indiffer-

ently.

62 L. Adouane / Robotics and Autonomous Systems 88 (2017) 51–70

4.4. Reactive versus cognitive vehicle navigation

It is shown in what follows the different proposed navigation
strategies based on PELC. The focus will be given mainly for:

• the way to act online to changed local environment when
the used strategy is reactive (cf. Section 4.4.1),
• the used cognitive navigation (cf. Section 4.4.2).

In Section 4.4.3 the choice between either reactive or cognitive
modes will be illustrated through the proposed hybrid and hierar-
chical action selection process.

4.4.1. Reactive navigation based on local PELC*
Reactive navigation is most appropriate when the environ-

ment is not well known or in the case where this environment
is highly dynamic and/or uncertain. The vehicle aims to navigate
from its initial position to the final target while using only lo-
cal defined PELC∗ (cf. Section 3.2.1), dealing therefore sequen-
tiallywith obstructing obstacles/walls/etc. This reactive navigation
supposes nevertheless the efficiency and the reliability to obtain
online the features of the obstacles (cf. Section 2). The vehicle
has to react therefore online to its environment according only
to its current available knowledge. It is why this kind of naviga-
tion could not ensure the optimality of the global navigation (cf.
Section 4.4.2).

The applied reactive navigation, detailed in Algorithm 2, acti-
vates the obstacle avoidance behavior as soon as there exists at
least one object which can obstruct the future robot movement
toward its target. Otherwise, the behavior of target reaching (still
using PELC∗, cf. Section 3.2.1) is activated. It is mentioned in Algo-
rithm 2, the notion of ‘‘Current final target’’ because the vehicle
is supposed to have a multitude of sequential static targets to
reach [5]. The goodperformance of the reactive navigation needs to
manage some conflicting situations which could, in certain cases,
lead to trajectory oscillations or dead-ends. Several reactive rules
are detailed in [55] to avoid these situations. For instance, it has
been proposed to maintain the direction of avoidance (clockwise
or counter-clockwise) when the robot avoids two consecutive ob-
stacles (without finishing yet the avoidance of the first, therefore
the vehicle does not yet reach the first obstacle axis YOT (cf. Fig. 4)).

Algorithm 2: Reactive navigation using optimal PELC∗ paths
Input: All the features h, k, Ω, A, B of the closest constrained

obstacle (cf. Algorithm 3); Value of Kp (the desired
minimum safe distance ‘‘offset’’ to the obstacles);
Current final target localization (xf , yf).

Output: Current PELC∗((h, k), Ω, (A, B, Kp), µ∗) to follow (cf.
Equation (3) and Section 3.2.1).

1 if It exists at least one obstructing obstacle (cf. Algorithm 3) then
2 //Obstacle avoidance behavior
3 Obtain µ∗ optimizing PELC according to the criteria J

(cf.section 3.2.1).
4 PELC∗((h, k), Ω, (A, B, Kp), µ∗);
5 else

6 //Target reaching behavior

7 PELC∗((xf , yf), 0, (ξ, ξ , ξ), µ∗);
8 Where ξ is a positive very small value−→ 0
9 end

Algorithm 3: Obtaining the most obstructing obstacle
Input: All the features (h, k, Ω, A, B)i (cf. equation (1)) of the

detected Obstacles in the vehicle’s field of view; Value
of Kp (the desired minimum safe distance ‘‘offset’’ to
the obstacles); Current final target localization (xf , yf).

Output: The index ‘‘k’’of the most obstructing obstacle (if it
exists).

1 for Each Obstaclei do
2 if The obstacle is an obstructing obstacle
3 {i.e., it exists one intersect point between the line ‘‘l’’

(connecting the vehicle to the target (cf. Figure 1)) and the
Parallel Ellipse of Influence of the Obstaclei then

4 Add the Obstaclei to ListObstructingObstacles;
5 end
6 end
7 if ListObstructingObstacles ̸= ∅ then
8 Extract the index k ∈ ListObstructingObstacles of the

closest obstacle (in terms of Euclidean distance to the
vehicle (DROi in Figure 1)).

9 else
10 There is not obstructing obstacle, the environment is safe.
11 end

4.4.2. Cognitive navigation based on global PELC∗ (gPELC∗)
To perform cognitive navigation, it implies obviously much

more knowledge about the environment (generally all the free and
obstructing spaces, called respectively CFree and CObstacles). In this
kind of navigation, the robotmust define an overall path/trajectory
while taking into account the possible multiple obstacles in the
environment. Indeed, the navigation could be optimal to avoid a
single obstacle using an appropriate PELC∗ (cf. Section 3.2.1) but
not optimal at all if the navigation strategy needs to take into
account several obstacles before reaching the final target [75]. To
perform cognitive navigation, the proposedHHCAuses a global op-
timized paths obtained according gPELC∗ (cf. Section 3.2.2). Several
simulations will be shown in Section 5.1.

4.4.3. Hybrid and hierarchical action selection
In multi-controller architectures as what is proposed in this

paper, there are exists twomajor principles for controller/behavior
coordination: action selection and fusion of actions which lead re-
spectively to competitive and cooperative control architectures. In
competitive architectures (action selection), the set-points sent to
the robot’s actuators at each sample time are given by a unique
controller (behavior) which is selected among a set of possible
controllers. The principle of competition can be defined by a set
of fixed priorities like in subsumption architecture [26] where
a hierarchy is defined among the behaviors. The action selection
can also be dynamic without any hierarchy between behaviors
[76,77]. In cooperative architectures (fusion of actions), the set-
points sent to the robot’s actuators are the result of a compromise
or a fusion between controls generated by several active behaviors.
These mechanisms include fuzzy control [78] via the process of
defuzzification, or multi-objective techniques to merge the con-
trols [79]. Among these cooperative architectures, schema-based
principle [27] is among the ones which has an important impact
in the scientific community. Even if the fusions of actions process
gives a very interesting robot’s behaviors, the stability of the over-
all control architecture is generally very hard, even impossible
to demonstrate. Contrary, control architectures based on action
selection process are usually much more easy to demonstrate their
overall stability even when switch between the behaviors occur
[31,49].

L. Adouane / Robotics and Autonomous Systems 88 (2017) 51–70 63

Algorithm 4:Hybrid and Hierarchical Action Selection process
Data: Environment knowledge and perceptive information
Result: The more appropriate navigation strategy

1 while Final target is not reached do
2 if gEPLC∗ exits then
3 //Cognitive navigation
4 //gEPLC∗ exits means that the overall environment
5 //knowledge is available

6 Path following control activation w.r.t. gPELC∗;

7 else
8 //Reactive navigation
9 //Defined w.r.t. the current obtained PELC∗

10 if Static obstacles & certain environment then
11 Local path following control activation;

12 else
13 Target reaching control activation;

14 end
15 end
16 end

The proposed multi-controller architecture (cf. Fig. 6) is based
on the action selection process. It is called the Hybrid (reac-
tive/cognitive) and Hierarchical Action Selection process and is
summarized in Algorithm 4. This process aims to activate either
reactive or cognitive navigation (cf. sub-Sections 4.4.1 and 4.4.2)
according to the environment knowledge and perceptions.

The cognitive navigation is activated only if the entire envi-
ronment is well known or when the navigation is achieved in
relatively lowdynamic environment; lowenough so that the gPELC
(cf. Section 4.4.2) could be re-computed online. In the case where
the gPELC is impossible to obtain online, instead of stopping the
vehicle’s navigation (which could be still an option), the vehicle
will switch to navigate in a reactive way. This last navigation could
be done in two ways: the first consists of using path following
control, based on local computed PELC, in the case where the cur-
rent obstructing obstacle is static and could be accurately detected
(cf. Section 4.1); the second reactive navigation is performed if the
environment is highly dynamic and/or with a lot of uncertainty, in
this case the vehicle has to navigate with even more reactivity (no
pre-planned path to follow), using online target reaching control
(cf. Section 4.3.2). The RS radius given in Section 4.3.2 could be fixed
according to the measured uncertainty rate and to the dynamicity
of the obstacles. This implies obviously to have specific metrics
to characterize the environment uncertainty and the dynamicity
of the detected obstacles (velocity, acceleration, etc.). These two
criterion are more linked to the perceptive aspect of the control
architecture and will not be addressed in this paper.

5. Proposal validation

5.1. Extensive validation by simulation

Once presented the most important blocks characterizing the
proposed control architecture, let us show in what follows several
simulations’ examples to exhibit the architecture’s flexibility and
efficiency (cf. Section 1). The simulations were implemented using
MATLAB® software (the porting to C++ language will be done in
the near future to enhance the processing time) and performed
with an Intel Core I7, CPU of 2.70 GHZ and a RAMof 32 GO. As given
in Section 4.2, the robot kinematics is based on a tricycle model (cf.
Fig. 7); its features and control parameters are given by:

• lb = 12 cm and γmax = 45◦.

• To characterize the robot collisions with the environment,
the robot is surrounded completely by an ellipse (which has
a major axis of 14 cm and a minor axis of 9 cm).
• The robot maximum field of view is considered as a circle

centered on the robot with a radius of 72 cm (cf. Fig. 13).
This circle corresponds to the maximum distance where the
robot can detect an obstacle. This perception is mainly used
for safety behavior (automatic stop if the obstacle is too
close) or for reactive navigation.
• The control law parameters are given by K = (10, 5, 2, 0.3,

5, 0.01) (cf. Section 4.2).

The first set of simulations (cf. Section 5.1.1) will show the use
of gPELC∗ for different kind of environments (cluttered, structured,
etc.) and the other set of simulations (cf. Section 5.1.2) will show
the use of PELC and gPELC∗ to perform either reactive or cognitive
navigation according to the environment state/context.

5.1.1. The use of gPELC∗ for different environments
Cluttered environment. Fig. 9(a) shows the application of Algo-
rithm 1 for a set of µ values Sµ = {0.1, 0.4, 0.7} in each direction
(clockwise and counter-clockwise). Several simulations with their
initial inputs and results are summarized in Table 1. This table
shows, for instance, the weights WgPELC = {w1, w2, w3, w4, w5}

characterizing the global cost function (cf. Eq. (12)) for each
planned gPELC, the obtained Tree characterizing the optimization
process. In the simulation given in Fig. 9(a), Algorithm 1 had to
explore 31 verticeswhich required 9.48 s as computation time. This
optimization permits to obtain 14 valid gPELC and the optimal one
(according to the applied global cost function) has an optimal cost
of G = 3.03.

Fig. 9(b) corresponds to a simulation which has the same initial
inputs as in Fig. 9(a) but while Expanding the tree (given by
Algorithm1) for only the optimal vertices (cf. Table 1). According to
this table, it is found that the computation time is reduced by 28%,
and despite this, the obtained optimal gPELC∗ cost G is still very
close to the obtained gPELC∗ given in Fig. 9(a). The obtained gPELC∗
is nevertheless different in terms of path shape and intermediate
cost-function (as for G2, where the obtained gPELC∗ is smoother
than the one obtained in Fig. 9(a) (G2 = 0.18 instead of 0.25).
Fig. 10(a) shows the obtained Tree related to the simulation given
in Fig. 9(b). Due to the smaller number of obtained vertices while
using only optimal vertices expansion, this methodology will be
preferred in the coming simulations to highlight better certain
results. Fig. 9(c) gives an example of the influence of the wights
chosen for WgPELC to obtain the optimal gPELC∗. Indeed, while
modifying theseweights w.r.t. the simulation given in Fig. 9(b), the
obtained final gPELC∗ has been changed (cf. Table 1).

While simulations given in Fig. 9(a) to 9(c) show the application
of Algorithm 1 for a quite simple environment (2 obstacles), the
simulations given in Fig. 10(b,c) permit, among other things, to
highlight the efficiency of the proposed Algorithm 1 for an even
more cluttered environment (a configurations of 5 close obstacles)
(cf. Table 1). These last simulations will be used in next Sec-
tion 5.1.2, where the obtained optimal path gPELC∗ will be used as
an initial path to show the flexibility of the overall proposed control
architecture to switch easily and safely from cognitive navigation
to a reactive one and vice versa.

Structured environment. To highlight the reliability of the pro-
posed planning method-based on PELC for different kinds of en-
vironments, it is also important, in addition to a cluttered environ-
ment, to verify its efficiency for a structured environment (as we
can find in an indoor or urban environment with walls and right
angles ‘‘perpendicular straight lines’’). The obstaclemodeling given
in Section 2 is used inwhat follows to surroundwalls (or sidewalks
for instance) of different dimensions (cf. Fig. 11). Each obstacle is

64 L. Adouane / Robotics and Autonomous Systems 88 (2017) 51–70

Table 1
Algorithm 1 parameters and optimization results to obtain optimal gPELC∗ for different environments.

Figure Exhaustive
expanding tree?

WgPELC Nbre of valid
explored vertices

Nbre of valid
gPELC

Time [s] Optimal gPELC∗ cost function

G G1 G1Bis G2

9(a) Yes { 0.50, 0.0005, 106 , 106 , 10} 31 14 9.48 3.03 0.21 2.57 0.25
9(b) No { 0.50, 0.0005, 106 , 106 , 10} 7 3 6.85 3.04 0.35 2.51 0.18
9(c) No { 0.95, 0.0005, 106 , 106 , 10} 10 5 7.72 0.83 0.32 0.29 0.22
11(a) No { 0.60, 0.0020, 106 , 106 , 10} 5 2 15.68 3.69 0.26 2.69 0.74
11(b) No { 0.50, 0.020, 106 , 106 , 10} 9 2 6.19 11.92 1.60 6.55 3.77
11(c) No { 0.50, 0.020, 106 , 106 , 10} 14 4 6.36 11.40 1.02 6.65 3.73
10(b) Yes { 0.60, 0.0020, 106 , 106 , 10} 49 18 82.12 4.91 0.58 3.45 0.88
10(c) No { 0.60, 0.0020, 106 , 106 , 10} 21 5 49.63 5.00 0.64 3.42 0.94
12(a) No { 0.60, 0.0020, 106 , 106 , 10} 13 5 28.07 3.46 0.42 2.33 0.71

(a) Exhaustive Expanding Tree (cf. Algorithm1). This sub-figure
highlights also the main shape features of the following simu-
lations.

(b) Expanding Tree only for optimal node at each step.

(c) Expanding Tree only for optimal node at each sample time
with other criteria parameters w.r.t. simulation (b).

Fig. 9. Global path planning based on gPELC∗ . Gray ‘‘−.−’’ lines correspond to the
PEIi linked to each obstaclei .

surrounded with thin Surrounded Ellipse (given by SEi in Fig. 1)
and with a Parallel Ellipse of Influence (PEIi in Fig. 1) which will
allow a safemargin between the robot and the considered obstacle.
The first simulation given in Fig. 11(a) shows the efficiency of
Algorithm 1 even for a Trap configuration. The robot initial posture
is (x0, y0, θ0, γ0) = (0, 1.5,−45◦, 0◦). Algorithm 1 obtained an
optimal gPELC∗ (cf. Table 1) while avoiding locals minima [35].
According to Table 1, it is seen that the time necessary to obtain
gPELC∗ is equal to 15.68 s which is relatively high w.r.t. other
simulations which have only few valid explored vertices. This is
explained by the fact that according to the configuration given by
this trap, a lot of iterations of Algorithm 1 leads to invalid vertices
(thus, collision of the computed PELC with an obstacle).

The simulations given in Fig. 11(b) and 11(c) show a complex
enough environment based on several walls/obstacles (forming
labyrinthine corridors). The setup difference between the simula-
tion given in Fig. 11(b) and the one given in Fig. 11(c) is in the value
of the obstacle safe Margin (cf. Section 3.1.1) which corresponds
to Kp (cf. Fig. 1 and Eq. (3)). For the first simulation (cf. Fig. 11(b))
Kp = 16 cm whereas the second (cf. Fig. 11(c)) Kp = 32 cm (cf.
Table 1 for simulations parameters and optimization results). The
second simulation restricts muchmore the possible robot states to
reach the final Target, but permits to obtainmuchmore safe gPELC∗
because the robot is forced to navigate as fare as possible from the
obstacles. The obtained gPELC∗ is close to one path which could
be obtained by a Voronoï method [12,13], but with an important
advantage in what we propose is that the obtained path (gPECL∗)
takes into account:

• the kinematic and structural constraints of the robot (non-
holonomy, maximum steering angle γMax, etc.),
• multi-criteria optimization (cf. Eq. (12)) andnot only a safety

criterion as for Voronoï method.

It is to be noted that Kp attributed to each obstacle could
be different between them. This could be chosen according, for
instance, to the obstacle’s dynamic or to its features (location,
shape, etc.). It is to be noted also that in certain situations where
the PEIi attributed to obstaclei is in intersection with the PEIj of
another obstaclej (as seen in Fig. 11), it is important to introduce
some simple rules to guarantee always the convergence of Algo-
rithm 1. Indeed, when computing an elementary PELC w.r.t. an
obstaclei, the axis Y of the reference frame linked to this obstacle
(cf. Section 3.1.2) could not be reachable without going inside PEIj.
This is due to the intersection of the PEI (attributed to the two
or more obstacles). The condition of stopping the avoidance w.r.t.
an obstacle can never therefore be attained. Thus, if at least two
obstacles have an intersected PEI, the following simple rules, to end
the computation of the PELCi, must be applied:

• End (stop and validate) the computed PELCi, the first time
that its x abscissa sign (w.r.t. the reference frame ℜi linked
() to obstaclei) changes from ‘‘−’’ to ‘‘+’’.

L. Adouane / Robotics and Autonomous Systems 88 (2017) 51–70 65

Fig. 10. (a) Tree representation to obtain the gPELC∗ given in Fig. 9(b). Each node
Ni|i=1..7 (except the root node N0) is represented respectively by: an index 1 or 2
(the id of the avoided obstacle) or Target (for final target reaching); the direction of
avoidance C or CC (for respectively Clockwise or Counter-Clockwise); the value of
µ∗ and finally the value of the elementary obtained PELC∗ cost J∗ (cf. Eq. (8)). The
green arrows correspond to the optimal solution. (b) and (c) Global path planning
based on gPELC∗ using, respectively, Exhaustive Expanded Tree and only optimal
ones (at each step). Gray ‘‘−.−’’ lines correspond to the PEIi linked to each obstaclei .
(For interpretation of the references to color in this figure legend, the reader is
referred to the web version of this article.)

• If the above rule is not yet verified and the current computed
PELCi is going to be inside another PEIj (with j ̸= i), there-
fore, stop the computation of PELCi at a predetermined dis-
tance DS before going inside PEIj, a node is therefore added
in Algorithm 1, permitting to continue the expanding while
avoiding a deadlock. For example, in Fig. 11(b), the robot
must avoid the obstacle2 in a clockwise direction, but its PEI2
intersects with PEI4, the above rules were therefore applied.
It is to be noted that this conflicting situation, where two PEI

Fig. 11. (a) Efficient gPELC∗ even for a trap configuration. (b) and (c) Global path
planning-based gPELC∗ in structured environment,with respectively: (b)Kp = 16 cm
and (c) Kp = 32 cm. Gray ‘‘−.−’’ lines correspond to the PEIi linked to each obstaclei .

intersects, has been resolved in [55] for reactive navigation
while the avoidance switching from one obstacle to another
is activated as soon as the second obstacle becomes the
closest to the robot.

5.1.2. Switch from cognitive to reactive navigation and vice versa
The aim of the following simulations is to show the flexibility

of the proposed control architecture to perform either reactive or
cognitive navigation (cf. Section 4.4) while guaranteeing smooth
and steady robot behavior (cf. Section 4.2). Thus, using a rela-
tively simple algorithm (as given in Algorithm 4), the possibility
of switching from cognitive to reactive mode and vice versa will
be shown. It is to be noted that these simulations do not aim to
propose an optimal choice between the activation of one mode
(cognitive or reactive) w.r.t. the other. This important issue is
an open research area [38–40,18] and the inherent structure of
the proposed control architecture is particularly appropriate to
address this kind of interesting issue. This will be the subject to
future developments.

66 L. Adouane / Robotics and Autonomous Systems 88 (2017) 51–70

(a) Cognitive→ Dynamic obstacle avoidance→ Cognitive navigation. (b) Cognitive→ Dynamic obstacle avoidance→ Reactive navigation.

(c) Simulation indicators. (d) Simulation indicators.

(e) Lyapunov function progress. (f) Lyapunov function progress.

Fig. 12. Reactive versus cognitive navigation. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

The robot navigation given in Figs. 12(a) and 12(b) show the
activation of different modes. The sequence given in Fig. 12(a) is
Cognitive → Dynamic obstacle avoidance and finally Cognitive
navigation, whereas in Fig. 12(b): Cognitive→ Dynamic obstacle
avoidance→ Reactive navigation. In both simulations, the robot
starts by performing path following (cf. Section 4.3.1) of the already
obtained gPELC∗ given in Fig. 10(b) (cf. Table 1). Since the ini-
tial obtained gPELC∗ considers only static environment, the robot
starts to follow this global optimal path to reach the final Target.
At the instant 11 s, the obstacle3 starts to move in a straight line
(cf. Fig. 13(a) to 13(c)). This movement yields to make unsure the
initial gPELC∗, therefore, as soon as this obstacle is in the field of

view of the robot (represented by pink dashed circle in Fig. 13), the
robot starts to perform reactive obstacle avoidanceusing local PELC
(cf. Section 4.4.1). The used set-points in this navigation phase are
based on target reaching set-points (cf. Section 4.3.2) while taking
the parameter RS = 0 (cf. Fig. 8(b)).

Once obstacle3 is completely avoided (cf. Algorithm 2), the
robot continues to reach the final target by using either cognitive
navigation (cf. Fig. 12(a))2 or reactive navigation (cf. Fig. 12(b)). In
the first case, a new gPELC∗ is recomputed (from the current initial

2 cf. ‘‘https://goo.gl/iZ8YQA’’ to show the video of the corresponding simulation.

https://goo.gl/iZ8YQA

L. Adouane / Robotics and Autonomous Systems 88 (2017) 51–70 67

(a) Time= 13.5 s. (b) Time= 15 s. (c) Time= 16 s.

Fig. 13. Dynamic obstacle avoidance. The cyan dashed lines in (a) to (c) correspond to the different local re-computed PELC (at each sample time ‘‘updated robot’s location/
perception’’) by HHCA when the robot avoids Obstacle3 . In (c) Obstacle3 is completely avoided and a PELC is computed w.r.t. the main target.

robot’s configuration) and followed by the robot. The re-planed
path features are given in the last row of Table 1. Figs. 12(c) and
12(e) give the robot’s navigation details of the simulation given
in Fig. 12(a), whereas Figs. 12(d) and 12(f) give the navigation’s
details of Fig. 12(b).

Concerning the simulations’ indicators given in Figs. 12(c) and
12(d), they show in general that in both simulations, the robot
navigates far enough from the closest obstacle. Indeed, specifically
in Fig. 12(c), the distance progress between the robot and the
closest obstacle is always smooth and bigger than the fixed safe
avoidance offset (Kp = 22 cm and represented in dotted red
lines in the figures). There exists nevertheless one critical phase in
Fig. 12(d) where the robot, in reactive mode, is currently finishing
to avoid obstacle5 and starting to avoid obstacle4. In this phase
the distance robot-obstacle4 is less than the offset but the robot
remains far enough from the obstacle to avoid any collision (cf.
Fig. 12(b)). In fact, the offset value is fixed according: first, to the
dimension of the robot (surrounded by an ellipse with a major
axis equal to 14 cm) and also to the robot’s physical constraints
and control reliability, etc. In the simulation given in Fig. 12(d),
the value of the minimum distance robot-obstacle4 is equal to 15
cm, and therefore, in all cases, bigger than the major axis of the
surrounded ellipse (i.e., robot-obstacle do not collide).

It is to be noted also that this critical situation happened be-
cause of the difficult initial robot configuration when obstacle4
must be avoided. Indeed, when obstacle4 becomes the most ob-
structing obstacle (cf. Algorithm 3), the robot is very close to it
and has an important angular error to the PELC set-point ≥90◦,
therefore the robot is in a very difficult configuration to safely
avoid obstacle4. These specific critical situations are unfortunately
unavoidable in reactive mode since the robot discovers its envi-
ronment online [55,57]. An emergency stop could be obviously
activated if the robot-obstacle distance is less than a certain value.
In addition, as information, the computed PELC (to avoid obstacle4)
has a counter-clockwise direction to avoid obstacle4. Thus, in the
same direction then the avoidance of obstacle5. Indeed, in reactive
avoidance, if the robot starts to avoid an obstaclei and switches
to another obstaclej (which has an intersection w.r.t. obstaclei),
the robot must follow the same direction (clockwise or counter-
clockwise) as for the previous avoidance. This avoids the robot’s
dead-ends and infinite oscillations [55].

Figs. 12(e) and 12(f) give the progress of the Lyapunov function
(cf. Eq. (15)). These figures show the stability of the proposed
control to make the errors converge always to 0, even when the
robot enters reactivemode,where the obstacle to avoid can change
suddenly according to the robot’s perceptions (cf. Algorithm 3).

In fact, when the robot starts to avoid another obstacle, an-
other local PELC will be re-computed, taking into account the new
current obstacle features (position, orientation, dimension, etc.).
This causes inevitably an abrupt jump in the error value (therefore

on the Lyapunov function), but after that, this function decreases
always until reaching 0, which attests to the asymptotic stability of
the overall control architecture.

5.2. Experimental validation

This subsection describes the first performed experiment using
an urban electric vehicle, called VIPALAB® [80] (cf. Table 2 for
some VIPALAB’s specifications). It is to be noted that this vehicle
is designed to perform autonomous navigations mainly in narrow
and highly dynamic urban environments (used for instance as an
autonomous shuttle between several locations in amidtown). This
vehicle should therefore navigate even in the presence of a lot
of pedestrian around, which means, in all cases, while having a
relatively slow velocity (at maximum of 5.5 m/s, as indicated in
Table 2). In the presented experiment, the VIPALAB has to reach a
predefined final static target while avoiding three static obstacles
(two boxes and one static VIPALAB vehicle, cf. Fig. 14). For safety
reasons it was chosen, in this first experiment, to constrain the
velocity of the platform to 1 m/s. A LIDAR mounted in the front
of the vehicle is used for online obstacle detection. Each detected
obstacle is surrounded by an ellipse as given in Section 2. More
precisely each Surrounded Ellipse parameters (h, k, A, B and Ω , cf.
Eq. (1) and Fig. 1)were reliably and smoothly obtained using online
range data [50–52]. It is to be noted that the vehicle trajectory has
been recorded using an RTK-GPSmounted on the VIPALAB vehicle.
This RTK-GPS has been also used to localize the vehicle w.r.t. the
final target to reach.

Fig. 14(a) shows some images of the performed experiment.3
This autonomous navigation has been obtained using the proposed
control architecture (cf. Section 4) while using only its fully reac-
tive navigation functionalities. The computed limit-cycles for each
avoided obstacle have the same µ values (cf. Eq. (3)). Fig. 14(b)
shows the overall actual vehicle’s trajectory (and not the generated
set-points paths based on elliptic limit-cycles). It can be observed
that the vehicle avoids the 3 obstacles with a smooth way and
converges safely toward its target. The trajectory of the vehicle
between the point (c) and (d) shows an important reorientation
amount, this is mainly due to the vehicle’s kinematic constraints
(e.g., non-holonomy, maximum angular velocity) and to the fea-
tures of the used non-linear control law (cf. Section 4.2).

Fig. 15(a) shows the evolution of the control law values
(v and γ , cf. Section 4.2) and the actual vehicle’s outputs.
It is observed that the vehicle’s velocity decreases according to the
distance to the obstacles which allows to enhance the navigation
smoothness and safety. Fig. 15(b) presents the progress (during the
navigation task) of the Lyapunov function V (cf. Eq. (15)) related to

3 cf. ‘‘https://goo.gl/L96eQK’’ to show the video of the performed experiment.

https://goo.gl/L96eQK

68 L. Adouane / Robotics and Autonomous Systems 88 (2017) 51–70

(a)

140

135

130

125

670 675 680 685 690 695 700 710705
x [m]

y
[m

]

(b) AT and OA correspond respectively to the activation of ‘‘Attraction to the Target’’ or ‘‘Obstacle Avoidance’’
controllers.

Fig. 14. (a) Some images from the performed experiment (b) Vehicle’s trajectory using the simplified version of the proposed control architecture (reactive mode).

Table 2
VIPALAB platform.

VIPALAB Elements Description

Chassis (l, w, h)= (1.96,1.30,2.11)m
Weight 400 kg (without batteries)
Motor Triphase 3x28 V, 4 KW
Break Integrated to the motor
Maximum speed 20 km/h (≈ 5.5 m/s)
Batteries 8 batteries 12 V, 80 Ah
Autonomy 3 hours at full charge
Computer Intel Core i7, CPU:1.73 GHz

RAM: 8Go OS(32 bits): Ubuntu12.04

the used control law. This function decreases asymptoticallywhich
attests on the stability of the system.

Therefore, this elementary experiment shows a reliable and
efficient reactive navigation in a cluttered environment. Obviously,
it does not show all the important features of the overall proposed
multi-controller architecture (cf. Fig. 6), which are nevertheless
shown extensively in simulation (cf. Section 5.1), but shows at
least the viability of this kind of navigation based on limit-cycles.
Much more experiments will be performed in future in order
to verify the main characteristics of the proposed control architec-
ture (with its different components). Among the most important
targeted experiments in near future correspond to perform online
cognitive navigation based on gPLEC* and to observe the limits

of the proposed control in terms of maximal vehicle dynamic,
which must still ensure safe navigation. This will be done as soon
as Algorithm 1 will be embedded on the VIPALAB and could be
performed in real time (by minimizing mainly the computation
time to find the optimal gPELC*). An appropriate control law,which
takes into account the dynamical model of the vehicle, could be
used to better master the trajectories of the vehicle having much
higher velocities and/or accelerations.

6. Conclusion and further work

This paper proposed an overall control strategy (planning–
decision–action and their interactions) for autonomous vehicles

L. Adouane / Robotics and Autonomous Systems 88 (2017) 51–70 69

Fig. 15. AT and OA correspond respectively to the activation of ‘‘Attraction to the
Target’’ and ‘‘Obstacle Avoidance’’ controllers, (a) Commands given by the control
law (b) Evolution of Lyapunov function during the vehicle navigation.

navigation in different environment contexts (e.g., cluttered or not,
dynamic or not, etc.). It introduces an original multi-controller
architecture (called HHCA, for Homogeneous and Hybrid Control
Architecture) and its main components. Among them the ones
related to short and long term planning using new formulation of
limit-cycles (called PELC, for Parallel Elliptic Limit-Cycle) and their
use for hybrid (reactive or cognitive) navigation. More precisely,
it is presented first in the paper the mathematical formulation
of PELC and its advantages w.r.t. other previous limit-cycles pro-
posed in the literature. The PELC with the appropriate proposed
reference frame linked to each sub-task achievement, permit to
avoid efficiently and safely any obstacle shapes and to attract the
vehicle toward any specific target in the environment. Thereafter,
an optimal multi-criteria formulation of PELC∗ has been proposed
to optimize the features of each elementary path (e.g., safety, curvi-
linear length, smoothness, etc.). To perform optimal long-term
navigation, amultitude of PELChave been appropriately sequenced
(while using the proposed Algorithm 1) to perform optimal global
path planning based on PELC (gPELC∗). Secondly, this paper made
the focus on the generic, flexible and reliable proposed HHCAwith
its homogeneous set-points definition (based on PELC/PELC∗ or
gPELC∗) and common control law permitting to highly simplify:
the use of HHCA for reactive and cognitive navigation and possible
switch between them; the stability analysis of the overall multi-
controller architecture. An extensive number of simulations, with
several situations, and an actual vehicle experiment have been
performed in order to confirm the large potentialities of the overall
proposed methodology.

Future works aim to extensively apply the overall control ar-
chitecture on actual autonomous vehicles. The formulation of the
optimal balance between reactive and cognitive navigation is also
among the most important issues to be addressed in near future.

Acknowledgments

This work was supported by LABEX IMobS3 (ANR-7107-LABX-
716701) and the French National Research Agency (ANR) through
the SafePlatoon (ANR-10-VPTT-0011) and R-Discover (ANR-08-
CORD-0019) projects. The author would like to acknowledge
strongly J. M. Vilca Ventura for his help concerning the experimen-
tal part.

Appendix A. Supplementary data

Supplementary material related to this article can be found
online at http://dx.doi.org/10.1016/j.robot.2016.11.006.

References

[1] S. Thrun, W. Burgard, D. Fox, Probabilistic Robotics (Intelligent Robotics and
Autonomous Agents), The MIT Press, 2005.

[2] H. Choset, K.M. Lynch, S. Hutchinson, G.A. Kantor, W. Burgard, L.E. Kavraki, S.
Thrun, Principles of Robot Motion: Theory, Algorithms, and Implementations,
MIT Press, Cambridge, MA, 2005.

[3] R. Siegwart, I. Nourbakhsh, D. Scaramuzza, Introduction to autonomousmobile
robots, in: Intelligent Robotics and Autonomous Agents, MIT Press, 2011.

[4] S. Fleury, P. Souères, J.-P. Laumond, R. Chatila, Primitives for smoothingmobile
robot trajectories, in: ICRA, 1993, pp. 832–839.

[5] J.-M. Vilca, L. Adouane, Y. Mezouar, A novel safe and flexible control strategy
based on target reaching for the navigation of urban vehicles, Robot. Auton.
Syst. 70 (2015) 215–226.

[6] S. Gulati, A framework for characterization and planning of safe, comfortable,
and customizable motion of assistive mobile robots (Ph.D. thesis), The Univer-
sity of Texas at Austin, 2011.

[7] J. Minguez, F. Lamiraux, J.-P. Laumond, Handbook of Robotics, in: Motion
Planning and Obstacle, Springer, 2008, pp. 827–852.

[8] M. Pivtoraiko, A. Kelly, Fast and feasible deliberative motion planner for
dynamic environments, in: International Conference on Robotics and Automa-
tion, 2009.

[9] Y. Kanayama, Y. Kimura, F. Miyazaki, T. Noguchi, A stable tracking control
method for an autonomous mobile robot, in: International Conference on
Robotics and Automation, 1990.

[10] C. Samson, Control of chained systems. application to path following and point
stabilization of mobile robots, IEEE Trans. Autom. Control 40 (1) (1995) 64–77.

[11] O. Khatib, Real-time obstacle avoidance for manipulators and mobile robots,
Int. J. Robot. Res. 5 (1986) 90–99.

[12] F. Aurenhammer, Voronoi diagrams—a survey of a fundamental geometric
data structure, ACM Comput. Surv. 23 (3) (1991) 345–405.

[13] J.-C. Latombe, Robot Motion Planning, Kluwer Academic Publishers, Boston,
MA, 1991.

[14] E. Rimon, D.E. Koditschek, Exact robot navigation using artficial potential
flelds, IEEE Trans. Robot. Autom. 8 (5) (1992) 501–518.

[15] S.M. Lavalle, Rapidly-exploring random trees: A new tool for path planning,
Tech. rep., Computer Science Dept., Iowa State University, 1998.

[16] R.J. Szczerba, P. Galkowski, I.S. Glickstein, N. Ternullo, Robust algorithm for
real-time route planning, IEEE Trans. Aerosp. Electron. Syst. 36 (2000) 869–
878.

[17] P. Morin, C. Samson, Control of nonholonomic mobile robots based on the
transverse function approach, Trans. Robot. 25 (2009) 1058–1073.

[18] M. Mouad, L. Adouane, D. Khadraoui, P. Martinet, Mobile robot navigation and
obstacles avoidance based on planning and re-planning algorithm, in: 10th
International IFAC Symposium on Robot Control (SYROCO12), Dubrovnik,
Croatia, 2012.

[19] Y. Koren, J. Borenstein, Potential field methods and their inherent limitations
for mobile robot navigation, in: International Conference on Robotics and
Automation, 1991, pp. 1398–1404.

[20] O. Brock, O. Khatib, High-speed navigation using the global dynamic window
approach, in: ICRA, 1999, pp. 341–346.

[21] P. Ogren, N.E. Leonard, A convergent dynamic window approach to obstacle
avoidance, IEEE Trans. Robot. 21 (2) (2005) 188–195.

[22] S. Karaman, E. Frazzoli, Sampling-based algorithms for optimal motion plan-
ning, Int. J. Robot. Res. 30 (7) (2011) 846–894.

[23] T. Fraichard, Trajectory planning in a dynamic workspace: a state time ap-
proach, Adv. Robot. 13(1) (1999) 75–94.

[24] B. Jur-Van-Den, M. Overmars, Roadmap-based motion planning in dynamic
Environments, IEEE Trans. Robot. 21(5) (2005) 885–897.

[25] J. Esposito, Conditional density growth (CDG) model: A simplified model of
RRT coverage for kinematic systems, Robotica 31 (2013) 733–746.

[26] R.A. Brooks, A robust layered control system for a mobile robot, IEEE J. Robot.
Autom. RA-2 (1986) 14–23.

http://dx.doi.org/10.1016/j.robot.2016.11.006
http://refhub.elsevier.com/S0893-9659(15)00125-1/sb1
http://refhub.elsevier.com/S0893-9659(15)00125-1/sb1
http://refhub.elsevier.com/S0893-9659(15)00125-1/sb1
http://refhub.elsevier.com/S0893-9659(15)00125-1/sb2
http://refhub.elsevier.com/S0893-9659(15)00125-1/sb2
http://refhub.elsevier.com/S0893-9659(15)00125-1/sb2
http://refhub.elsevier.com/S0893-9659(15)00125-1/sb2
http://refhub.elsevier.com/S0893-9659(15)00125-1/sb2
http://refhub.elsevier.com/S0893-9659(15)00125-1/sb3
http://refhub.elsevier.com/S0893-9659(15)00125-1/sb3
http://refhub.elsevier.com/S0893-9659(15)00125-1/sb3
http://refhub.elsevier.com/S0893-9659(15)00125-1/sb5
http://refhub.elsevier.com/S0893-9659(15)00125-1/sb5
http://refhub.elsevier.com/S0893-9659(15)00125-1/sb5
http://refhub.elsevier.com/S0893-9659(15)00125-1/sb5
http://refhub.elsevier.com/S0893-9659(15)00125-1/sb5
http://refhub.elsevier.com/S0893-9659(15)00125-1/sb6
http://refhub.elsevier.com/S0893-9659(15)00125-1/sb6
http://refhub.elsevier.com/S0893-9659(15)00125-1/sb6
http://refhub.elsevier.com/S0893-9659(15)00125-1/sb6
http://refhub.elsevier.com/S0893-9659(15)00125-1/sb6
http://refhub.elsevier.com/S0893-9659(15)00125-1/sb7
http://refhub.elsevier.com/S0893-9659(15)00125-1/sb7
http://refhub.elsevier.com/S0893-9659(15)00125-1/sb7
http://refhub.elsevier.com/S0893-9659(15)00125-1/sb10
http://refhub.elsevier.com/S0893-9659(15)00125-1/sb10
http://refhub.elsevier.com/S0893-9659(15)00125-1/sb10
http://refhub.elsevier.com/S0893-9659(15)00125-1/sb11
http://refhub.elsevier.com/S0893-9659(15)00125-1/sb11
http://refhub.elsevier.com/S0893-9659(15)00125-1/sb11
http://refhub.elsevier.com/S0893-9659(15)00125-1/sb12
http://refhub.elsevier.com/S0893-9659(15)00125-1/sb12
http://refhub.elsevier.com/S0893-9659(15)00125-1/sb12
http://refhub.elsevier.com/S0893-9659(15)00125-1/sb13
http://refhub.elsevier.com/S0893-9659(15)00125-1/sb13
http://refhub.elsevier.com/S0893-9659(15)00125-1/sb13
http://refhub.elsevier.com/S0893-9659(15)00125-1/sb14
http://refhub.elsevier.com/S0893-9659(15)00125-1/sb14
http://refhub.elsevier.com/S0893-9659(15)00125-1/sb14
http://refhub.elsevier.com/S0893-9659(15)00125-1/sb15
http://refhub.elsevier.com/S0893-9659(15)00125-1/sb15
http://refhub.elsevier.com/S0893-9659(15)00125-1/sb15
http://refhub.elsevier.com/S0893-9659(15)00125-1/sb16
http://refhub.elsevier.com/S0893-9659(15)00125-1/sb16
http://refhub.elsevier.com/S0893-9659(15)00125-1/sb16
http://refhub.elsevier.com/S0893-9659(15)00125-1/sb16
http://refhub.elsevier.com/S0893-9659(15)00125-1/sb16
http://refhub.elsevier.com/S0893-9659(15)00125-1/sb17
http://refhub.elsevier.com/S0893-9659(15)00125-1/sb17
http://refhub.elsevier.com/S0893-9659(15)00125-1/sb17
http://refhub.elsevier.com/S0893-9659(15)00125-1/sb18
http://refhub.elsevier.com/S0893-9659(15)00125-1/sb18
http://refhub.elsevier.com/S0893-9659(15)00125-1/sb18
http://refhub.elsevier.com/S0893-9659(15)00125-1/sb18
http://refhub.elsevier.com/S0893-9659(15)00125-1/sb18
http://refhub.elsevier.com/S0893-9659(15)00125-1/sb18
http://refhub.elsevier.com/S0893-9659(15)00125-1/sb18
http://refhub.elsevier.com/S0893-9659(15)00125-1/sb21
http://refhub.elsevier.com/S0893-9659(15)00125-1/sb21
http://refhub.elsevier.com/S0893-9659(15)00125-1/sb21
http://refhub.elsevier.com/S0893-9659(15)00125-1/sb22
http://refhub.elsevier.com/S0893-9659(15)00125-1/sb22
http://refhub.elsevier.com/S0893-9659(15)00125-1/sb22
http://refhub.elsevier.com/S0893-9659(15)00125-1/sb23
http://refhub.elsevier.com/S0893-9659(15)00125-1/sb23
http://refhub.elsevier.com/S0893-9659(15)00125-1/sb23
http://refhub.elsevier.com/S0893-9659(15)00125-1/sb24
http://refhub.elsevier.com/S0893-9659(15)00125-1/sb24
http://refhub.elsevier.com/S0893-9659(15)00125-1/sb24
http://refhub.elsevier.com/S0893-9659(15)00125-1/sb25
http://refhub.elsevier.com/S0893-9659(15)00125-1/sb25
http://refhub.elsevier.com/S0893-9659(15)00125-1/sb25
http://refhub.elsevier.com/S0893-9659(15)00125-1/sb26
http://refhub.elsevier.com/S0893-9659(15)00125-1/sb26
http://refhub.elsevier.com/S0893-9659(15)00125-1/sb26

70 L. Adouane / Robotics and Autonomous Systems 88 (2017) 51–70

[27] R.C. Arkin,Motor schema-basedmobile robot navigation, Int. J. Robot. Res. 8 (4)
(1989) 92–112.

[28] L. Adouane, N. Le Fort-Piat, Hybrid behavioral control architecture for the
cooperation of minimalist mobile robots, in: International Conference on
Robotics and Automation, New Orleans, USA, 2004, pp. 3735–3740.

[29] M. Egerstedt, X. Hu, A hybrid control approach to action coordination for
mobile robots, Autom. 38 (1) (2002) 125–130.

[30] J. Toibero, R. Carelli, B. Kuchen, (2007) Switching control of mobile robots
for autonomous navigation in unknown environments, in: IEEE International
Conference on Robotics and Automation, pp. 1974–1979.

[31] L. Adouane, Hybrid and safe control architecture for mobile robot navigation,
in: 9th Conference onAutonomous Robot Systems and Competitions, Portugal,
2009.

[32] M.A. Arbib, Perceptual structures anddistributedmotor control, in: V.B. Brooks
(Ed.), Handbook of Physiology, Section 2: The Nervous System, II, Motor
Control, Part 1, American Physiological Society, 1981, pp. 1449–1480.

[33] R. Zapata, A. Cacitti, P. Lepinay, DVZ-based collision avoidance control of non-
holonomic mobile manipulators, JESA 38 (5) (2004) 559–588.

[34] R.C. Arkin, Behavior-Based Robotics, The MIT Press, 1998.
[35] C. Ordonez, E.G.C. Jr., M.F. Selekwa, D.D. Dunlap, The virtual wall approach to

limit cycle avoidance for unmanned ground vehicles, Robot. Auton. Syst. 56 (8)
(2008) 645–657.

[36] E. Gat, Integrating planning and reacting in a heterogeneous asynchronous
architecture for controlling real-worldmobile robots, in: Proceedings of AAAI-
92, San Jose, CA, 1992, pp. 809–815.

[37] R. Alami, R. Chatila, S. Fleury, M. Ghallab, F. Ingrand, An architecture for
autonomy, Int. J. Robot. Res. 17 (1998) 315–337.

[38] A. Ranganathan, S. Koenig, A reactive robot architecture with planning on
demand, in: Intelligent Robots and Systems, 2003. (IROS 2003). Proceedings.
2003 IEEE/RSJ International Conference on, Vol. 2, 2003, pp. 1462–1468.

[39] P. Ridao, J. Batlle, J. Amat, G.N. Roberts, Recent trends in control architectures
for autonomous underwater vehicles, Int. J. Syst. Sci. 30 (9) (1999) 1033–1056.

[40] C. Rouff, M. Hinchey, Experience from the DARPA Urban Challenge, Springer
Publishing Company, Incorporated, 2011.

[41] R. Firby, An investigation into reactive planning in complex domains, in: Sixth
National Conference on Artificial Intelligence, Seattle, 1987, pp. 202–206.

[42] E. Gat, Three-layer architecture, in: D. Kortenkamp, R.P. Bonnasso, R. Mur-
phy, erd (Eds.), Artificial Intelligence and Mobile Robotics, AAAI Press, 1998,
pp. 195–210.

[43] R. Arkin, Towards the unification of navigational planning and reactive control,
in: AAAI Spring Symposium on Robot Navigation, 1989, pp. 1–5.

[44] K. Konolige, K. Myers, E. Ruspini, A. Saffiotti, The saphira architecture: A design
for autonomy, J. Exp. Theor. Artif. Intell. 9 (1997) 215–235.

[45] D. Busquets, C. Sierra, R.L. de Mántaras, A multiagent approach to qualitative
landmark-based navigation, Auton. Robots 15 (2) (2003) 129–154.

[46] H. C.-H. Hsu, A. Liu, A flexible architecture for navigation control of a mobile
robot, IEEE Trans. Syst. Man Cybern. Part A 37 (3) (2007) 310–318.

[47] A. El Jalaoui, D. Andreu, B. Jouvencel, A control architecture for contextual tasks
management: application to the auv taipan, in: Oceans 2005—Europe, Vol. 2,
2005, pp. 752–757.

[48] L. Adouane, Toward smooth and stable reactive mobile robot navigation using
on-line control set-points, in: IEEE/RSJ, IROS’13, 5th Workshop on Planning,
Perception and Navigation for Intelligent Vehicles, Tokyo-Japan, 2013.

[49] A. Benzerrouk, L. Adouane, P. Martinet, N. Andreff, Multi Lyapunov function
theorem applied to a mobile robot tracking a trajectory in presence of obsta-
cles, in: EuropeanConference onMobile Robots (ECMR2009),Milini/Dubrovnik
Croatia, 2009.

[50] J.-M. Vilca, L. Adouane, Y. Mezouar, Robust on-line obstacle detection using
data range for reactive navigation, in: SYROCO’12, Dubrovnik, Croatia, 2012.

[51] J.-M. Vilca, L. Adouane, Y.Mezouar, On-line obstacle detection using data range
for reactive obstacle avoidance, in: IAS’12, Korea, 2012.

[52] J. Vilca, L. Adouane, Y. Mezouar, Reactive navigation of mobile robot using
elliptic trajectories and effective on-line obstacle detection, Gyroscopy and
Navigation 4 (1) (2013) 14–25.

[53] D.-H. Kim, J.-H. Kim, A real-time limit-cycle navigation method for fast mobile
robots and its application to robot soccer, Robot. Auton. Syst. 42 (1) (2003)
17–30.

[54] M.S. Jie, J.H. Baek, Y.S. Hong, K.W. Lee, Real time obstacle avoidance for mobile
robot using limit-cycle and vector field method, Knowl.-Based Intell. Inf. Eng.
Syst. (2006) 866–873.

[55] L. Adouane, Orbital obstacle avoidance algorithm for reliable and on-line
mobile robot navigation, in: 9th Conference on Autonomous Robot Systems
and Competitions, Portugal, 2009.

[56] R.A. Soltan, H. Ashrafiuon, K.R. Muske, Ode-based obstacle avoidance and tra-
jectory planning for unmanned surface vessels, Robotica 29 (2011)
691–703.

[57] L. Adouane, A. Benzerrouk, P. Martinet, Mobile robot navigation in cluttered
environment using reactive elliptic trajectories, in: 18th IFACWorld Congress,
Italy, 2011.

[58] S.-M. Khansari-Zadeh, A. Billard, A dynamical system approach to realtime
obstacle avoidance, Auton. Robots 32 (2012) 433–454. http://dx.doi.org/10.
1007/s10514-012-9287-y.

[59] F.S. Segundo, J.R. Sendra, Degree formulae for offset curves, J. Pure Appl.
Algebra 195 (3) (2005) 301–335.

[60] A. Cayley, Sur la courbe parallele a l’ellipse, in: The Collected Mathematical
Papers, Vol. 4, Cambridge University Press, 2009, pp. 152–157. Cambridge
Books Online. URL http://dx.doi.org/10.1017/CBO9780511703706.032.

[61] J. Denavit, R.S. Hartenberg, A kinematic notation for lower-pair mechanisms
based on matrices, Trans. ASME, J. Appl. Mech. 22 (1955) 215–221.

[62] W. Khalil, E. Dombre, Modeling, Identification and Control of Robots, Hermes
Penton, 2004.

[63] S. Gim, L. Adouane, S. Lee, J.-P. Derutin, Parametric continuous curvature
trajectory for smooth steering of the car-like vehicle, in: 13th International
Conference on Intelligent Autonomous System (IAS-13), Padova-Italy, 2014.

[64] F. Harary, Graph Theory, Addison-Wesley, Reading, MA, 1969.
[65] J. Bondy, U. Murty, Graph Theory, in: Graduate Texts in Mathematics, vol. 244,

Springer, Berlin, 2008, xii, 651 p.
[66] E.W. Dijkstra, A note on two problems in connexion with graphs, Numerische

Mathematik 1 (1959) 269–271.
[67] P. Pirjanian, Multiple objective behavior-based control, Robot. Auton. Syst. 31

(2000) 53–60. http://dx.doi.org/10.1016/S0921-8890(99)00081-0.
[68] L. Adouane, N. Le-Fort-Piat, Evolutionary parameters optimization for an hy-

brid control architecture ofmulticriteria tasks, in: International Conference on
Robotics and Biomimetics (ROBIO), Shenyang-China, 2004.

[69] A. De Luca, G. Oriolo, C. Samson, Feedback control of a nonholonomic car-like
robot, in: J.-P. Laumond (Ed.), Robot Motion Planning and Control, in: Lecture
Notes in Control and Information Sciences, vol. 229, Springer, Berlin, Heidel-
berg, 1998, pp. 171–253.

[70] J.-M. Vilca, L. Adouane, Y. Mezouar, An adapted nominal control law for
reactive navigation in cluttered environment for electric urban vehicle, in:
12th International Conference on Robotics and Automation, Germany, 2013.

[71] H.K. Khalil, Frequency domain analysis of feedback systems, in: Nonlinear
Systems: Chapter 7, third ed., 2002.

[72] G.M. Siouris, Missile Guidance and Control Systems, Springer-Verlag, 2004.
[73] A. Benzerrouk, L. Adouane, P. Martinet, Stable navigation in formation for a

multi-robot system based on a constrained virtual structure, Robot. Auton.
Syst. 62 (12) (2014) 1806–1815.

[74] J.-M. Vilca, L. Adouane, Y. Mezouar, Adaptive leader-follower formation in
cluttered environment using dynamic target reconfiguration, in: Interna-
tional Symposium on Distributed Autonomous Robotic Systems, DARS 2014,
Daejeon-Korea, 2014.

[75] C. Goerzen, Z. Kong, B. Mettler, A survey of motion planning algorithms from
the perspective of autonomous uav guidance, J. Intell. Robot. Syst. 57 (1–4)
(2010) 65–100.

[76] P. Maes, The dynamics of action selection, in: Proceedings of the Eleventh
International Joint Conference on Artificial Intelligence (IJCAI), Detroit, 1989,
pp. 991–997.

[77] M.J. Mataric, M. Nilsson, K. Simsarian, Cooperative multi-robots box-pushing,
in: IEEE International Conference on Intelligent Robots and Systems, Vol. 3,
1995, pp. 556–561.

[78] M. Wang, J.N. Liua, Fuzzy logic-based real-time robot navigation in unknown
environment with dead ends, Robot. Auton. Syst. 56 (7) (2008) 625–643.

[79] P. Pirjanian, Multiple objective behavior-based control, J. Robot. Auton. Syst.
31 (1) (2000) 53–60.

[80] S. IP.Data.Sets, March 2015. http://ipds.univ-bpclermont.fr.

Lounis Adouane is an Associate Professor since 2006 at
the Institut Pascal-Polytech Clermont-Ferrand in France.
He received an MS in 2001 from IRCCyN-ECN Nantes,
where heworked on the control of leggedmobile robotics.
In 2005, he obtained a Ph.D. in automatic control from
FEMTO-ST laboratory-UFC Besançon. During his Ph.D.
studies he deeply investigated the field of multi-robot
systems, especially those related to bottom-up and reac-
tive control architectures. After that, he joined in 2005
Ampère laboratory-INSA Lyon and studied hybrid (contin-
uous/discrete) control architectures applied to coopera-

tive mobile robot arms. Dr. Adouane had the opportunity to visit several institu-
tions/laboratories, such as 1 month in 2009 at LIST (Luxembourg) and 6 months
in 2014 at Cranfield and Kingston universities (United Kingdom). In 2015, he
obtained from Blaise Pascal University a HDR (habilitation to steer research in
Robotics). Since 2006, he has authored/coauthored more than 70 international
references and 2 books. His main research interests include: Autonomous mo-
bile robots/vehicles, Behavioral/multi-controller architectures, Obstacle avoidance,
Lyapunov-based synthesis and stability, Cooperative robotics, Task/trajectory plan-
ning and re-planning, Artificial intelligence, Multi-robot/agent simulation.

http://refhub.elsevier.com/S0893-9659(15)00125-1/sb27
http://refhub.elsevier.com/S0893-9659(15)00125-1/sb27
http://refhub.elsevier.com/S0893-9659(15)00125-1/sb27
http://refhub.elsevier.com/S0893-9659(15)00125-1/sb28
http://refhub.elsevier.com/S0893-9659(15)00125-1/sb28
http://refhub.elsevier.com/S0893-9659(15)00125-1/sb28
http://refhub.elsevier.com/S0893-9659(15)00125-1/sb28
http://refhub.elsevier.com/S0893-9659(15)00125-1/sb28
http://refhub.elsevier.com/S0893-9659(15)00125-1/sb29
http://refhub.elsevier.com/S0893-9659(15)00125-1/sb29
http://refhub.elsevier.com/S0893-9659(15)00125-1/sb29
http://refhub.elsevier.com/S0893-9659(15)00125-1/sb32
http://refhub.elsevier.com/S0893-9659(15)00125-1/sb32
http://refhub.elsevier.com/S0893-9659(15)00125-1/sb32
http://refhub.elsevier.com/S0893-9659(15)00125-1/sb32
http://refhub.elsevier.com/S0893-9659(15)00125-1/sb32
http://refhub.elsevier.com/S0893-9659(15)00125-1/sb33
http://refhub.elsevier.com/S0893-9659(15)00125-1/sb33
http://refhub.elsevier.com/S0893-9659(15)00125-1/sb33
http://refhub.elsevier.com/S0893-9659(15)00125-1/sb34
http://refhub.elsevier.com/S0893-9659(15)00125-1/sb35
http://refhub.elsevier.com/S0893-9659(15)00125-1/sb35
http://refhub.elsevier.com/S0893-9659(15)00125-1/sb35
http://refhub.elsevier.com/S0893-9659(15)00125-1/sb35
http://refhub.elsevier.com/S0893-9659(15)00125-1/sb35
http://refhub.elsevier.com/S0893-9659(15)00125-1/sb36
http://refhub.elsevier.com/S0893-9659(15)00125-1/sb36
http://refhub.elsevier.com/S0893-9659(15)00125-1/sb36
http://refhub.elsevier.com/S0893-9659(15)00125-1/sb36
http://refhub.elsevier.com/S0893-9659(15)00125-1/sb36
http://refhub.elsevier.com/S0893-9659(15)00125-1/sb37
http://refhub.elsevier.com/S0893-9659(15)00125-1/sb37
http://refhub.elsevier.com/S0893-9659(15)00125-1/sb37
http://refhub.elsevier.com/S0893-9659(15)00125-1/sb39
http://refhub.elsevier.com/S0893-9659(15)00125-1/sb39
http://refhub.elsevier.com/S0893-9659(15)00125-1/sb39
http://refhub.elsevier.com/S0893-9659(15)00125-1/sb40
http://refhub.elsevier.com/S0893-9659(15)00125-1/sb40
http://refhub.elsevier.com/S0893-9659(15)00125-1/sb40
http://refhub.elsevier.com/S0893-9659(15)00125-1/sb42
http://refhub.elsevier.com/S0893-9659(15)00125-1/sb42
http://refhub.elsevier.com/S0893-9659(15)00125-1/sb42
http://refhub.elsevier.com/S0893-9659(15)00125-1/sb42
http://refhub.elsevier.com/S0893-9659(15)00125-1/sb42
http://refhub.elsevier.com/S0893-9659(15)00125-1/sb44
http://refhub.elsevier.com/S0893-9659(15)00125-1/sb44
http://refhub.elsevier.com/S0893-9659(15)00125-1/sb44
http://refhub.elsevier.com/S0893-9659(15)00125-1/sb45
http://refhub.elsevier.com/S0893-9659(15)00125-1/sb45
http://refhub.elsevier.com/S0893-9659(15)00125-1/sb45
http://refhub.elsevier.com/S0893-9659(15)00125-1/sb46
http://refhub.elsevier.com/S0893-9659(15)00125-1/sb46
http://refhub.elsevier.com/S0893-9659(15)00125-1/sb46
http://refhub.elsevier.com/S0893-9659(15)00125-1/sb50
http://refhub.elsevier.com/S0893-9659(15)00125-1/sb50
http://refhub.elsevier.com/S0893-9659(15)00125-1/sb50
http://refhub.elsevier.com/S0893-9659(15)00125-1/sb52
http://refhub.elsevier.com/S0893-9659(15)00125-1/sb52
http://refhub.elsevier.com/S0893-9659(15)00125-1/sb52
http://refhub.elsevier.com/S0893-9659(15)00125-1/sb52
http://refhub.elsevier.com/S0893-9659(15)00125-1/sb52
http://refhub.elsevier.com/S0893-9659(15)00125-1/sb53
http://refhub.elsevier.com/S0893-9659(15)00125-1/sb53
http://refhub.elsevier.com/S0893-9659(15)00125-1/sb53
http://refhub.elsevier.com/S0893-9659(15)00125-1/sb53
http://refhub.elsevier.com/S0893-9659(15)00125-1/sb53
http://refhub.elsevier.com/S0893-9659(15)00125-1/sb54
http://refhub.elsevier.com/S0893-9659(15)00125-1/sb54
http://refhub.elsevier.com/S0893-9659(15)00125-1/sb54
http://refhub.elsevier.com/S0893-9659(15)00125-1/sb54
http://refhub.elsevier.com/S0893-9659(15)00125-1/sb54
http://refhub.elsevier.com/S0893-9659(15)00125-1/sb56
http://refhub.elsevier.com/S0893-9659(15)00125-1/sb56
http://refhub.elsevier.com/S0893-9659(15)00125-1/sb56
http://refhub.elsevier.com/S0893-9659(15)00125-1/sb56
http://refhub.elsevier.com/S0893-9659(15)00125-1/sb56
http://dx.doi.org/10.1007/s10514-012-9287-y
http://dx.doi.org/10.1007/s10514-012-9287-y
http://dx.doi.org/10.1007/s10514-012-9287-y
http://refhub.elsevier.com/S0893-9659(15)00125-1/sb59
http://refhub.elsevier.com/S0893-9659(15)00125-1/sb59
http://refhub.elsevier.com/S0893-9659(15)00125-1/sb59
http://refhub.elsevier.com/S0893-9659(15)00125-1/sb60
http://refhub.elsevier.com/S0893-9659(15)00125-1/sb60
http://refhub.elsevier.com/S0893-9659(15)00125-1/sb60
http://refhub.elsevier.com/S0893-9659(15)00125-1/sb60
http://refhub.elsevier.com/S0893-9659(15)00125-1/sb60
http://dx.doi.org/10.1017/CBO9780511703706.032
http://refhub.elsevier.com/S0893-9659(15)00125-1/sb61
http://refhub.elsevier.com/S0893-9659(15)00125-1/sb61
http://refhub.elsevier.com/S0893-9659(15)00125-1/sb61
http://refhub.elsevier.com/S0893-9659(15)00125-1/sb62
http://refhub.elsevier.com/S0893-9659(15)00125-1/sb62
http://refhub.elsevier.com/S0893-9659(15)00125-1/sb62
http://refhub.elsevier.com/S0893-9659(15)00125-1/sb64
http://refhub.elsevier.com/S0893-9659(15)00125-1/sb65
http://refhub.elsevier.com/S0893-9659(15)00125-1/sb65
http://refhub.elsevier.com/S0893-9659(15)00125-1/sb65
http://refhub.elsevier.com/S0893-9659(15)00125-1/sb66
http://refhub.elsevier.com/S0893-9659(15)00125-1/sb66
http://refhub.elsevier.com/S0893-9659(15)00125-1/sb66
http://dx.doi.org/10.1016/S0921-8890(99)00081-0
http://refhub.elsevier.com/S0893-9659(15)00125-1/sb69
http://refhub.elsevier.com/S0893-9659(15)00125-1/sb69
http://refhub.elsevier.com/S0893-9659(15)00125-1/sb69
http://refhub.elsevier.com/S0893-9659(15)00125-1/sb69
http://refhub.elsevier.com/S0893-9659(15)00125-1/sb69
http://refhub.elsevier.com/S0893-9659(15)00125-1/sb69
http://refhub.elsevier.com/S0893-9659(15)00125-1/sb69
http://refhub.elsevier.com/S0893-9659(15)00125-1/sb72
http://refhub.elsevier.com/S0893-9659(15)00125-1/sb73
http://refhub.elsevier.com/S0893-9659(15)00125-1/sb73
http://refhub.elsevier.com/S0893-9659(15)00125-1/sb73
http://refhub.elsevier.com/S0893-9659(15)00125-1/sb73
http://refhub.elsevier.com/S0893-9659(15)00125-1/sb73
http://refhub.elsevier.com/S0893-9659(15)00125-1/sb75
http://refhub.elsevier.com/S0893-9659(15)00125-1/sb75
http://refhub.elsevier.com/S0893-9659(15)00125-1/sb75
http://refhub.elsevier.com/S0893-9659(15)00125-1/sb75
http://refhub.elsevier.com/S0893-9659(15)00125-1/sb75
http://refhub.elsevier.com/S0893-9659(15)00125-1/sb76
http://refhub.elsevier.com/S0893-9659(15)00125-1/sb76
http://refhub.elsevier.com/S0893-9659(15)00125-1/sb76
http://refhub.elsevier.com/S0893-9659(15)00125-1/sb76
http://refhub.elsevier.com/S0893-9659(15)00125-1/sb76
http://refhub.elsevier.com/S0893-9659(15)00125-1/sb78
http://refhub.elsevier.com/S0893-9659(15)00125-1/sb78
http://refhub.elsevier.com/S0893-9659(15)00125-1/sb78
http://refhub.elsevier.com/S0893-9659(15)00125-1/sb79
http://refhub.elsevier.com/S0893-9659(15)00125-1/sb79
http://refhub.elsevier.com/S0893-9659(15)00125-1/sb79
http://ipds.univ-bpclermont.fr

	Reactive versus cognitive vehicle navigation based on optimal local and global PELC∗
	Introduction
	Reactive versus cognitive control architecture
	Hybrid control architecture

	Overall navigation framework definition
	Reliable path planning based on Parallel Elliptic Limit-Cycle (PELC)
	Generic components
	Elementary PELC
	References frame linked to the task achievement

	Optimal local and global path planning
	Local path generation based on PELC*
	Global path generation based on gPELC*
	Multi-criteria optimality discussion

	Homogeneous and Hybrid Control Architecture (HHCA)
	Perceptive and environment characteristics
	Uniform used control law
	Sub-tasks to achieve based on homogeneous set-points definition
	Path following set-points based on Frenetreference frame
	Target reaching/tracking set-points

	Reactive versus cognitive vehicle navigation
	Reactive navigation based on local PELC*
	Cognitive navigation based on global PELC∗ (gPELC∗)
	Hybrid and hierarchical action selection

	Proposal validation
	Extensive validation by simulation
	The use of gPELC∗ for different environments
	Switch from cognitive to reactive navigation and vice versa

	Experimental validation

	Conclusion and further work
	Acknowledgments
	Supplementary data
	References

