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Abstract This paper addresses the interest of using punc-
tual versus continuous coordination for mobile multi-robot
systems where robots use auction sales to allocate tasks
between them and to compute their policies in a distrib-
uted way. In continuous coordination, one task at a time is
assigned and performed per robot. In punctual coordination,
all the tasks are distributed in Rendezvous phases during
the mission execution. However, tasks allocation problem
grows exponentially with the number of tasks. The proposed
approach consists in two aspects: (1) a control architec-
ture based on topological representation of the environment
which reduces the planning complexity and (2) a protocol
based on sequential simultaneous auctions (SSA) to coordi-
nateRobots’ policies. The policies are individually computed
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using Markov Decision Processes oriented by several goal-
task positions to reach. Experimental results on both real
robots and simulation describe an evaluation of the pro-
posed robot architecture coupled wih the SSA protocol. The
efficiency of missions’ execution is empirically evaluated
regarding continuous planning.

Keywords Multi-robot · Decision making · Auction
coordination

1 Introduction

Increasing the number of robots in a mission permits to
improve the efficiency and to reduce the time needed to com-
plete the mission. The paper focuses on multi-task missions
where each task is located in the environment and can be
achieved by a single robot. Using a team of robots, tasks
can be simultaneously executed. However, multi-robot mis-
sions require good coordination between the robots’ actions
to optimize execution performances.

The required decision making consists in computing the
shortest and safest paths allowing the robots to perform all
the tasks while minimizing the resources consumed by the
robots and the overall mission duration. Optimally mapping
individual actions to each possible succession of local per-
ceptions is very hard to compute (Bernstein et al. 2000). In
standard distributed approaches, each robot uses its owncom-
puting resources to decide its owns movements (Ren and
Beard 2008) thus parallelizing the policy computations. Two
kinds of coordination approaches can be used to allow robot
teams to coordinate in a distributed way: continuous or punc-
tual coordination.

Continuous coordination consists in interleaving coordi-
nated decision making and action execution at each step of
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the mission execution. One task is attributed at a time to each
robot. When a robot terminates its task, it choses another
one in the set of unassigned tasks (Davis and Smith 1983;
Gerkey and Mataric 2002; Burgard et al. 2005; Matignon
et al. 2012). Generally, decision making is based on the dis-
tance to the remaining tasks in order to select the closest
task. The decision process can also be impacted by the other
robot locations to improve task allocation. Continuous coor-
dination requires efficient communication and work-around
computingmulti-task paths. However, those solutions handle
very well dynamics in tasks and in knowledge as in explo-
ration scenarios.

Punctual coordination aims to reduce the frequency of
coordination requirements (Berhault et al. 2003; Hourani
et al. 2013). During some Rendezvous points, robots share
their information and distribute several tasks between them.
Robots are then autonomous to perform allocated tasks
until the next Rendezvous (Hourani et al. 2013). However,
such approach requires important computational resources to
allow the group to coordinate path planning involving several
tasks.

This paper question the reduction of the robot’s move-
ments and mission duration while using punctual rather
than continuous coordination. The challenge consists in
computing both individual multi-task policies and efficient
task allocation with respect to realistic robot control. The
complexity of solving punctual coordination is reduced
by representing the environment using Topological Map
(Kuipers andByun 1991; Thrun 1998) and by solving coordi-
nationwith an appropriate auction protocol (Dias et al. 2006).
However, the auction protocol has to allocate inter-dependent
tasks (Rothkopf et al. 1998; Berhault et al. 2003).

The Topological Map represents the environment as a
graph of paths connecting key positions (or way-points).
The Topological Map is the main element allowing the robot
architecture to link reactive control (Benzerrouk et al. 2010)
and multi-task planning. This way, by considering only few
key positions in the environment, the robots can punctually
coordinate their movements to visit a set of task-positions
(at least one robot per task). The proposed coordination
is based on Markov decision processes (MDPs) oriented
by several goal-tasks to individually plan movements and
a specific auction-based protocol to assign tasks between
robots.

The remainder of the paper is organized as follows:
research background of the proposed approach is described
in Sect. 2. The robot architecture is detailed in Sect. 3. Dis-
tributed decision making using continuous coordination is
presented in Sect. 4. The sequential simultaneous auctions
(SSA) coordination protocol is detailed in Sect. 5. Sec-
tion 6 describes experimental results before ending with
a discussion and a conclusion in Sects. 7 and 8 respec-
tively.

2 Background

In open environments with uncertain obstacle shapes and
movement achievements, robots have to be autonomous
in their movement control and supervision. Hierarchically,
the robot autonomy results in its capability of: modeling
the robot environment, computing individual policies of
actions and negotiating task assignments. This section intro-
duces the background of the proposed approach. Starting
with generic robot planning methods discussed regarding
multi-task missions, methods dealing with uncertain and
multi-robot context are reviewed.

2.1 Map and path planning

Two main kinds of maps have been proposed in the litera-
ture to localize robots in their environment: the occupancy
grid maps and the Topological Maps. Occupancy grid maps
consist in a metric sampling of the space in elementary cells
(Thrun 1998). Each cell could be qualified as free, obstacle
or unknown. The occupancy grid maps are the most common
environment representation used for mobile robots. Robot
movements are decomposed by elementarymovements (cell-
by-cell), then, Potential Fields, Rapidly-exploring Random
Trees and Markov Decision Processes represent the most
popular path planning approaches used for mobile robots.

In Potential Field approaches, robots are artificially
attracted by a positive force oriented to the target while
repulsive forces allow the robot to keep a safe distance from
obstacles (Khatib 1986). Applying several sources of attrac-
tive forces allows the robot to orient its movements towards
one of them (the closest or themost attractive). This approach
is myopic since the robot chooses the current most interest-
ing task without anticipating future choices. Furthermore,
potential field has to be propagated in each cell of the map.

Rapidly-exploring random tree (RRT) algorithm consists
in building iteratively a set of reachable positions by applying
random elementary movements (Kuffner and LaValle 2000).
The algorithm terminates on a non-optimal solution when a
branch of the tree finishes at the target position. Using two
RRTs, one starting from the robot position and another from
the target position allows to speed up the path computation
(Kuffner and LaValle 2000). As far as we know, RRT is not
used to handle multi-target missions.

Markov decision process (MDP) is a decision mak-
ing formalism handling uncertainty. MDPs generalize paths
planning on graphs with stochastic edge transitions and they
have been successfully used inmobile robotics (Burgard et al.
2005; Teichteil-Königsbuch and Fabiani 2006; Foka and Tra-
hanias 2007; Matignon et al. 2012; Lozenguez et al. 2011).
MDP formalism is generic, however, using this formalism
for multi-target problems based on grid map will produce
intractable state space.
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For instance, a 200 m2 apartment mapping at 1 cm preci-
sion will result in a minimum of 2×106 cells and 4×2×106

possible elementary movements considering only 4 move-
ment directions while tens of key-positions could describe
the apartment. Reducing the map definition will permit to
speed-up path planing in order to handle multi-task posi-
tions in punctual coordination phases. A Topological Map
is a graph representation where nodes match particular loca-
tions and edges represent the path connectivity (Kuipers and
Byun 1991). Nodes match semantic descriptions (intersec-
tion, corner etc.) (Kuipers and Byun 1991; Floros et al. 2013)
or perceptive snapshots (Korrapati et al. 2012). This way,
the Topological Map is defined as succession of local con-
figurations linked by local possible displacements. Metric
knowledge in a global system [as using Voronoï diagram
from a grid map (Choset and Burdick 1995)] can be interest-
ing but is optional.

Using Topological Map, the proposed approach aims
to map the environment with a minimum number of key-
positions while guarantying that key-positions are reachable
using reactive control. This way, robots would punctually
handle multi-target path planning using MDP framework.

2.2 MDP framework

AnMDP is defined as a tuple 〈S, A, t, r〉with S and A respec-
tively, the state and the action sets that define the system and
its control capabilities. The transition function, defined as
t : S × A × S → [0, 1], gives the probability t (s, a, s′)
to reach state s′ from s while executing action a ∈ A. The
reward function (r : S × A → R), returns the reward r(s, a)

obtained by executing the action a from the state s.
Solving an MDP consists in searching an optimal policy

π∗ that maximizes the expected gain. A policy is a func-
tion π : S → A mapping each state to an action. The value
V π of the expected gain regarding a policy π can be com-
puted by solving the Bellman equation (Bellman 1957). This
value depends on a parameter γ ∈ [0, 1] which balances the
importance between future and immediate rewards:

V π (s) = r(s, a) + γ
∑

s′∈S
t (s, a, s′)V π (s′)

where a = π(s)
(1)

Commonly, the states match the possible configurations
of the robot in its environment. For a robot in a static known
environment and with a perfect estimation of its position,
MDP states match all possible positions in the environ-
ment (Burgard et al. 2005; Matignon et al. 2012). Because
of imperfect perception skills, the robot may not be able
to observe its state. Partially Observable MDPs (POMDPs)
extend MDPs to partially observable settings where a robot
makes decisions from its history of actions and partial obser-

vations about its state (Foka andTrahanias 2007). The history
of information can be summarized as a belief state which
consist of a probability distribution on possible state config-
urations. Unfortunately, partial observability increases the
computation complexity of computing an optimal policy.

2.3 Distributed policy computation

In multi-agent systems under distributed control, a policy
is assigned to each agent. The problem consists in comput-
ing the optimal decentralized joint policy. A joint policy is
a set of individual policies, one for each agent. In coopera-
tive settings, an optimal policy is a policy that maximizes the
expected gains of the system (Bernstein et al. 2000). Com-
puting such an optimal policy is NEXP-hard.

Most existing approaches compute the joint decentralized
policy in a centralized way and needs important com-
putational resources. Expressive and complete multi-agent
models are difficult to solve since they lead to huge state
or belief state spaces. It is notably true in case of multi-task
problems (as traveling salesmen problems) where states have
to represent which tasks are achieved or not (Lozenguez et al.
2011).

However, policy computation could be distributed as well.
In generic distributed approaches, each agent computes its
own policywhile considering that the policies of other agents
are fixed (Chades et al. 2002; Nair et al. 2005). In such cases,
any policy actualization of an agent induces modification in
the individual transition and reward functions of the other
agents. Thus, each agent iteratively updates its policy until
an equilibrium is reached.

Ad-hoc distributed approaches are widely used to solve
specific problems. The paper focuses on coordination prob-
lems considering that dependencies between robot policies
only result from tasks allocation.

2.4 Coordination by tasks allocation

In consensus approaches (Ren and Beard 2008), auction-
based coordination consists in attributing tasks or resources
as items among agents. These approaches were successfully
used in robotics (Dias et al. 2006). In Contract Net (Davis
and Smith 1983) orMURDOCH (Gerkey andMataric 2002),
an item (object, resource or task) is put up for sale by a robot
who becomes manager. The other robots are potential clients
for the item. Clients send bids for the item to the manager
and the item is allocated to the client with the highest bid.

Bids and attribution rules can be defined differently to
optimize the sum of individual interests or to lead to bal-
anced allocations (Tovey et al. 2005). Individual MDPs and
Bellman equation can be used to compute individual gains
regarding a set of tasks or regarding the addition or the sub-
traction of one task (or several) to the set of already assigned
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tasks. Thismechanism has been used to evaluate bids in robot
auctions for coordination (Burgard et al. 2005). The value of
each task depends on the tasks already assigned to the agent.
This generally requires to put back in sale, several times,
tasks with strong dependencies.

Combinatorial auctions (Rothkopf et al. 1998), where
agents can bid on a set of items, are able to express synergies
between items’ values. This kind of auctions reaches opti-
mal tasks allocation in a unique simultaneous sale (Berhault
et al. 2003) by biding on combinations of items. However,
agents have to detect and evaluate synergy between tasks.
This induces several policy computations, one per possible
task allocation. Thus, the number of policy computations is
exponential with the number of task combinations.

In punctual coordination during the mission execution,
robots have to efficiently andquickly coordinate their actions.
The main issue is both to perform fast policy computations
and to allocate several interdependent items while minimiz-
ing policy actualization. In the proposed approach, a control
architecture based on reactive controllers permits to reduce
policy computation complexitywithout definingbelief states.
Robots build and solve MDPs based on a low density Topo-
logical Map and oriented by several tasks. Finally, a SSA
protocol is defined andused to distribute tasks between robots
with a few expected number of iterations.

3 Robot architecture

Previous section shows that controlling a group of robots for
multi-taskmissions is a difficult problem.The proposed robot
control architecture (Fig. 1) is based on hierarchical separa-
tion between decision and control in two levels: functional
and deliberative (Alami et al. 1998; Volpe et al. 2001). The
originality of the proposed architecturemainly lies in the defi-
nition of the Topological Map as the key element connecting
perception, decision making and control. The architecture

Fig. 1 The topology-based hierarchical architecture

aims to reduce the complexity of distributed policy compu-
tation by considering low density graphmodel under realistic
hypothesis.

The functional level provides an interface to perform
local tasks such as catching an object, following a trajectory,
describing the environment, etc. The deliberative level plans
the sequence of local tasks in order to reach the goals. The
proposed functional level is split into perception and control
parts and the deliberative level is split into representation
and supervision parts. Each part of this control architecture
is detailed in the remaining of the section.

3.1 Perception part

The perception part refines the sensors input stream to
produce usable information for the localization and robot
control. It is composed of several refiner modules working in
parallel: Local Interpreter, Odometer and Landmark Detec-
tor.

The Local Interpreter allows to separate navigable space
free of obstacles in the perceived area and to add a seman-
tic perceptive state to the local configuration. The obstacles
shapes around the robot are defined as a list of polygons
(Fig. 2b). In fact, obstacle detection is only efficient in a lim-
ited range around the robot because of obstacle obstruction
and image or laser refinement (number of pixels or number
of beams). In a limited range around the robot, shapes could
be defined with enough accuracy.

Therefore, from obstacle shapes, the Local Interpreter
associates a semantic to the local configuration. The local
configuration is defined by the number of obstacles andmore
importantly the numbers of exits tomove out of the local area.
An exit is detected if the distance between obstacles allows
the robot to move through or if there are no other obsta-
cle, in the local perception, which prevent the robot to move
on (e.g. Fig. 2b has 3 exits). Exits can be delimited by one
or two obstacles (open or regular exits). Considering local
configuration of open or regular exits, we dissociate eight
semantic perceptive states from the free space (no obstacle)
to the intersection (4 exits or more) (Fig. 2c).

In parallel to the Local Interpreter, we consider that the
robot is equipped with an Odometer giving an estimation of
the robot displacement and a Landmark Detector allowing
the robot to recognize a place crossed several times. We con-
sider that these two refiners permit the robot to maintain an
accurate enough localization in the environment and more
specifically to mark funnel and intersection area with unique
identifier whatever the used entrance in the area. However,
this paper does not focus on localization problems. Semantic
place recognition coupled with metric information achieve
good performances in indoor environments (Thrun 1998).
This hypothesis is valid also in urban environments using
visual sensors (Korrapati et al. 2012; Floros et al. 2013).
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(a)

(c)

(b)

Fig. 2 From local perception to semantic characterization: a the robot
in the environment; b the corresponding local model, this configuration
has three exits (in gray dotted lines); c the possible eight local semantic
states

3.2 Control part

The control part produces an immediate response to a local
situation given by the refined perception (local model and
movement estimation) in order to permit reactive robot to
navigation in presence of obstacles (Benzerrouk et al. 2010).
It is composed of several controller modules which can be
parametrized and activated on demand. The robot control is
defined by one metric Reaching Controller and one Topolog-
ical Controllers parametrized by a local task.

Reaching Controller is defined as the default controller
of the robot to reach a distant target. If an obstacle of the
local model defined by Local Interpreter refiner prevents the
robot to reach the target, two candidate local targets are built,
one on the left and another on the right of the obstacle. The
target inducing the minimal deviation is chosen. This way,
the robot smoothlymoves to the target while avoiding convex
obstacles. The local task is defined as a target distant position
with respect to the current robot position. The target position

is actualized according tomovement estimation that prevents
using the Reaching Controller for long movements.

The Topological Controller defines control rules directly
from the local model rather than from metric targets. The
Topological Controller works in a similar way to the Reach-
ing Controller but by targeting the middle of an exit in the
local navigable space (Fig. 2b, c). TheTopologicalController
is independent to the movement estimation while the exit
to target is topologically defined. Therefore, local task asso-
ciates an exit to target to the current semantic perception state
by considering that local exits are indexed from the robot’s
left to its right (Fig. 2b, c). The Topological Controller per-
mits the robot to navigate in corridor, to circle an obstacle
and to choose a direction in an intersection.

The controllers could be activated or not depending on the
semantic of the local configuration and to the current local
task. The current local task is given by the Deliberative level
according to the next distant task position to reach.

3.3 Representation part

The Representation part manages the knowledge about the
environment to allow localization, decision making and
supervision of task achievement. This part is mainly com-
posed of aTopologicalMap directly built from the Functional
level capacities: refiners and controllers (Fig. 1).

The Topological Map 〈W, P〉 (Fig. 3) is a graph where:
the nodes represent particular waypoints; the edges repre-
sent the paths connectivity between the nodes. A waypoint
w ∈ W in themap identifies a key position in the environment
where the local semantic perception state spw switch between
punctual and stable semantic perception states. Punctual
semantic perception state is a state that is available in a lim-
ited range and (most of the time) that requires the robot to
take a decision in the direction to move on: dead-end, fun-
nel and intersection. In contrary, stable semantic perception

Fig. 3 Example of a Topological Map
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state identifies corridor and one obstacle configurations. A
waypoint w ∈ W is also characterized by its position and
orientation (xw, yw, θw) and the landmark identifier idw.

A path p ∈ P is characterized by the initial wp and tar-
get w′

p nodes and the control supervision rule sr p ∈ SR
used to move from wp to w′

p (Reaching or Topological Con-
trollerswith local task parameters). Using this configuration,
the Topological Map induces topological control in stable
semantic perception states and reaching control in punctual
states.

Several attributes are associated to the knowledge about
the path p in order to permit efficient control and decision
making. An attribute cp gives the related movement cost and
matches the average path duration. In fact, the movement
cost between two positions varies according to the type of
ground, the slope or the obstruction of the path. According
to the possible error during a movement, the function dp
(deviation) gives the probability to reach other waypoints by
moving from wp to w′

p. We assume that dp(w′
p) returns the

highest probability.
The Topological Map 〈W, P〉 is defined as:

W = {(xw, yw, θw, spw, idw) ∈ R
3 × SP × N},

P = {(wp, w
′
p, sr p, cp, dp)

wp, w′
p ∈ W, sr p ∈ SR,

cp ∈ R, dp : W → [0, 1] }

Structuring knowledge in a stochastic collision-free con-
nectivity permits to plan a safe and efficient path between two
positions (Alterovitz et al. 2007). Given a global topology,
the deliberation module has to compute a policy of actions to
reach several goals. However, the topological mapping has
to maintain a consistent knowledge about the node localiza-
tion and the normalized deviation functions. Evaluating or
learning the deviation function is out of the scope of this
paper.

3.4 Supervision part

The Supervision part connects the topological model, the
goals and the control. It aims to choose the control tasks
(local task) to perform regarding a global policy. Local tasks
are defined in the topology according to punctual or stable
semantic perception states and match the Reaching Con-
troller with a target position or the Topological Controller
with a local exit to target. Supervision part is split into a
decision making module and an executive module (Fig. 1).
The executive module supervises the local task to activate
regarding the policy computed by the decision-making mod-
ule.

The proposed approach uses MDP formalism coupled
with reactive control to ensure long-term planning with
smooth robot movements under uncertainty. In multi-robot

missions, the policy has to be computed cooperatively by
integrating communication protocols. The next two sections
describe the main contribution of our approach by focusing
on punctual task allocation and SSA to compute cooperative
policies.

4 From continuous to punctual task allocation

Cooperative multiagent decision-making problems are com-
posed of individual decision making problems and collective
decision making problems. Given a robot i , the individual
decision making problem consists in determining all paths to
take in order to visit all its attributed tasks Gi . The collec-
tive decision making problem consists in distributing tasks
between robots in away that minimizes consuming resources
(movements and mission duration) to achieve all the tasksG.
Both levels require the agents to be coordinated.

An allocation of tasks G = 〈G1,G2, . . . ,Gn〉 defines
a collection of subsets of tasks, one for each robot i ∈
[1, . . . , n]. By assuming that a task is assigned to one and
only one robot, auction protocols allocate each task g to the
robot i maximizing the utility value ui (Gi , g) taking into
account other allocated tasks Gi .

4.1 Continuous coordination

To solve the coordination problem, solutions based on a con-
tinuous approach assign one task at a time to each robot and
need an active coordination process all over the mission exe-
cution. Using utility values computed in a distributed way,
continuous coordination mechanism based on simultaneous
uuctionswith single attributionwas implemented (Algorithm
1). This solution attributes a task to each robot at the begin-
ning of themission and at each time a robot finishes to execute
its task.

Algorithm 1 Simultaneous Auctions
Require: List of robots and list of tasks
1: Wait for all (robot × task) utility values.
2: while robots and tasks in lists do
3: Search the highest utility value in lists.
4: Associate the selected task and robot.
5: Remove selected robot and task from lists.
6: end while
7: return Pairs of (robot, task). (Max. 1 per robot)

Simultaneous Auctions are started with all robots and the
set of available tasks (all the uncompleted and unattributed
tasks). Robots compute and communicate their new utility
values resulting from their current position. The utility values
is computed from a goal constant reward rg decreased by the
movement cost to reach it. The tasks assigned to the free
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robots (all the robots at the beginning) are pull out the set
of available tasks. This mechanism prevents idle time while
other robots terminate their tasks andguarantees to select new
task with respect to “one per robot” future task attributions.

Simultaneous auctions allow us to formalize a continuous
coordination process similar to the ones proposed in previous
works in the literature (cf. Sect. 2.4). Furthermore, the pro-
posed solution reaching a complete allocation in punctual
coordination is an augmented version of the Simultaneous
Auctions algorithms (cf. Sect. 5). This way, the differences
between continuous and punctual coordination will be easily
highlighted. From continuous approach, to reach coordina-
tion where several tasks are attributed per robot, the first
difficulty is to individually compute utility values regarding
different set of attributed tasks.

4.2 Individual decision making

The utility values mainly depend on the robot i’s policy to
reach a set of tasks Gi . In the proposed approach, individ-
ual goal-oriented Markov decision processeses (GO-MDPs)
are used to compute policies and associated utility values.
GO-MDPs allow each robot to make optimal decisions in
order to perform sequentially several tasks. A GO-MDP
〈Si , Ai , ti , ri 〉 is defined like a standard MDP that includes a
memory of achieved goals in the state definition.

An optimal GO-MDP policy π∗
i,Gi

is computed for each
robot i from its Topological Map and a set of goal-tasks Gi

to perform (Gi ⊂ Wi ). A state s ∈ Si includes the last
recognized waypoints ws ∈ Wi and the set of achieved goals
Gs ⊆ Gi . The actions match the set of paths Pi . An action
ps is added for every waypointws ∈ Gi as a symbolic action
validating that the goal located in ws is performed:

Si = {s = (ws,Gs) | ws ∈ Wi , Gs ⊆ Gi }
Ai = {pa ∈ Pi } ∪ {ps = (ws, ws) | ws ∈ Gi } (2)

When executing an action pa from the waypoint ws , the
transition function t returns the probabilities to reach neigh-
bor positions according to the deviation function dpa . A
transition for each validation action reaches the correspond-
ing state where the set of achieved goals is augmented if the
waypoint matches a goal location to reach by the robot i (i.e.
ws ∈ Gi ):

ti (s, pa, s
′) =

{
dpa (ws′) if Gs′ = Gs

0 else
(3)

ti (s, ps, s
′) =

⎧
⎨

⎩

1 if Gs′ =Gs ∪ (Gi ∩ ws)

and ws′ =ws

0 else

(4)

The reward function returns a negative value regarding
the movement cost related to the path, and a positive con-

stant gain rg common to all robots if a new task location is
reached. Therefore, the GO-MDP structure guarantees that
the positive rewards rg can only be perceived once per goal.

ri ((ws,Gs), pa) = cpa

ri ((ws,Gs), ps) =
{
rg if ws ∈ Gi − Gs

0 else
(5)

4.3 Robot utility values

Using continuous approach, a utility value is computed based
on the individual expected gain to perform a task. At each
time-step, the sets of attributed tasks are composed by zero
or one task (∀Gi , Gi = ∅ or {g}). The individual expected
gain of a robot i is defined as the Bellman value (Eq. 1)
attached to optimal policy to perform {g} from the current
position wic ∈ W of the robot in the environment:

ui (∅, g) = V π∗
i,{g}(wic) (6)

Punctual coordination aims to find the optimal allocation
G

∗ in the set of all candidates DG which maximizes the sum
of expected gains.

value(G) =
n∑

i=1

gni (Gi ) (7)

G
∗ = argmax

G∈DG

(value(G)) (8)

The utility value of a task g can be computed by comparing
the robot expected gain gni when the task g is included or
not to its allocation Gi :

ui (Gi , g) = gni (Gi + g) − gni (Gi )if g /∈ Gi

gni (Gi ) − gni (Gi − g)if g ∈ Gi (9)

The utility ui (Gi , g) of a task g ∈ G for a robot i matches
the difference between the expected gain regarding the
referent allocation Gi and the new one G ′

i built by addi-
tion/subtraction of the task g (G ′

i = Gi +g orG ′
i = Gi −g).

4.4 Altruistic expected gain

In punctual auction coordination, using individual expected
gain allows the fleet of robots to reach allocations which
minimizes themovement cost but not necessarily themission
duration (Fig. 4). In fact, theminimalmovement cost solution
does not consider the parallel execution of the mission which
might result to allocate all the tasks to only one robot.

We propose to compute the expected gain gni (Gi )with an
altruistic heuristic consisting in subtracting a social cost from
the individual expected gain. The social cost individually
evaluates the impact of the robot attribution Gi on the rest of
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Fig. 4 Minimal movement allocation (dark arrows) versus minimal
duration allocation (dotted arrows) with two robots and four goals

the group. The proposed social cost aims to decrease the time
needed to complete the mission by balancing the allocation.
It matches the difference between the assignment size |Gi |
and an ideal size gs∗ (gs∗ = |G|/n for example). The more
important is the difference, the greater is the social cost.

gni (Gi ) = V
π∗
i,Gi

i (sic) − oc
|gs∗−|Gi ||∑

j=0

j (10)

The social cost is based on the multiplication of an oppor-
tunity cost oc constant. The opportunity cost defines the
threshold value that allows a robot to unbalance its alloca-
tion. The first task unbalancing the allocation costs oc, the
second costs 2oc and so on. The notion of decreasing indi-
vidual rewards with opportunity costs has been already used
inmulti-robot planning of constrainedmissions (Beynier and
Mouaddib 2006).

Utility functions are bounded by zero and the maxi-
mal possible utility value considering only the individual
expected gains. The opportunity cost oc can be defined pro-
portionally to the maximal utility:

oc = noc × max
i, Gi , g

(ui (Gi , g)) with noc ∈ [0, 1] (11)

This way, a normalized opportunity cost noc at 1.0 pre-
vents unbalanced allocation. Using this framework, It is
presented in the following section the SSA protocol which
allows a team of robots to quickly and efficiently allocate a
set of tasks.

5 Sequential simultaneous auctions

GO-MDPs coupled with altruistic expected gain allows
the robots to compute utility values according to syner-
gies between tasks. Furthermore, this solution permits to
parametrize more or less balanced allocation. However, the
evaluation of all allocations to retain the one maximizing the
sum of utilities, leads to an exponential enumeration of pos-
sibilities and involves an impracticable number of multi-task
policy computations.

The proposed sequential simultaneous auctions protocol
(SSA) aims to allow all the robots to compute new poli-
cies involving all unassigned tasks at punctual Coordination
Phases. The SSA protocol starts with an initial allocation
(possibly empty) and converges to a locally optimal solution
deduced from exchanged utility values. At each iteration,
SSA repeats a Simultaneous Auctions process to search for
modificationswhich improve the built allocationwith respect
to the utility value function definition (Eq. 9).

5.1 Protocol definition

In order to evaluate each task utility value for the current
allocation, each robot builds and solves several GO-MDPs.
SSA protocol permits to combine utility values in order to
improve the allocation. The process is iterated until no more
improvement in the allocation is found. SSA is split into five
steps:

(1) Opening SSA is opened with a robot demand which
becomes the manager. A demand results from modifications
in the individual knowledge which induce updates in the set
of tasks and utility values. This step permit to list the par-
ticipants. The participants are all the robots with an efficient
communication connection with the manager. Once registra-
tion is done, robots can not enter or leave the SSA before
the end of the protocol. This prevents robots to move out of
communication ranges.

(2) Task identification This step consists in taking inven-
tory of all uncompleted tasks by the communicating robots.
Step 2 also allows robots to merge knowledge and com-
pute shared parameters such as the opportunity cost constant.
Finally, a heuristic initializes the allocation G. For example,
the initial allocation could be empty, random or based on the
existing allocation before the SSA opening.

(3)Value computationEach robot i computes its own opti-
mal policies based on GO-MDPs. A GO-MDP is defined for
each task g not yet attributed to the robot i (g ∈ G − Gi )
at the current iteration in order to evaluate the individual
expected gain of adding each of those tasks to the robot i .
This step involves |G|−|Gi | policy computations on 2|Gi |+1

states. However, individual GO-MDPs are strongly similar,
that permits to speed up the computing process. The gen-
eral idea is to reuse policies of previously solved GO-MDPs.
These policies allow robots to compute and exchange their
current utilities regarding all tasks in G.

(4)AllocationupdateOnce the last utilitymessage (n×|G|
messages) is received by themanager, the allocationG can be
updated. This consist in a modified version of the Simultane-
ous Auctions algorithm (Algorithm 1) that takes into account
already attributed tasks. The allocation is updated by switch-
ing a task from a robot (sender), if exists, to another (receiver)
with a greater utility value. Task modifications are chosen in
sequential order by selecting tasks with the greatest differ-
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ence between sender and receiver in a manner that induces
unique task modification per robot. If at least one update has
been done, the protocol returns to Step 3.

(5) Closing When no more updates is possible (robots’
utilities do not allow to increase the task allocation) a con-
sensus is found with a locally optimal task allocation. At this
moment, robots end the SSA punctual coordination phase
and start completing their individual set of tasks.

SSA protocol locks robots during its process. The use
of broadcast communication permits the allocation update
process to be done separately by each robot in a distributed
way without manager. The group has to always wait for all
robots’ Step 3 value computation to end before switching to
Step 4 sllocation update.

SSA protocol is parametrized by the heuristics used to ini-
tialize the allocation (Step 2) and the assignment rules that
update the allocation from the utilities (Step 3). SSA pro-
tocol permits task allocation between heterogeneous robots.
The utility function definition is not necessarily shared by
all the robots (while they share similar coherence in reward
and cost definitions). Moreover, each robot can have its own
individual topological model.

5.2 Convergence

The convergence of SSA protocol is guaranteed by the fact
that the updated allocation (Step 4) which has a greater value
than the previous one. The main reason comes from the fol-
lowing assumptions: the allocation is modified in a way that
involves a uniquemodification per robot at each iteration and
the individual gain functions are constant during the SSA
process.

The demonstration is done by considering that it is always
positive for a robot to perform a task (the constant task reward
rg is much greater thanmovement costs). Thus, adding a task
to the allocation of a robot always leads to an improvement
in the individual gains (Eq. 10) and the utilities are positive
(Eq. 9). This facilitates the proof but it is not a restriction.

Each update based on the utility function (Eq. 9) for a task
g, induces an improvement in the utility between old and
new individual allocations of the sender and receiver robots.
Thus, the loss in gain of the sender is lower than the gain of
the receiver. Each update induces that the sum of gains of
the group is increased by the sum of the differences in the
utilities of the sender and the receiver.

The convergence is conditioned by a unique modification
in each robot’s allocation at the same iteration in Step 4. The
utility function is defined for a single task and the difference
in gain function of a robot, in case of several modifications
at a time, is not equal to the sum of its utility values. Each
modification may lead to utility actualizations.

However, the update of the allocation (Step 4) can
include several modifications concerning different robots.

This way, increasing the number of robots, theoretically,
weakly impacts the number of SSA iterations. It is also
expected that increasing the number of robots will speed up
the SSA coordination if gain functions aim at balancing the
number of tasks between robots (oc � maximal difference
between task individual relevances).

Considering that the expected gain values only depend
on the allocations and there is a finite number of possible
allocations, there is therefore at least one optimal allocation
which maximizes the sum of expected gains (Eq. 7). Thus,
the finite number of solutions and the convergence of the
allocation value ensure that SSAwill terminate. Furthermore,
the resulting allocation G is locally optimal regarding the
range-1 allocations (allocations built with a single difference
in task assignments).

5.3 Desynchronization

The proposed SSA protocol is not fully desynchronized and
the robots have to continuously wait for all the other robots.
In SSA, the distribution of the process is limited by Step 4
(allocation update), where the robots have to be synchronized
before actualizing a common new allocation. Asynchronous
individual processes may lead to of inconsistencies in task
assignments (unallocated or multi-allocated tasks).

The SSA can be upgraded to a desynchronized SSA proto-
col (D-SSA) based on locking tasks to prevent inconstancies
in allocations. The idea consists in adding a mechanism that
avoids several robots to take the same task. Considering a
task g, the robot i with the higher utility locks the task g
and communicates an unreachable utility for g (higher than
the maximal one). Later, if another robot j communicates a
utility value greater than the hidden one of the robot i , the
task g will be unlocked. The robot i removes the task from its
assignment and communicates again, its real value. Thisway,
the robot j can take and lock the task at its turn. This mech-
anism guarantees the coherence of the allocations built by
asynchronous robots without forcing synchronization steps.

In D-SSA protocol, each robot is focused only on its indi-
vidual task assignment and not on the global allocation. Even
if several robots are interested in the same tasks, the lock
mechanism ensures that each task will be assigned to one and
only one robot at the end of the process. As SSA protocol,
it is possible to start D-SSA with an empty allocation where
no task is assigned. D-SSA ends if all robots’ processes are
in step (4) “allocation update” with no modification on the
allocation. This corresponds to a situation where all tasks are
allocated and locked.

It is expected that SSA and D-SSA will converge on sim-
ilar solutions. However, synchronization on Step 4 ensure
SSA to be deterministic. D-SSA execution and the resulting
solution depends on individual duration of utilities’ compu-
tation and latencies in communication.
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6 Experiments

SSA and D-SSA protocols are designed to speed up the mis-
sion execution while minimizing robot consumed resources.
However, protocols need a finite but undetermined number
of iterations to converge to the solution and each itera-
tion requires policy computations. D-SSA protocol based
on topological decision making is used by fleet of cooper-
ative robots that aim to visit a set of positions (tasks). The
task positions are described by an initial efficient topological
map. Themap and the environment are statics during our sce-
nario and fully operational. In this optimal configuration, the
experiment aims at quantifying the number of tasks the fleet
of robots can deal with and to estimate how punctual coor-
dination performs compared to continuous coordination. In
Sect. 7, we will discuss the ability of our approach to deal
with dynamic maps (exploration scenarios).

The first series of experiments are both performed in
real and simulated conditions to validate the approach cou-
pling the hybrid architecture and theD-SSA protocols. These
experiments allow us to evaluate the required coordination
time in function of the number of robots, the size of the map
and the number of tasks. The second series of experiment are
simulated and permit to statistically evaluate the efficiency
of using GO-MDP coupled with the D-SSA protocol com-
pared to continuous coordination where one task per robot
is allocated and performed at a time. The evaluation con-
cerns both mission duration and individual consumption of
resources.

6.1 Evaluating coordination time

Several experiments were performed in the context of the
R-Discover project1 in order to validate the approach in real
settings. Two scenarios were tested in an open-space envi-
ronment and in an urban experimental environment (Fig. 5).
In both scenarios, a fleet of robots has to visit a set of task
locations and the robots have to return to their initial posi-
tions.

The scenario in the open-space environment permits to test
the D-SSA protocol on real mobile robots (Fig. 6a). Experi-
ments use 3 Pioneer robots equipped with simple odometers,
standard laptop computers andWifi devices. D-SSA protocol
was configured with an opportunity cost to reach balanced
allocation (0.1 time the maximal distance between 2 way-
points). The mission execution is divided into three phases:
the initial coordination phase where the robots compute their
policies ; the task execution phase consisting in following the
computed policies and the return home phase. The Topolog-
ical Map is built by spreading randomly goal-task waypoints

1 FrenchNational ResearchAgency (ANR)R-Discover project videos:
www.greyc.fr/node/1629.

Fig. 5 From left to right: pioneer robot, the experimental area and its
aerial view

in the free area and adding paths to connect them using reach-
ing target controller.

These scenarios validate the architecture and allow us
to estimate the time spent by coordination phases. A robot
equipped with an ordinary laptop requires around half a sec-
ond to compute a policy involving 8 tasks and around 1
second for 10 tasks. During an SSA iteration, the evaluation
procedure requires to compute several multi-task policies,
one for each non-attributed task to the robot. In the experi-
ment, with 3 robots and up to 20 tasks (more than 6 expected
tasks per robot) the unique initial coordination phase (con-
sidering initially that no task is allocated) reaches 1 minute
(22 seconds for 13 tasks in the experiment presented Fig. 6a).
The time required by an iteration of the SSA protocol grows
exponentially with the number of tasks per robot.

The scenario in the urban environment enhances the first
scenario by adding static obstacles (sidewalks) (Figs. 5,
6b) and using the corresponding map (Fig. 3). Robots are
equipped with a plan laser at 45 degrees to detect sidewalks
that are around one meter in front of them. Experimen-
tal results show that the control architecture based on the
proposed Topological Map allows robots to maintain their
localization in a 32 × 26 meters environment despite weak
and inaccurate local perceptions.

In computer simulations, we increased the number of
robots (n) to 10 and kept 4 expected tasks per robot (|G| =
4n). We counted the number of modifications in attribut-
ion of each robot. A modification matches an iteration of
D-SSA requiring the actualization of the policies and the
utilities. A set of 200 simulations with random task posi-
tions has been performed for each considered fleet size
(n ∈ [2, . . . , 10]). Figure 7 presents the average number of
modifications regarding all the robots and regarding only the
robot with the highest number of modifications.

Figure 7 shows that few modifications, in regard to the
total number of tasks, are necessary to converge to a range-
1 locally optimal allocation. Statistically, this means that
each robot’s D-SSA process leads a number of modifica-
tions which is proportional to the number of expected tasks
per robot (|G|/n).
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Fig. 6 Task allocation in free
area (left), Task allocation and
topological navigation in urban
area (right)

Fig. 7 Average numbers of iterations per robot (with D-SSA) by
increasing the number of robots and tasks (n robots and 4n tasks)

6.2 Punctual versus continuous coordination

The second series of experiments addresses the interest
of punctual versus continuous coordination of the fleet of
mobile robots. The empirical evaluation focuses on gains in
mission duration and sum of movements using D-SSA pro-
tocol in punctual coordination. Experiments were performed
in ideal settings: static environments and deterministic Topo-
logical Maps.

We consider a simulated urban environment (Fig. 8a)
similar to the real one (Fig. 3) and a more Labyrinthine
environment (Fig. 8b). The experiments were done for three
robots and between 1 and 14 randomly located goals (50 ran-
domgenerations). For each configuration, (we ran 50×13×2
configurations), we retained the difference in duration time
and in the sumofmovements’ costs using initial D-SSA strat-
egy and continuous auction strategy. The sum ofmovements’
costs is computed considering all the paths taken during the
mission execution by all the robots. D-SSA is initialized with
a normalized opportunity cost fixed to 0.1 and an empty ini-
tial allocation.

Figure 9 presents the average difference and the extrema
in mission duration times. The difference is given for the
D-SSA protocol in percentage regarding the duration result-
ing from Continuous auction strategy. The duration did not
take coordination phase into account. In fact, simulations
did not use a computer per robot and the computation was

Fig. 8 Urban (top) and Labyrinth (botom) environments

not parallelized as in real situations. Figure 9 gives the
gains considering the sum of the robots’ movements. Those
gains are computed in a similar way as the gains in term of
durations.

With less than four goals, we observe less movements
but longer durations. In several configurations, the D-SSA
protocol unbalances the task allocation while continuous
coordination forces one task per robot.

For four goals and more, the altruistic mechanism
(Sect. 4.3) used in D-SSA to coordinate the policies leads, in
average, to less movements and shorter missions. The aver-
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Fig. 9 Best, worst and average
difference in percent by using
D-SSA protocol in punctual
coordination despite using
continuous coordination in
Labyrinth and Urban
environments

Fig. 10 Percentage of configurations with positive (white), null (gray)
and negative (dark red) effects on duration using D-SSA (Color figure
online)

age gains increase slowly to around 20 % between 7 and
14 tasks. The results do not highlight significant differences
between urban and labyrinthine environments.

Negative effects on the sum of movements using D-SSA
concern only few configurations. However, negative impacts
on duration are more significant and can reach −60 % with
more than seven goals. The benchmark of configurations
regarding positive, null and negative effects on duration
(Fig. 10) shows that, from nine goals (more than 3 per robot),
the duration of D-SSA increases in less than one configura-
tion over six.

7 Discussion

The evaluation of the coordination times validates the interest
to build the robot decision and control using the Topological
Map. The proposed Topological Map permits to model the
environment with few waypoints regarding coherent robot
perception and control capabilities (Fig. 1). However, the
paper does not address the question of simultaneous topolog-
ical localization and mapping considering the Topological
Map proposed in the architecture. In the proposed experi-
ment the map is provided and the robots decision making
handle several task-positions. The computed individual poli-
cies are optimal. The Topological Map coupled with Markov
Decision Processes offers the possibility to address punctual
distributed task allocation.

Compared to the Continuous approach, using punctual
long-term coordination allows groups of robots to decrease
both mission duration and the sum of movements. Protocols
like D-SSA allow the robot to coordinate in a distributed
way and can be done by robots equipped with ordinary
laptop.
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The initial D-SSA requires a lot of time to converge to
the solution. This time increases exponentially according to
the number of tasks per robot and linearly according to the
topology size. Despite the few numbers of D-SSA iterations,
D-SSA duration is directly impacted by optimally solving
GO-MDPs at each D-SSA iteration. The proposed approach
is interesting while coordination durations are coherent with
the expected gains in the mission execution. This is actu-
ally the case in our urban-like domains where a multi-task
robots’ mission takes several tens of minutes to be performed
and requires a unique initial coordination phase of about one
minute.

In conclusion, Continuous coordination is more suit-
able in scenarios characterized by frequent computation as
in exploration scenarios with weak initial knowledge. The
continuous approach can be enriched to handle lost com-
munication because of moving robots and communication
range constraints (Rooker and Birk 2007). On the other hand,
while considering mission scenarios with important initial
knowledge inducing no or few actualizations (as in simple
navigation, in search and rescue or in exploration with a
limited unknown areas), approaches based on punctual long-
term coordination can significantly increase the efficiency.

In case of loss in communication, punctual coordination
phases can be processed during the mission at some Ren-
dezvous points defined in a more or less intentional way
(Hourani et al. 2013). Coordination phases that occur dur-
ing the mission execution can be speed-up considering the
current allocation as the initial allocation of the D-SSA pro-
tocol. Furthermore, in intensional punctual coordination, it is
possible to mix punctual and continuous approaches by com-
puting robot policies with only the subset of goals to reach
between two Rendezvous points.

Finally, experimental results have shown interesting
improvements in mission durations while the social cost
heuristic only balances the allocation between robots in term
of the number of tasks. In multi-robot missions where only
the overall mission duration has to be optimized, coordina-
tion will require specific mechanism where the group has to
detect the robot with the longest mission and try to minimize
its part.

8 Conclusion

This paper presented a control architecture coupled with a
distributed policy computation framework used for mobile
multi-robot coordination. The robot architecture is based on
reactive functional modules allowing the robots to plan their
movements regarding the proposed Topological Map. The
Topological Map permits the robot to plan the sequence of
semantic perception states according to used reactive control.
Based on the architecture enrichedwithGO-MDP, each robot
individual plan can involve several tasks to perform.

Coordinate distributedpolicieswas achievedbyusing auc-
tion protocols. We proposed SSA protocols to allow robots
to coordinate their policies regarding all the goal-tasks in
punctual coordination phases. SSA protocol is proposed as
an heuristic to handle combinatorial auctions. SSA protocol
converges to a range-1 locally optimal allocation. SSA pro-
tocol was extended with a desynchronized protocol (D-SSA)
more suitable in mobile robot applications.

Experiments validated the proposed approach in real set-
tings. The architecture allows robots to uncouple smooth
reactive control and long-term mission planning, thus per-
mitting more flexibility for complex tasks achievement.
D-SSA protocol coordinates effectively the robots policies
involving several tasks per robot with a few number of itera-
tions. Each iteration induces distributed GO-MDPs solving.
Finally, experimental results in virtual simulations allow us
to conclude about the average reduction on both duration
times and movements by using punctual rather than contin-
uous coordination.

However, punctual coordination requires exponential com-
putation resources regarding the number of goals. In the pro-
posed approach, coordination durationswasmainly impacted
byoptimally solvingGO-MDPs in eachSSA iteration. Future
works will deal with developing more efficient approach to
solve GO-MDPs while still ensuring that SSA converges.
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