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a b s t r a c t

This paper deals with the navigation in formation of a group of mobile robots. A set of virtual targets
(points) forms a virtual structure of the same shape as the desired formation. Hence, to join and to
remain in this formation, each robot has only to track one of these targets. In order to track the chosen
target, it has to be attainable by the robot despite its kinematic constraints. This paper studies then the
maximum allowed dynamic of the virtual structure according to the kinematic constraints of the robots.
Both linear and angular velocities of the targets are constrained. Moreover, depending on these velocities,
some relative positions (targets) in the formation become unattainable. These positions are also defined.
A stable control law allows us to attain the generated set-points. Simulation and experimental results
validate the proposed contributions.

© 2014 Elsevier B.V. All rights reserved.
1. Introduction

Controlling and coordinating a Multi-Robot System (MRS) is
still an attractive research subject thanks to its large number of ap-
plications. Compared to one robot, anMRSoffersmany advantages:
improvement of execution task time, execution efficiency, redun-
dancy of sensors and actuators providing better failure tolerance,
etc.

Navigation in formation is one of the most important studied
issues of these systems. In fact, many tasks require the MRS to
move while maintaining a desired pattern (space exploration [1],
platooning [2], rescue operations [3], etc.)

In the literature, the control problem inmobile robot navigation
is tackled through two methods: deliberative and reactive control
(cf. Fig. 1). The first approach, based onmotion planning and paths,
requires a prior knowledge of the environment to plan the robots’
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movements [4]. This approach uses formalisms like Voronoi dia-
grams [5] or artificial potential functions [6,7], while considering
the overall environment knowledge [8]. Motion planning gener-
ally trade-off optimality for efficiency/reactivity. In fact, they do
not scale well to a very large number of robots due to their com-
putation complexity [9]. However, thanks to the prior knowledge
of the environment, robots generally succeed in their mission with
a good performance. In the second approach, the reactive method,
robots act only according to their local sensor information with-
out any other overall knowledge. Behavior-basedmethods [10] are
the perfect illustration of reactive control. In fact, the global task
of the robot is divided into a set of sub-tasks (behavior patterns).
According to sensor information, the control strategy applied to
the robot derives from one selected behavior pattern [10], or is a
merging of several weighted patterns [11]. When the application
requires that robots operate in real time (e.g. in hazardous envi-
ronments), it is clear that reactive methods become much more
interesting than motion planning. In these cases, many research
problems have not yet been resolved. To keep only the advantages
of the two methods (deliberative and reactive), some hybrid con-
trol (deliberative/reactive) has been explored in the literature. The
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Fig. 1. Navigation in formation control strategies.

idea is to enable the suitable control according to the situation. For
example, in [12] or [13], a feasible trajectory is planned before to be
tracked and if a new obstacle is detected, a reactive obstacle avoid-
ance control is locally enabled.

The proposed paper is devoted to the navigation in formation
of an MRS in a fully reactive way without any motion path
planning. For this kind of task, the literature highlights three
main approaches: hierarchical, behavior-based, and the virtual
structure strategy (cf. Fig. 1) [14–16]. In the first approach, one or
more robots are considered as leaders, while the other robots are
the followers. Generally, the leader tracks a predefined trajectory
while the followers track its transformed coordinates [17,18]. This
approach is simple to perform. However, it is noticed that a leader
failure causes the whole system to stop. In a distributed behavior-
based approach [19,20], there is no hierarchy between the robots.
Each onehas its perception and control, and a failure of a robot does
not lead to a group failure [21]. Behavior-based strategy implies
that each robot has a set of behavior patterns (basic tasks) to
achieve. The resulting behavior of the group emerges from the
basic local interaction without any explicit model of the overall
cooperative behavior. However, this approach is criticized for the
way that it chooses the control for each robot. In fact, according
to perception information, the control system switches between
behavior patterns (e.g., competitive approach [10]), or merges
several controllers (e.g., motor schema [11]). This naturally makes
it hard to study the stability of the global control strategy. The
virtual structure (the third approach) considers the formation as a
single virtual body. The shape of the latter is the desired formation
shape, and its motion is translated into the desired motion of
each vehicle [22,23]. The virtual structure is implemented in
several works through potential field methods [24,25]: thus, all
the members of the formation track assigned nodes which move
into the desired configuration. In these works, nodes applied an
attractive field to the corresponding robot, whereas obstacles and
neighbor robots apply repulsive fields. Unlike motion planning,
potential functions applied for the virtual structure approach use
only the instantaneous and local robots perception. The weakness
of using potential functions for this last approach corresponds
to the increasing complexity for controlling the fleet shape in
dynamic environment. In fact, it means that the robot is submitted
to a frequently-changing number/amplitude of forces leading to
more localminima, oscillations, etc. Therefore, in this case, it is very
difficult to demonstrate the robustness and the stability of theMRS
navigation.

To overcome the drawbacks of these strategies, it was proposed
to combine the virtual structure and behavior-based approaches
in [26] (cf. Fig. 1). The achieved task (reaching and maintaining
a desired formation while avoiding collision) is divided into two
basic tasks (behavior patterns): attraction to a dynamic target,
and obstacle avoidance. The first basic task allows each robot to
reach and follow a target from a virtual structure. The latter is
elaborated throughmultiple virtual nodes. The second task focuses
on avoiding obstacles and collisions between robots. To facilitate
a possible reconfiguration of the formation with the proposed
control architecture, potential field methods are avoided.

Moreover, in [26], the linear velocity of the virtual structure
was constrained according to the maximum linear velocity of the
robots, in order to remain attainable. However, all the nodes were
considered with the same linear velocity. Experiments were then
made for a straight trajectory of the virtual structure. In the pro-
posed paper, we define possible relative positions in the virtual
structure and thus, different angular and linear velocities of the
targets.Moreover, the authorized angular velocity for the structure
is studied according to the maximum angular speed of the robots.
Experiments will be implemented using a circular formation tra-
jectory.

The remainder of the paper is organized as follows: in Section 2,
the control architecture and the cooperative strategy between the
robots are given. Section 3 studies the control applied to each robot,
its stability and its limitations. Simulation and experimental results
validate the proposed contributions in Section 4. A conclusion and
some prospects are given in Section 5.

2. The overall control architecture based on behavior-based
and virtual structure approaches

As discussed in Section 1, the used control architecture [26] in-
cludes two controllers: Attraction to a Dynamic Target and Ob-
stacle Avoidance (behavior-based part). The virtual structure is
built through the Parameters of the Formation to Achieve block
(cf. Fig. 2).

2.1. The proposed control architecture

According to environment information collected by the Percep-
tions and Communication block (sensors) and the robot’s current
state, one controller is chosen thanks to the Hierarchical Set-Point
Selection block.

The corresponding set-points (PSi , θSi) (position and orienta-
tion) are then sent to the Control Law block which calculates the
linear and angular velocities noted vi andwi respectively (cf. Fig. 2).

Let us recall the adopted virtual structure principle. Consider
N robots with the objective of achieving and maintaining a given
formation. The proposed virtual structure thatmust be followed by
the group of robots is defined as follows:
• Define one point which is called the main dynamic target

(cf. Fig. 3).
• Define the virtual structure to follow by defining NT nodes

(virtual targets) to obtain the desired geometry. Each node
i is called a secondary target and is defined according to a
specific distanceDi and angleΦi with respect to themain target.
Secondary targets defined in this way have then the same
orientation θT . However, each target i will have its own linear
velocity vTi . The number of these targets NT must be NT ≥ N .
It is clear that to have a complete distribution of the control,
the main target can be generated by one of the robots. This case
corresponds then to the leader–follower approach.

An example to obtain a triangular formation is given in Fig. 3.

2.2. Cooperative strategy between robots: dynamic target allocation

Each mobile robot should follow one of the secondary targets
forming the geometric shape. It is interesting to optimize the al-
location of the targets between the robots to rapidly join the for-
mation. Information available for each roboti are its configuration
(xi, yi, θi), the one of the main virtual target (xT , yT , θT ) and the
Dj and Φj. (x, y) refers to the position and θ to the orientation of
robots/targets.Dj andΦj are the relative positions and orientations
of the secondary targetsj (cf. Fig. 3).



1808 A. Benzerrouk et al. / Robotics and Autonomous Systems 62 (2014) 1806–1815
Fig. 2. The proposed architecture of control embedded in each robot.
Fig. 3. Maintaining a triangular formation by defining a virtual geometrical
structure.

In [26], each robot chooses the closest target. If one target is de-
sired by – at least – two robots, it is allocated to the one with the
highest rank. In fact, each robot has an identifier defining its hierar-
chic rank in the formation. We improved this work in [27]. Hence,
each robot calculates a relative cost coefficient RCC for each target.
It is a cost minimization function which helps each robot to choose
the closest target. If this target is needed by another robot having
more difficulties to find another, it is given up to this robot (a form
of altruism, where the interest of the group comes before the indi-
vidual interest). The objective is to reduce time to attain the global
formation while keeping a reactive and distributed control archi-
tecture. The idea of the dynamic allocation of the targets has been
inspired by the auction sales activitieswhich allowa task allocation
for the MRS (exploration [28], visiting different locations [29], box
pushing [30], etc.). These auction methods can be divided in three
different strategies: combinatorial methods treat all possible com-
binations to give the optimal distribution to theMRS [31]; repeated
parallel auctions occur every time interval to check that every
robot has the suitable task [32]; sequential mechanisms where the
robot auctions each task taking into account its previous state [33].
Even if it gives the best solution, the combinatorial method cannot
be adopted because it needs generally a central unit. This means
that the overall architecture of control cannot be completely dis-
tributed. Moreover, the computation complexity rapidly increases
with the robot and target numbers. The proposed RCC algorithm
is derived from the two other strategies. The robot wins or loses a
target by computing and comparing its own RCCs for these targets.
Only a minimalist communication is needed between the robots,
and they decide for their targets in fully distributed and reactive
way. In order to focus on the main contribution of this paper (at-
tainability of the virtual structure), the reader can find all details
about this algorithm in [27]. It is noted that experimentationsmade
in this paper (cf. Section 4.2) are only based on the RCC algorithm.

3. Applied robot control

Once every robot has chosen its target, its mission is to reach
this dynamic target and to track it to maintain the formation.
Fig. 4. Attraction to a dynamic target.

Attraction to a Dynamic Target Controller (cf. Fig. 2) gives set-points
(position, angle) that, if they are followed by the robot, it converges
to its dynamic chosen target (in position and orientation). In
Section 3.2, the Obstacle Avoidance Controller will be very briefly
summarized in order to focus on the main contribution of this
paper (constrains on the virtual structure). More details can be
found in [34]. Improvement of the controller to address dynamic
obstacles and collision avoidance will be proposed in a future
paper.

3.1. Attraction to a dynamic target controller

Attraction to a Dynamic Target Controller allows the formation
to be maintained, since it leads each robot to follow its target. To
detail this controller, consider a robot i (xi, yi, θi) and its secondary
dynamic target Ti(xTi , yTi , θT ). Note that to simplify notations in
the following, the same subscript as the robot is given to its target
(cf. Fig. 4). The variation of the target position can be described by
ẋTi = vTi .cos(θT )
ẏTi = vTi .sin(θT ).

(1)

Let us also introduce the robot used model (cf. Fig. 4). The pro-
posed study focuses on unicycle mobile robots corresponding to
theused robots for simulation andexperimental part (cf. Section4).
Their kinematic model can be described by the well-known equa-
tions (cf. Eq. (2)).ẋi = vi.cos(θi)

ẏi = vi.sin(θi)

θ̇i = ωi

(2)

where vT is the target linear velocity, vi and ωi are respectively the
robot linear and angular velocities. It is to be noted also that ẋ cor-
responds to the derivative of xwith respect to time.

Fig. 4 allows us to define position errors as
exi = (xTi − xi) = dSi cos(γi)
eyi = (yTi − yi) = dSi sin(γi).

(3)
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The current distance between robot i and its target Ti, noted dSi
can then be expressed as

dSi =


e2xi + e2yi . (4)

Its derivative is

ḋSi =
exi ėxi + eyi ėyi

dSi
. (5)

By using Eqs. (1) and (2), ėx and ėy are then given by
ėxi = (ẋTi − ẋi) = vTi .cos(θT ) − vi.cos(θi)
ėyi = (ẏTi − ẏi) = vTi .sin(θT ) − vi.sin(θi).

(6)

We then obtain

ḋSi = vTi . cos(γi − θT ) − vi. cos(γi − θi). (7)

Similarly, the current angle of the robot according to its dy-
namic target is noted γi (cf. Fig. 4) and is calculated as

γi = arctan

eyi
exi


. (8)

Its derivative is

γ̇i =

⌢̇

(eyi/exi)
1 + (eyi/exi)2

. (9)

To obtain the set-point angle θSat applied to the robot in order
to reach its dynamic target, our idea is to keep γi constant. In other
words, we would like to have γ̇i = 0. Under this constraint, we
show that the defined set-point angle leads the robot to its target.
Developing Eq. (9) thus enables us to write:

vTi .sin(θT − γi)

dSi
−

vi.sin(θi − γi)

dSi
= 0. (10)

The set-point angle that the robot must follow to satisfy the
constraint expressed by Eq. (10) and to reach its dynamic target
is then given by

θSat = arcsin


vTi

vi
sin(θT − γi)


+ γi. (11)

In the following, it is noted b =
vTi
vi
.

To prove that the robot always reaches its target, we have to
prove that dSi is continually decreasing. To do this, it is sufficient to
prove that ḋSi < 0. Before giving the proof, it is stipulated that
the linear velocity of the robot will be elaborated satisfying the
constraint vi ≥ vTi (the expression of vi is given later in Eq. (17a)).
It is natural that the robot moves faster than the target to reach it,
especially when the latter is escaping. Therefore, we always have
b =

vTi
vi

≤ 1.
By reaching the target, the robot velocity has then to satisfy

vi → vTi to keep dSi → 0 (cf. Section 3.3). Hence, we will obtain
b = 1.

In addition, the trajectory of the target is assumed to be smooth.
To prove that while dSi ≠ 0, ḋSi is always ḋSi < 0 if the

robot follows the set-point angle given by Eq. (11), the following
properties are recalled

arcsin(x) ∈


−

π

2
,
π

2


, ∀x ∈ [−1, 1]

arcsin(sin(x)) =


x ∀x ∈


−

π

2
,
π

2


π − x ∀x ∈


π

2
,
3π
2


.

(a) Escaping target.

(b) Approaching target.

Fig. 5. Escaping/Approaching target.

Consider Eq. (7). The following transformation is considered

cos(θT − γi) = ±


1 − (sin(θT − γi))2.

By replacing θi in (7) with the set-point angle that the robot must
follow (cf. Eq. (11)), we also obtain

cos(γi − θi) = ±


1 − sin(arcsin(b sin(θT − γi)))2

two cases are then possible:

1. (θT − γi) ∈ [
−π
2 , π

2 ] (escaping target (cf. Fig. 5)(a)) this leads to

ḋSi = vTi


1 − (sin(θT − γi))2

− vi


1 − (b sin(θT − γi))2. (12)

However, while the robot has not yet reached the target, we
have b < 1 since vT < vi as discussed above. This means that

vTi


1 − (sin(θT − γi))2 < vi


1 − (b sin(θT − γi))2

thus

ḋSi < 0

2. (θT − γi) ∈]
π
2 , 3π

2 [ (approaching target (cf. Fig. 5)(b)))

ḋSi = −vTi


1 − (sin(θT − γi))2

− vi


1 − (b sin((θT − γi)))2. (13)

It can then immediately be deduced that ḋSi < 0.

It is interesting to note that the proposed set-point enables
convergence to θT as dSi → 0. In fact, since b = 1 when dSi → 0 as
discussed in the last proof, two cases are again possible:

1. (θT − γi) ∈ [
−π
2 , π

2 ] (escaping target (cf. Fig. 5)(a)))

θSat = arcsin(sin(θT − γi)) + γi
θSat = θT − γi + γi
θSat = θT .

(14)

The set-point angle tends directly to the target direction.
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Fig. 6. Obstacle avoidance controller [34].

2. (θT − γi) ∈]
π
2 , 3π

2 ] (approaching target (cf. Fig. 5)(b)))

θSat = π − (θT − γi) + γi
θSat = π + 2γi − θT .

(15)

However, the robot still reaches the target, but with this
set-point angle it goes past it once reached. The robot is then
behind the target and tries to join it again. Therefore, γi is re-
calculated. Since the target trajectory is assumed to be smooth
(constrained in Section 3.3), the new calculated γi thus verifies case
1 (the robot is now behind the target, which then becomes an es-
caping target).

The proposed set-point angle allows each robot to converge
to its target by decreasing the position and orientation error. The
set-points (PSi , θSi) corresponding to this controller (cf. Section 2.1)
are then
(PSat , θSat ) = ((xTi , yTi), θSat ).

3.2. Obstacle avoidance controller

The aim of this controller is to allow the robot to avoid obstacles
that hinder its attraction to the target. It is based on the limit
cyclemethods [34–36]. The differential equations representing the
desired trajectory of the robot are given by the following system:

ẋr = ayr + xr(R2
c − x2r − y2r )

ẏr = −axr + xr(R2
c − x2r − y2r ).

(16)

With a = ±1 according to the optimal direction of avoidance
(clockwise or counterclockwise). (xr , yr) are the relative robot
coordinateswith respect to the obstacle. This latter is characterized
by a circle of radius Rcl = Ro+Rr+ϵ where Ro is the obstacle radius,
Rr is the robot radius and ϵ is a safety margin (cf. Fig. 6).

The obstacle avoidance algorithm [34] is summarized as fol-
lows:
• The nearest hindering obstacle is detected.
• The direction of avoidance is chosen according to the sensor

information.
• The robot avoids the obstacle while following a limit cycle

which has a radius Rc = Rcl − ξ (attraction phase).
• The robot avoids the obstacle while following a limit cycle

which has a radius Rc = Rcl + ξ (repulsive phase) (cf. Fig. 6),
where ξ is a small value and (ξ ≪ ϵ).

This controller then generates the following set-points:

(PSoa , θSoa) =


(xi, yi), tan−1


ẏr
ẋr


.

To deal with dynamic obstacles, this controller has been en-
riched. Hence, collision with dynamic obstacles and robots of the
same system can be avoided. Moreover, for a higher safety, a
penalty function adapts the robots velocities if they are too close
from each other. More details are available in [37].
One advantage of the proposed control architecture is that we
have the same control law for Attraction to dynamic target and for
Obstacle avoidance controllers (cf. Fig. 2). An accurate Lyapunov-
based stability demonstration is given in [26]. This demonstra-
tion is briefly reminded in Section 3.3. According to it, the error
between the current robot’s configuration (xi, yi, θi) and the de-
sired static/dynamic configuration (PS, θS) is always steady and
converge to 0.

3.3. Control law

The control law used, which was proposed in [26], allows each
robot i to converge to the set-point generated by the chosen
controller.

vi = vmax − (vmax − vTi)e
−(d2Si

/σ 2) (17a)

ωi = ωSi + kθ̃i (17b)
where
• ωSi = θ̇Sati for the attraction to a dynamic target controller, and

ωSi = θ̇Soa for the obstacle avoidance controller.
• vmax is themaximum linear speed of the robot. Naturally, vTi has

to be such that vTi ≤ vmax
• σ , k are positive constants,
• θ̃i is the orientation error such that θ̃i = θSati − θi (θ̃i = θSoa − θi

for the obstacle avoidance) which gives ˙̃
θ i = ωSi − ωi.

• dSi is the distance between the current roboti position and its
attributed target. It is to be noted that for obstacle avoidance
controller, the set-point position is equal to (xi, yi); thus dSi = 0
in this case (cf. Section 3.2).

Lyapunov-based stability enabled the convergence of the robot
with its target to be proved [26]. Convergence of the whole
multi-robot system to the set-point virtual structure can then be
derived by studying the following Lyapunov function

V =

N
k=1

Vk (18)

where Vk is the Lyapunov function associated with robot k. This
function was defined as

Vk =
1
2
θ̃2
k . (19)

It has been proved that V̇k < 0 (when θ̃k ≠ 0) [26]. Therefore,
it can be easily deduced that

V̇ =

N
k=1

V̇k < 0. (20)

The system is then asymptotically stable. Moreover, it can
be noticed that the applied angular velocity ωi enables the
exponential convergence of the orientation error toward 0. The
control law is common to the two controllers (attraction to a
dynamic target and obstacle avoidance) and stability is then valid
for the obstacle avoidance.

However, this theoretical convergence is applied to non-
holonomicmobile robots. This means that stability will be ensured
only if the angular set-point is attainable by the robot, considering
its kinematic constraints (maximum velocities). In the next
paragraph,we then propose to define the permitted dynamic of the
target, taking into account the corresponding robot constraints.

3.4. Target attainability with respect to kinematic robot constraints

3.4.1. Linear velocity constraints
In Section 3.1 it was shown that the robot always converges to

its target if
vTi ≤ vi ⇔ b ≤ 1. (21)



A. Benzerrouk et al. / Robotics and Autonomous Systems 62 (2014) 1806–1815 1811
Fig. 7. Virtual targets trajectories to keep the virtual structure shape. Dashed
curved lines represent the trajectories of the targets. Straight dashed lines illustrate
the virtual structure in the previous moment.

According to Eq. (17a), the linear velocity of the robot verifies
the condition given by inequation (21), and takes into account
its maximum linear velocity. However, it is clear that the linear
velocity of the secondary targets depends on their relative
positions in the virtual structure (cf. Fig. 7). This figure shows
the different trajectories of the targets according to their relative
position in the virtual structure. The choice of Di and angle Φi
thus affects vTi . Each secondary target i has coordinates (xTi , yTi)
expressed as
xTi = xT + Di cos(Φi + θT )
yTi = yT + Di sin(Φi + θT ).

(22)

Their derivatives are then (only rigid virtual structures are con-
sidered)
ẋTi = ẋT − Diθ̇T sin(Φi + θT )

ẋTi = ẏT + Diθ̇T cos(Φi + θT )
(23)

and linear velocity of the virtual target i can be written as

vTi =


ẋ2Ti + ẏ2Ti . (24)

By replacing with (23)

vTi =


v2
T + D2

i θ̇
2
T + 2Diθ̇T F (25)

where

F = (ẏT cos(Φi + θT ) − ẋT sin(Φi + θT )).

It is clear that

ẏT cos(Φi + θT ) − ẋT sin(Φi + θT ) ≤


ẋ2T + ẏ2T (26)

then

ẏT cos(Φi + θT ) − ẋT sin(Φi + θT ) ≤ vT . (27)

Hence, according to Eq. (25)

vTi ≤


(vT + Diθ̇T )2. (28)

Robots must be able to move faster than their targets
(cf. Eq. (21)). This meansvT + Diθ̇T

 < vmax. (29)

The relative distance of each secondary target has then to be

Di <
vmax − |vT |θ̇T  . (30)

Note that
θ̇T  is bounded in the next paragraph.
3.4.2. Angular velocity constraints
For now, we are interested in the maximum angular velocity of

the robots, ωmax, such that the variation of the angular set-point
θ̇Sati remains attainable. Indeed, the angular speed applied to the
robot has to verify

|ωi| ≤ ωmax (31)

where ωmax > 0. By replacing (17b) in (31), we haveωSi + kθ̃i
 ≤ ωmax (32)

knowing thatωSi + kθ̃i
 ≤

ωSi

 +

kθ̃i .
To find the values of ωSi which verify (32), it is proposed to useωSi

 + k
θ̃i ≤ ωmax. (33)

These values then verifyωSi

 ≤ ωmax − k
θ̃i . (34)

It is clear that |ωSi | has to verify this condition (inequation (34))
for every θ̃i. The latter relation then becomesωSi

 ≤ min

ωmax − k

θ̃i (35)

min(ωmax−k|θ̃i|) is obtainedwhen |θ̃i| ismaximum. Themaximum
orientation error is when the robot has an opposite orientation
comparedwith the set-point angle. Thismeans thatmax(|θ̃i|) = π .

To remain attainable, the angular variation of the set-point
ωSi = θ̇Sati has thus to verifyωSi

 ≤ ωmax − kπ. (36)

Let us compute ωSi = θ̇Sati according to Eq. (11)

θ̇Sati =

d
dt [b sin(θT − γi)]
1 − (b sin(θT − γi))2

+ γ̇i. (37)

As noted in Section 3.1, the set-point was deduced by keeping
γi constant, which means that γ̇i = 0. It can also be noted that θ̇Sati
is not defined if we have simultaneously
b = 1
sin(θT − γi) = ±1 (38)

b = 1 is true only if dSi → 0 (cf. Eq. (17a)), which means that this
singularity may occur only when the robot is on its target. To avoid
this in practice, we propose to redefine θSati according to Eq. (11),
by considering a virtual circle of radius ρ in the neighborhood of
dSi ≈ 0. Considering the cases of approaching and escaping targets,
θSati then becomes

θSat =


arcsin(b sin(θT − γi)) + γi if dSi ≥ ρ

θT if dSi < ρ and (θT − γi) ∈


−π

2
,
π

2


π + 2γi − θT if dSi < ρ and (θT − γi) ∈


π

2
,
3π
2


.

(39)

As θSati is redefined, its derivative becomes (γi constant)

θ̇Sati =



d
dt [b sin(θT − γi)]
1 − (b sin(θT − γi))2

if dSi ≥ ρ

θ̇T if dSi < ρ and (θT − γi) ∈


−π

2
,
π

2


−θ̇T if dSi < ρ and (θT − γi) ∈


π

2
,
3π
2


.

(40)



1812 A. Benzerrouk et al. / Robotics and Autonomous Systems 62 (2014) 1806–1815
Robotswhich are in the neighborhood of their targets then haveθ̇Sati  =
θ̇T  .

The permitted dynamic of these targets can then be easily
deduced as (cf. Eq. (36))θ̇T  ≤ ωmax − kπ. (41)

Let us study now the case of robots which are not in the
neighborhood of their targets. Beforehand, we recall the following
properties:
1. γi is constant ⇒ γ̇i = 0,
2. b =

vTi
vi

⇒ ḃ =
db
dt =

v̇Ti vi−vTi v̇i

v2i
,

3. |a cos(α) + b sin(α)| ≤
√
a2 + b2 ∀a, b, α ∈ R,

4. ḋSi is bounded (cf. Eq. (7)).

By replacing Eq. (40) when dSi ≥ ρ in (36), and using points (1)
and (2), we obtain
ḃ sin(θT − γi) + bθ̇T cos(θT − γi)

≤ (ωmax − kπ)

1 − (b sin(θT − γi))2. (42)

To find the permitted variation of target θ̇T , we use the upper
bound of the left member of relation (42) according to point (3).
We then have

(ḃ)2 + (bθ̇T )2 ≤ (ωmax − kπ)

1 − (b sin(θT − γi))2. (43)

In fact, the values of θ̇T , verifying the relation (43), verify also
(42). θ̇T can then be expressed as

(θ̇T )
2

≤ [(ωmax − kπ)2(1 − (b sin(θT − γi))
2) − (ḃ)2]/b2. (44)

To remain attainable, the target must have an angular velocity
θ̇T verifying relation (44) for all the robots, in other words for all
possible linear velocities. Thus, it has to be
(θ̇T )

2
≤ min([(ωmax − kπ)2(1 − (b sin(θT − γi))

2) − (ḃ)2]/b2).
(45)

A necessary condition to reach the minimum of the right
member, noted (R), of this relation is that 1

b → 1, since b ≤ 1
(cf. Eq. (21)). However this condition occurs only when dSi ≈ 0.
The latter case dSi < ρ has already been addressed in Eq. (41).

Since vi decreases as the robot approaches its target (cf. Eq.
(17a)), this condition occurs as dSi ≈ ρ.

First, let us calculate v̇i using relation (17a)

v̇i = v̇Tie
−d2Si

/σ 2
− (vmax − vTi)

−2dSi ḋSi
σ 2

e−d2Si
/σ 2

. (46)

If ρ is considered as being sufficiently small, and ḋSi is bounded
(point 4)), relation (46) becomes
v̇i ≈ v̇Ti .

In the neighborhood of ρ, relation (44) becomes

(θ̇T )
2

≤


(ωmax − kπ)2


1 −


vTi

vi(ρ)
sin2(θT − γi)


×

vi(ρ)

vTi
. (47)

Note that we can also have
1 −


vTi

vi(ρ)
sin2(θT − γi)


= 0.

Hence, min(R) = 0.
To remain attainable, the dynamic of the virtual structure has

to follow two phases:
1. a transitional phase, where the robots have not yet achieved the

formation. In this phase, θ̇T is constrained such that θ̇T = 0,
2. once the formation is achieved, the virtual structure can vary

according to relation (41).
4. Simulation and experimental results

First, the behavior of a robot with respect to its dynamic target
motion is observed through simulation. Next, experimentation is
made with three robots to attain and to maintain a triangular
formation.

4.1. Variation of the virtual structure angular velocity

This section shows the importance of bounding the angular
velocity of the virtual structure θ̇T according to the kinematic
constraints of the robots. Hence, a mobile robot reaching a virtual
target is simulated. The maximum angular velocity of the robot is
ωmax = 3rd/s. We choose k = 0.6s−1.

According to relation (41), and to simplify notation on figures,
we propose to note P = ωmax − kπ . Based on the chosen values of
ωmax and k, we find P = 1.1. First, it is proposed to show the impor-
tance of the transitional phasewhere the variation of θ̇T must be set
to 0 (cf. Eq. (47)). Hence, in Fig. 8(b), we can see that θ̇T increases at
the beginning of the simulation (from 0.1 s) and the target trajec-
tory follows immediately a significant curve (cf. Fig. 8(a)). Conse-
quently, we observe oscillations in the trajectory of the robot. The
robot correctly attains the target only when this one has a straight
trajectory (θ̇T = 0). Fig. 8(b) confirms that. In fact, even if θ̇T satis-
fies the condition described in Eq. (44), oscillations may appear if
the transitional phase is not imposed. Naturally, the distance dSi is
oscillating in this case (cf. Fig. 8(c)). The Lyapunov function is also
oscillating and the control law is not stable (cf. Fig. 8(d)).

Fig. 9 shows the importance of satisfying the condition de-
scribed in relation (41) after the transitional phase. Once the target
is attained (θ̇T = 0 until the moment 0.5 s), the condition (41) is
also satisfied. It can be seen that the robot goes toward the tar-
get. Even if it increases, the variation of P is such that θ̇T < P
(cf. Fig. 9(b)). In this interval, the robot correctly tracks its target
(cf. Fig. 9(a)). The distance dSi separating them is dSi = 0
(cf. Fig. 9(c)). The Lyapunov function also decreases and then re-
mains equal to 0 (cf. Fig. 9(d)). After 9.5 s,we remove the constraint
(41) such that θ̇T can be θ̇T > P . It can be seen that the robot cannot
track the target. The oscillation of distance dSi and V confirms this
(cf. Fig. 9.(c) and (d)).

4.2. Experimental results: 3 robots with an attainable virtual
structure

Experiments were performed using Khepera III robots
(cf. Fig. 10). For the first tests, only the perception of the MRS
was centralized. Hence, navigation was achieved on a platform
equipped with a camera giving positions and orientations of
the robots by detecting the bar code associated with each one
(cf. Fig. 10). This information was sent to the robots by a computer
through a Wi-Fi network.

In [26], the virtual structure has a straight trajectory. Here,
it is proposed to extend to circular motion such that all the
targets remain attainable by all the robots despite their kinematic
constraints. Knowing that the dynamic of the virtual structure has
to follow relation (41), the radius Rvs of the circular motion formed
by the main target T1 (cf. Fig. 11)(a)) verify

Rvs =
vT

θ̇T
>

vT

ωmax − kπ
(48)

with vT constant and vT ≪ vmax.
First, a clockwise motion is considered (cf. Fig. 11)(a)). It is

observed that the robots converge to the virtual structure even
without passing the transitional phase. The reason is that Rvs
is big enough and initial conditions of the robots are far from
critical situations described in Section 3.4.2. In fact, Eq. (47)
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(a) The robot trajectory. (b) Variation of the dynamic of the target (θ̇T ).

(c) Evolution of the distance dSi . (d) Evolution of the Lyapunov function V .

Fig. 8. Undesirable oscillations of the robot trajectory if the transitional phase is not imposed.
(a) The robot trajectory. (b) Variation of the dynamic of the target (θ̇T ).

(c) Evolution of the distance dSi . (d) Evolution of the Lyapunov function V .

Fig. 9. Undesirable oscillations of the robot trajectory if the imposed constraints on the dynamic target are not met (if |θ̇T | > P).
imposes constraints for even the maximal orientation errors
corresponding toπ (cf. Eq. (36)). Here, initial positions of the robots
do not correspond to this critical configuration and the highest
authorized bound is higher than the one given in Eq. (47). At
time t2 + ∆t , a jump in the virtual structure state was produced
(cf. Fig. 11)(b)). The dynamic of the virtual structure was also
changed so that its motion became counter-clockwise. Note that
robots change dynamically their targets at each set-points jump
to rapidly reach the new formation using the RCC algorithm [27].
The distances between the robots and their targets are given in
Fig. 12. They decreased to 0,which confirms that the formationwas
reached and maintained. When the virtual structure dynamic was
changed, the robots were far from their targets, which explains the
observed jumps. The same observationswere noticed on the global
Lyapunov function (cf. Fig. 13).



1814 A. Benzerrouk et al. / Robotics and Autonomous Systems 62 (2014) 1806–1815
Fig. 10. Khepera III mobile robot.

5. Conclusion and future work

In this paper, the navigation in formation of a mobile multi-
robot system was studied. Mainly based on the virtual structure
approach, the proposed attraction to a dynamic target controller
allows us to attain the virtual targets. However, it is important
to constrain the structure’s dynamic so that it always remains
attainable. In fact, kinematic constraints of the robots (maximum
velocities) impose that they cannot follow all the dynamics. Hence,
the proposed control law is designed so that the robots always
move faster than their targets to attain them. Constraints on the
relative positions of the targets in the formation are also defined
such that their linear velocities stay less than the maximum
velocity of the robots (first constraint). Moreover, the angular
velocity of the virtual structure is bounded such that the generated
set-point angles remain attainable despite the maximum angular
velocities of the robots (second constraint).

This paper treats constraints on attraction to a dynamic tar-
get controller. Obstacle avoidance controller has also to gener-
ate attainable set-points. Introducing a new parameter in the
limit-cycle equation allows it [38]. Futureworkwill aim to demon-
strate the safety and the stability of the overall multi-controller ar-
chitecture, even when switch occurs between controllers.
Fig. 12. Variation of the distance dSi between robot i and the chosen target (i =

1 . . . 3).

Fig. 13. Evolution of the global Lyapunov function V .
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