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Abstract— This paper deals with reactive and flexible human-
like autonomous vehicle navigation. A human driver reactively
guides his vehicle, performing a smooth trajectory within the
roads limits until reaching the defined goal. To obtain a similar
behavior with an unmanned ground vehicle (UGV), this paper
proposes a flexible control law to drive a vehicle towards
desired static or dynamic targets based on a novel definition
of control variables and Lyapunov stability analysis. Moreover,
a target assignment strategy, combined with an appropriate
sigmoid function, that allow to perform smooth, flexible and
safe vehicle navigation through successive waypoints is pre-
sented. The stability of the proposed control strategy is proved
according to Lyapunov synthesis. Simulations and experiments
are performed in different cases to demonstrate the reliability
and efficiency of the control strategy.

I. INTRODUCTION

In the last decades, autonomous vehicles navigation have
been a complex problem of major attention for the research
community. Systems capable of performing efficient and
robust autonomous navigation are useful in many robotic ap-
plications such as automatic industry, personal transportation,
assistance to disabled or elder people, surveillance [1]. Even
if many progress have been made, some specific technologies
have to be improved for real application. In this paper, we
are particularly interested in the field of the autonomous
navigation of vehicles in an urban environment (cf. Fig.
1). This field allows to improve the transport systems for
the reduction of traffic and pollution in large cities, among
others. Different strategies in this field have been proposed in
the literature [2], [3]. The most popular approaches are based
on the following of a pre-defined reference trajectory. These
approaches deal with three main groups: point stabilization
(to reach a specific point with a certain orientation), trajec-
tory tracking (to track a time parameterized references) and
path following (to follow a path without explicit temporal
references). For these approaches, the reference path can be
defined by a combination of path planning and trajectory
generation techniques [4].

Point stabilization for nonholonomic vehicle is a difficult
problem of control system since the asymptotic stability of
the system can not be guaranteed by a continuous state-
feedback law [5]. Some works deal with this problem
using the chained representation of the system [6] or a
transformation in the robot kinematics and the Lyapunov
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Fig. 1. Autonomous navigation of an electrical vehicle in an urban
environment (Clermont-Ferrand, France).

stability method [7]. Nevertheless, the described approaches
are applied only for point stabilization.

Different control methods for trajectory tracking and path
following applied to wheeled mobile robots (unicycle, car-
like robot, etc.) have been proposed in the literature [2], [8],
[9] and [10]. In [9], [11] and [12], nonlinear control laws
for trajectory tracking are synthesized for a unicycle robot
using the Lyapunov stability analysis. The used Lyapunov
functions are based only on the distance and orientation
errors. A trajectory tracking control for a farm vehicle
integrating sliding in the kinematic model is proposed in
[8]. For path following problem, a control law for a tricycle
robot is proposed in [10] and [13]. It is based on feedback
linearization and system transformation to chained form
representation [14]. Smoother convergence to desired path
is achieved, in comparison with the performance obtained
with trajectory tracking controllers. Nevertheless, the vehicle
velocity tracks a desired velocity profile, while the path
following controller acts only on the orientation to drive it
towards the path.

Typically, to generate a reference path which must to be
tracked by the vehicle, arc-lines, B-splines or a polynomial
equation are used between points [15], [16] and [17]. In
[3] a feasible path is obtained using a polynomial curvature
spiral. In [18] straights line paths, defined by the position
and orientation of a single waypoint, are considered. In
this case, the orientation of the previous waypoint is not
taken into account to simplify the implementation of the
control law. This work proposes a navigation strategy which
avoids the generation of a defined trajectory. The vehicle
movements are obtained according to the proposed control
law while considering sequential waypoints to reach and the
vehicle constraints. The vehicle can perform different ma-



neuvers between points without the necessity of replanning
any reference trajectory. This strategy allows to perform a
flexible navigation taking into account the waypoints suitably
positioned in the environment.

In this work, a control law based on a novel definition of
control variables and Lyapunov function is proposed. This
function is based on the error distance, orientation and a
new parameter related to the angle between the robot and
the target position. The synthesized control law is deduced
for point stabilization and trajectory tracking problem. Fur-
thermore, a target assignment strategy is proposed to perform
autonomous navigation through pre-defined waypoints. Con-
sequently, the overall control strategy can also be exploited
to achieve (static or dynamic) target-reaching.

The rest of the paper is organized as follows: the next
section presents the problem description. Section III details
the vehicle and target models, the proposed control law
and its stability analysis. Section IV describes the target
assignment strategy and the smooth switching between the
targets. Simulation and experimental results are given in
Section V. Finally, Section VI states the conclusion and
future works.

II. PROBLEM DESCRIPTION

An important challenge in the field of autonomous vehi-
cles consists of ensuring safe and flexible navigation in a
structured environment (cf. Fig. 1 and 9). In this work, safe
navigation consists in not colliding with the road limits and
objects while respecting the vehicles physical constraints.
Flexible navigation consists in allowing different maneuvers
while guaranteeing a smooth trajectory. The considered sce-
nario (cf. Fig. 9) is described below:

• The structured environment is a known road map where
the roads have a specific width wR.

• The vehicle model (kinematic) is supposed known.
• The vehicle starts at the initial position Pi and it has to

reach the final position Pf .
A safe reference path can be obtained by different al-

gorithms such as Voronoı̈ diagram [19]. In our case, this
path is used to select defined points (waypoints). Therefore,
the navigation problem is simplified to a waypoints tracking
problem, i.e, the vehicle is guided by the waypoints (cf.
Fig. 3) instead of following a specific fixed path. A single
waypoint, defined by its position, orientation and velocity, is
called a target. The control law to achieve the target is de-
signed to generate a smooth and flexible vehicle navigation.
Moreover, if the successive waypoints are close to each other
then the vehicle performs a path following (cf. Section IV).

III. TARGET-REACHING CONTROL

The control strategy consists in driving an urban vehicle
(cf. Fig. 1) towards specific target configuration (static or
dynamic). The scenario is in an urban environment, thus the
vehicle motion is low speed (less than 3 m/s) on asphalt
road. Therefore, kinematic model of the vehicle relies on
pure rolling, and dynamic effects and slippage are negligible.
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Fig. 2. Vehicle and target configuration in a Cartesian reference frame and
the error variables.

This section gives the details of the vehicle and target state-
space model, the proposed control law and the proof of
its stability. Before to start, let us describe the notation
illustrated in Fig. 2 below:

• OG and Om are respectively the origin of global and
local reference frames.

• (x, y, θ) and (xT , yT , θT ) are respectively the tricycle
and target postures in the global reference frame.

• v and vT are respectively the linear velocity of the
tricycle and target.

• γ is the orientation of the vehicle front wheel.
• Icc is the instantaneous center of curvature of the vehicle

trajectory with cc = 1/rc as the curvature and the radius
of curvature is rc = lb/ tan(γ).

• lb and wb are respectively the wheelbase and the track
width of the vehicle.

• (ex, ey, eθ) are the errors w.r.t local frame (XmYm)
between the tricycle and target postures.

• θRT and d are respectively the angle and distance
between the target and vehicle positions.

• eRT is the error related to the vehicle position (x, y)
w.r.t the target orientation.

• dl is the distance from the vehicle to the target orienta-
tion line.

A. Vehicle and target modeling

The kinematic model of the urban vehicle is based on
the well-known tricycle model [6]. The two front wheels
are replaced by a single virtual wheel located at the center
between the front wheels. It is given below (cf. Fig. 2)

ẋ = v cos(θ)
ẏ = v sin(θ)

θ̇ = v tan(γ)/lb

(1)

To simplify the controller computation and to use the
general model of robot motion, let us consider a dynamic
target as a point with nonholonomic constraints (cf. Fig. 2).



Its kinematic is given by:
ẋT = vT cos(θT )
ẏT = vT sin(θT )

θ̇T = ωT

(2)

where ωT is the angular velocity of the target. The radius
of curvature is computed by rcT = vT /ωT . An impor-
tant consideration for target-reaching is that vT ≤ vmax
and rcT ≥ rcmin

, where vmax and rcmin
are respectively

the maximum linear velocity and the minimum radius of
curvature of the vehicle. For the static target-reaching, ωT
is considered equal to zero and vT is a desired velocity
value for the vehicle when it reaches the desired posture
(xT , yT , θT ).

B. Control Law
Before to present the proposed control law, let us introduce

the error variables. The errors (ex, ey, eθ) are given by: ex = cos(θ)(xT − x) + sin(θ)(yT − y)
ey = − sin(θ)(xT − x) + cos(θ)(yT − y)
eθ = θT − θ

(3)

In this paper, a new error function eRT is added to the
canonical error system (3) (cf. Fig. 2). Let us first give the
expression of d and θRT as (cf. Fig. 2):

d =
√

(xT − x)2 + (yT − y)2 (4){
θRT = arctan ((yT − y)/(xT − x)) if d > ξ
θRT = θT if d ≤ ξ (5)

where ξ is a small positive value (ξ ≈ 0). The error eRT
is defined as (cf. Fig. 2):

eRT = θT − θRT (6)

It can be written as a function of ex, ey and eθ as:

tan(eRT ) = tan(eθ − (θRT − θ))

=
tan(eθ)− tan(θRT − θ)
1 + tan(eθ) tan(θRT − θ)

=
ex tan(eθ)− ey
ex + tan(eθ)ey

(7)

where tan(θRT − θ) = ey/ex (cf. Fig. 2).
The derivatives of the errors (3) and (6) can be obtained

using (1), (2), (5) and (4):

ėx =cos(θ)(ẋT − ẋ) + sin(θ)(ẏT − ẏ)
− sin(θ)(xT − x)θ̇ + cos(θ)(yT − y)θ̇

=− v + ey θ̇ + vT cos(θT ) cos(θ) + vT sin(θT ) sin(θ)

=− v + eyv tan(γ)/lb + vT cos(eθ) (8)
ėy =− sin(θ)(ẋT − ẋ) + cos(θ)(ẏT − ẏ)

− cos(θ)(xT − x)θ̇ − sin(θ)(yT − y)θ̇
=− exθ̇ − vT cos(θT ) sin(θ) + vT sin(θT ) cos(θ)

=− exv tan(γ)/lb + vT sin(eθ) (9)

ėθ = θ̇T − θ̇

=
vT
rcT
− v tan(γ)/lb (10)

ėRT = θ̇T − θ̇RT

=
vT
rcT
− vT sin(θT )(xT − x)− vT cos(θT )(yT − y)

d2

− −v sin(θ)(xT − x) + v cos(θ)(yT − y)
d2

=
vT
rcT
− vT ex sin(eθ)

d2
+
vT ey cos(eθ)

d2
− eyv

d2
(11)

The control law to reach a target (static or dynamic) is
obtained using Lyapunov stability analysis framework. The
desired linear velocity v and the front wheel orientation γ
of the vehicle that make the errors (ex, ey, eθ) converge to
zero can be chosen as:

v = vT cos(eθ) + vb (12)
γ = arctan(lbcc) (13)

where vb and cc are given by:

vb =Kx (Kdex +Kld sin(eRT ) sin(eθ) +Ko sin(eθ)cc)
(14)

cc =
1

rcT cos(eθ)
+
d2Kl sin(eRT ) cos(eRT )

rcTKo sin(eθ) cos(eθ)
+Kθ tan(eθ)

+
Kdey −Kld sin(eRT ) cos(eθ)

Ko cos(eθ)
+
KRT sin2(eRT )

sin(eθ) cos(eθ)
(15)

where K = (Kd,Kl,Ko,Kx,KRT ,Kθ) is a vector of
positive constants which must be defined by the designer.
These constants can depend on the initial configuration such
as initial distance (reference values are given in Section V)
to adapt the performance of controller for different initial
configurations. We observed that vb is a function of posture
error and the curvature command cc. It allows to manage
the linear velocity when the vehicle has a great curvature
according to eθ. Moreover, cc depends mainly on the error
posture.

C. Stability analysis

This stability analysis based on Lyapunov method is used
to determine the convergence of the vehicle to the target
posture, i.e., for a finite time, the error system (ex, ey, eθ)
converges to zero [20]. Let us first define the Lyapunov
function V by (16). It is a function of three parameters which
depend on: the distance d between the target and vehicle
positions, the distance dl from the vehicle to the target line
(line that pass through the target position with orientation
equal to the target orientation), this term is related to the
Line of Sight and Flight of the target [21], and the orientation
error eθ between the vehicle and the target (cf. Fig. 2). It is
represented by:

V =
1

2
Kdd

2 +
1

2
Kld

2
l +Ko[1− cos(eθ)]

=
1

2
Kdd

2 +
1

2
Kld

2 sin2(eRT ) +Ko[1− cos(eθ)] (16)

where the initial values of eRT and eθ satisfy:

eRT ∈ ]− π/2, π/2[ and eθ ∈ ]− π/2, π/2[ (17)



These conditions (17) guarantee that the target is ahead to
the vehicle w.r.t. its orientation. Moreover, (17) has open
interval that allows to avoid local minimum. Therefore, V is
a positive-definite function [20].

The Lyapunov function (16) can be written according to
ex, ey as follows:

V =
1

2

(
e2x + e2y

)
[Kd +Kl sin

2(eRT )] +Ko[1− cos(eθ)]

(18)
To guarantee the system stability, V̇ has to be negative-

definite [20]. By taking the derivate of (18) and using (8),
(9), (10), (11), (12) and (13), V̇ can be written:

V̇ =(exėx + ey ėy)[Kd +Kl sin
2(eRT )]

+Kld
2 sin(eRT ) cos(eRT )ėRT +Ko sin(eθ)ėθ

=[−exvb + vT ey sin(eθ)][Kd +Kl sin
2(eRT )]

+Kl sin(eRT ) cos(eRT )

[
d2vT
rcT

− vT ex sin(eθ)− eyvb
]

+Ko sin(eθ)

(
vT
rcT
− vT cos(eθ)cc − vbcc

)
(19)

Using (7) in the first two terms of (19) and factorizing the
common terms, it holds that:

V̇ =vT sin(eθ)[Kdey −Kld sin(eRT ) cos(eθ)]

+
vT
rcT

[d2Kl sin(eRT ) cos(eRT ) +Ko sin(eθ)]

− vb[Kdex +Kld sin(eRT ) sin(eθ) +Ko sin(eθ)cc]

− vTKo sin(eθ) cos(eθ)cc (20)

Finally, using (14) and (15) in (20), we obtain:

V̇ =−Kx[Kdex +Kld sin(eRT ) sin(eθ) +Ko sin(eθ)cc]
2

− vTKoKθ sin
2(eθ)− vTKoKRT sin2(eRT ) ≤ 0

(21)

Eq. (21) shows that the system is stable while the initial
conditions (17) are satisfied. To ensure the asymptotic sta-
bility of the error system, V̇ has to be a negative-definite
function. Let us exhibit the case where V̇ = 0 with vT > 0
and vT = 0. Firstly, when vT > 0 and using the initial
assumption K > 0, it is straightforward to show that
ex, eθ, eRT are equal to zero to satisfy (21), then according
to (6), (5) and (17) d is equal to zero (ey = 0). Hence, V̇ is
equal to zero when vT > 0, only if (ex, ey, eθ) = (0, 0, 0).

Secondly, let us consider the case where vT = 0. The
initial assumption is identical. Hence, the second and third
terms of (21) are equal to zero when vT = 0. Additionally,
when vT = 0, we consider that rcT →∞, consequently the
first term of V̇ is equal to zero when:

Kdex +Kld sin(eRT ) sin(eθ) +Ko sin(eθ)cc = 0 (22)

Replacing (15) with rcT → ∞ in (22), the following

expression is obtained:

0 =Kdex +Kld sin(eRT ) sin(eθ)

+ tan(eθ)[Kdey −Kld sin(eRT ) cos(eθ)]

+Ko sin(eθ)

[
Kθ tan(eθ) +

KRT sin2(eRT )

sin(eθ) cos(eθ)

]
=Kd[ex + ey tan(eθ)] +KoKθ

sin2(eθ)

cos(eθ)

+KoKRT
sin2(eRT )

cos(eθ)
(23)

Using (7) in (23), we obtain:

Kdd
cos(eRT )

cos(eθ)
+KoKθ

sin2(eθ)

cos(eθ)
+KoKRT

sin2(eRT )

cos(eθ)
= 0

(24)
Eq. (24) exhibits quadratic terms. Consequently, consider-

ing the initial conditions (17), cos(eRT ) and cos(eθ) > 0 are
greater than zero. Therefore, all the terms of (24) are positive
and they must be equal to zero, i.e., d, eθ, eRT = 0, and if
d = 0 then ex, ey = 0. Hence, from (24), V̇ is equal to zero
when vT = 0 and rcT →∞, only if (ex, ey, eθ) = (0, 0, 0).

Conclusively, if vT > 0 and vT = 0, V is always strictly
positive and V̇ is always strictly negative while (ex, ey, eθ) 6=
(0, 0, 0). Therefore, the errors system is asymptotically stable
while the initial vehicle conditions (17) are satisfied.

IV. SMOOTH NAVIGATION THROUGH
SEQUENTIAL TARGETS

This section shows the strategy to navigate through suc-
cessive waypoints (targets) and the method applied on the
controller variables to guarantee smooth navigation between
the targets, specifically when the switches occur.

A. Sequential target assignment

The proposed strategy uses a sequence of sorted waypoints
suitably located in the environment. For safe navigation,
the line that joins two successive waypoints is in the free-
collision area (cf. Fig. 3). The method to select the optimal
number of waypoints (target set-point (xTj

, yTj
, θTj

, vTj
)) in

order to perform safe vehicle navigation will be addressed in
future works. In this paper, we consider for simplicity that
the waypoints are uniformly positioned in the skeleton of the
Voronoı̈ diagram of the known environment. Safe navigation
between waypoints is guaranteed by imposing Edist and
Eangle (cf. Fig. 3) which allow to guide the vehicle to reach
the assigned current target Tj with an appropriate conditions
to reach the next target Tj+1.

The strategy to assign the next target is shown in Al-
gorithm 1. The parameters of the control law allow to the
vehicle to reach each target (cf. Section V) while ensuring
that the vehicle trajectory is always inside the road limits (cf.
Fig. 3).

The current target Tj = (xTj
, yTj

) is defined by the
following parameters: Dj the distance between the last target
Tj−1 = (xTj−1 , yTj−1) and the current target Tj ; θTj the
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Input : Vehicle posture, current target Tj and a set of
N waypoints

Output: Switch between target set-points

if (d ≤ Edis and eθ ≤ Eangle) or (xTj ≥ 0)
{ xTj is the coordinate of the vehicle w.r.t current
Target frame XTj

YTj
(cf. Fig. 3) } then

Switch between the current target Tj and the next
waypoints Tj+1 ;

else
Go to the current target Tj ;

end
Algorithm 1: Sequential target assignment

orientation between Tj and Tj+1 = (xTj+1
, yTj+1

) given
by:

θTj = arctan
(
(yTj+1 − yTj )/(xTj+1 − xTj )

)
(25)

B. Smooth switching between targets

The idea here is to obtain a smooth evolution of the
errors avoiding discontinuities in the control law (which
could induce jerking in the vehicle movement). Indeed, when
the vehicle switches from target e.g., Tj to Tj+1, the value
of controller variables Cv = (ex, ey, eθ, eRT , vT , rcT ) can
change abruptly (cf. Subsection V-A). In this work, we
propose to avoid this hard switch by introducing a virtual
evolution of this control variables for a certain amount of
movement distance ds (smoothness distance) without dis-
turbing the safe navigation. This distance depends on initial
distance (% of di) separating the robot and Tj+1.

A Sigmoid function is applied to the controller variables
Cv along of ds. The new Smooth Virtual Controller variables
(SVCv) are designed according to the covered distance dc =
di − d, where d is the current distance to the current target
(cf. Fig. 4). The SVCv function is given by:

SVCv(dc) = Cvi +
(Cv − Cvi)

1 + e−a(dc−d0)
(26)

where Cvi and Cv are respectively the initial and current
values of the controller variables. For example, for ex, an
element of Cv , when the target switches from Tj to Tj+1,
exi is the value before to switch to Tj+1 and ex is the current
error w.r.t. the target Tj+1; d0 is the value where the function

Fig. 4. Evolution of the SVCv used to ensure smooth control when the
target switching occurs.

has a half of its current value and a is a constant value related
to the slope of the sigmoid function. It is designed to attain
the effective value (SVCv ≈ Cv) when dc = ds (cf. Fig. 4).

V. VALIDATION

This section presents simulations and experiments to
demonstrate the efficiency of the control law for target-
reaching (static and dynamic) and autonomous navigation in
structured environment. The physical parameters of the urban
vehicle VIPALAB, modeled using the tricycle kinematics,
were considered (cf. Section III).

A. Simulation results

This section shows, in simulation, the performance (safety,
smoothness and convergence) of the control law to reach
a desired target (static or dynamic) located at different
distances. For each simulation the vehicle starts at the same
configuration but with different values of target velocities.

Fig. 5 shows the trajectories of the vehicle for different
static targets (Ti, i = 1, . . . , 6) and for a dynamic target
Td (sinusoidal trajectory). The static target are positioned at
different initial distances di and orientation angle between
them (45◦ until T5 and 0◦ for T6). The velocity profile of the
targets for each simulation are vT = 0.1, 0.5 and 1.0 m/s
respectively. The values of the controller parameters are
K = (1/di, 1.8, 8, 0.15, 0.6, 0.01) (di is the initial distance

Fig. 5. Trajectories of the vehicle for several target velocities.



Fig. 6. Distance and orientation errors of the vehicle for several target
velocities.

Fig. 7. Values of the Lyapunov
function for several initial orienta-
tions to reach T1.

Fig. 8. Control commands with and
without adaptive Sigmoid (SVCv)
use.

to the target). These parameters were chosen to obtain a
safe and smooth trajectory, fast response and velocity value
within the limit of the vehicle, which are vmax = 1.5 m/s
and rcmin

= 3.8 m (γmax = ±19◦). It is noted that the
vehicle converges to each target (static and dynamic), located
in different positions and with different set of velocities. The
dynamic target starts its movement when the vehicle reaches
the last static target T6.

Fig. 6 shows the values of errors d and eθ for the different
targets to reach. For static targets (Ti, i = 1, . . . , 6), the
obtained values of errors just before to switch from target
Ti to Ti+1 are shown. For dynamic target, the evolution
of d(t) and eθ(t) during all tracking phase are shown.
It is observed that the distance and orientation errors of
static targets depend on initial configuration (distance and
orientation). The errors increase when the static targets are
closer. Moreover, for static targets where the profile velocity
is the desired vehicle velocity at target position, the different
profiles velocities have similar errors. It occurs in static target
because the proposed control law (angle steering) relies only
on the dynamic of posture errors between the vehicle and the
static target (cf. eqs. (13) and (15)) (the target velocity is a
set-point for the vehicle when it reaches the target posture
(cf. eq. (12)) and the controller parameters K are tunning
according to same initial distance di to the target. Obviously,
for dynamic target, the small target profile velocity has a
faster convergence to zero.

The convergence of the Lyapunov function (16) is shown
in Fig. 7 (cf. Subsection III-C) when the vehicle starts at the

same initial position but with different initial orientations to
the target T1 and while taking vT = 1.0 m/s.

The use of Sigmoid function is observed in the vehicle
commands (velocity and steering angle) (cf. Fig. 8) for the
static target with profile velocity of vT = 0.5. It is noted
that the Sigmoid function contributes to avoid peaks at the
transition time and to obtain thus smooth vehicle commands
while maintaining the stability of the control.

B. Experimental results

The experiment was made to show the performance of the
control law and target assigment strategy using the waypoints
sampling of the defined reference trajectory at each 1 m.
This selected distance guarantees that the line between two
successive waypoints does not collide with the road limits.
Hence, the controller parameters K are constants.

Our strategy was implemented in the VIPALAB urban
vehicle (cf. Fig. 9(a)). The dimensions of the vehicle are
1.27 m (width), 1.96 m (length) and 2.11 m (height).
This vehicle is embedded with different sensors to obtain
information about the environment and the vehicle such as
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Fig. 9. (a) VIPALAB electric urban vehicle, (b) PAVIN experimental
platform, (c) Top view of the virtual PAVIN.
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Fig. 11. Lateral distance and orientation errors of the vehicle w.r.t. the line
which link the current target and the last one (real experiment).
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Fig. 12. Control commands of the vehicle (real experiment).

odometers, steering angle sensor and GPS-RTK (its accuracy
is 0.02m). They are used to estimate the vehicle position and
orientation. The used sample time is 0.01 s. Navigation was
performed in a structured environment named PAVIN (Plate-
forme d’Auvergne pour Véhicules INtelligents) (cf. Fig 9 (b)).

It can be seen in Fig. 10 that the vehicle follows the
waypoints successfully. Moreover, the trajectory using the
proposed strategy is close to the reference path (Fig. 10 and
11). Fig. 11 shows that the errors w.r.t. reference trajectory
are greater when the vehicle moves to a curve in the path.
Fig. 12 shows the commands sent to the vehicle and the real
values taken from the vehicle of the velocity and steering
angle. It is noted that the real values have noise signals that
are related to the sensor inaccuracies. The video enclosed to
this paper shows the performance of this experiment.

VI. CONCLUSION

This paper presented an overall control strategy to cope
with the problem of navigation in a structured environment.
A control law was synthesized using a suitable Lyapunov
function, which takes into account the position, angle be-
tween the robot and the target and orientation such as set-
points. Moreover, it allows to perform the target-reaching
(static and dynamic). The stability of the overall control
architecture was proved using a suitable Lyapunov function
based on the new set of variables. A target assignment
strategy to perform a safe navigation was also presented.
It is based on the target switching using waypoints and

sigmoid function that allow to obtain a smooth, flexible and
safe vehicle trajectory. Simulations and experiments using
real urban vehicle show the efficiency and the flexibility of
the proposed control strategy for the navigation of an urban
vehicle.

In future works, we will show the advantages of the
proposed overall control strategy in comparison to other
approaches. The optimal selection of waypoints (minimum
number of waypoints) in a reference path to perform safer
and smoother trajectory will be proposed. The error limits
Edis and Eangle will consider the inaccuracies of the vehicle
sensors. Moreover, this strategy will be applied to multi-robot
system for a virtual structure approach.
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Commande-Communication. Hermès, 2001.

[15] J. Horst and A. Barbera, “Trajectory generation for an on-road
autonomous vehicle,” Proceedings of the SPIE: Unmanned Systems
Technology VIII, 2006.

[16] J. Connors and G. H. Elkaim, “Manipulating b-spline based paths for
obstacle avoidance in autonomous ground vehicles,” in ION National
Technical Meeting, ION NTM 2007, San Diego, CA, USA, 2007.

[17] J.-W. Lee and B. Litkouhi, “A unified framework of the automated
lane centering/changing control for motion smoothness adaptation,”
in 15th International IEEE Conference on Intelligent Transportation
Systems (ITSC), 2012, pp. 282–287.

[18] J. Courbon, Y. Mezouar, and P. Martinet, “Autonomous navigation
of vehicles from a visual memory using a generic camera model,”
Intelligent Transport System (ITS), vol. 10, pp. 392–402, 2009.

[19] J.-C. Latombe, Robot Motion Planning. Kluwer Academic Publishers,
Boston, MA, 1991.

[20] H. K. Khalil, Nonlinear Systems, 3rd ed. Prentice Hall, 2002.
[21] G. M. Siouris, Missile Guidance and Control Systems. Springer-

Verlag, 2004.


