Systèmes hybrides et stabilité des architectures multi-contrôleurs dédiées à la navigation de robots mobiles

Lounis Adouane et Philippe Martinet

Nantes, le 24 Octobre 2012 Journées scientifiques Robotique et Automatique

ROboticS and Autonomous Complex SystEms

- Navigation de robots mobiles
- Architectures multi-contrôleurs
- Contrôle hybride (les différentes solutions)
 - **Conclusion et perspectives**

Navigation de robots mobiles

Focus sur les systèmes multi-robots

Travaux publics

Agriculture (Moissonnage)

Transport de passagers

Lounis Adouane & Philippe Martinet. Nantes le 24 Octobre 2012, JRA'12.

PASCAL

Navigation de robots mobiles

Comment contrôler/commander ces systèmes complexes ?

PASCAL

PASCAL

PASCAL

PASCAL

(1) Fonctions de Lyapunov Multiples (FLM)

[Branicky, 98]

Soit N systèmes dynamiques asymptotiquement stables **Soit V**_i les fonctions de Lyapunov correspondantes

Si chaque fonction V_i forme une <u>séquence décroissante en fin d'intervalle</u> $\sigma = i$, Alors le <u>système global est asymptotiquement stable</u>.

(1) Fonctions de Lyapunov Multiples (FLM)

(1) Fonctions de Lyapunov Multiples (FLM)

PASCAL

Contrôle hybride (continu/discret) (2) Fonction de Lyapunov Commune (FLC) [Liberzon 03] Adaptation de gain [CIFA'10], [ICRA'10] et [IROS'10]

(2) Fonction de Lyapunov Commune (FLC)

Adaptation de gain

$$\tau_{min} > \frac{\ln(V(t_{avc})/V(t_c))}{-2k_{max}} \quad \text{Avec} : k_{max} = \frac{\lambda \pi}{\left|\tilde{\theta}(t_c)\right|} \quad \text{et} \quad \lambda = f(\omega_{max}, \dot{\omega}_{max})$$

PASCAL

(2) Fonction de Lyapunov commune (FLC)

ROSACE

PASCAL

(3) Fonction d'Adaptation (FA)

Loi de commande proposée

$$F_{i}(P_{i}, S_{i}, t) = \eta_{i}(P_{i}, S_{i}, t) + G_{i}(P_{i}, S_{i}, t)$$

Avec :

- P_i perceptions du contrôleur "i",
- S_i consignes du contrôleur "i".
- • $\eta_i(P_i, S_i, t)$ Loi de commande nominale (Synthèse par Lyapunov),
- *G_i* (*P_i*, *S_i*, *t*) Fonction d'adaptation. Activée :
 - Si le contrôleur à l'instant « t₀ » et « t₀-⊿t » sont différents.
 Ou un à-coups de consigne Siest reçu par le contrôleur "i".

Contrôle hybride (continu/discret) (3) Fonction d'Adaptation (FA) Fonction d'adaptation $G_i(P_i, S_i, t)$ Consignes de commandes Fonction monotone avec comme CI : Contrôleur i Contrôleur j $(G_i (P_i, S_i, t_0) \neq F_j (P_j, S_j, t_0 - \varDelta t) - \eta_i (P_i, S_i, t_0)$ 0.9 0.8 0.7 0.6 Valeur finale : 0.5 0.4 $G_i(P_i, S_i, T) = 0$ avec $T = H_i(P_i, S_i)$ 0.3 0.2 *H*, dépend de la criticité pour 0.1 rejoindre la loi de commande 0[⊾]0 ¹⁰ nominale. ³Exponential function 8 9 2 21/27 ROSACE PASCAL Lounis Adouane & Philippe Martinet. Nantes le 24 Octobre 2012, JRA'12.

(3) Fonction d'Adaptation (FA)

e.g., Attraction vers une cible

$$\begin{pmatrix} v \\ w \end{pmatrix} = -K \begin{pmatrix} \cos\theta & \sin\theta \\ -\sin\theta/l_1 & \cos\theta/l_1 \end{pmatrix} \begin{pmatrix} e_x \\ e_y \end{pmatrix} + \begin{pmatrix} G_{A_v}(t) \\ G_{A_w}(t) \end{pmatrix}$$

Avec : v et w correspondent à la vitesse linéaire et angulaire respectivement $e_x = x - x_T$; $e_y = y - y_T$.

La contrainte pour avoir une loi de commande stable (synthèse par Lyapunov) :

$$K > \frac{-(G_{A_v}(t)e_x + G_{A_w}(t)e_y)}{e_x^2 + e_y^2}$$

(3) Fonction d'Adaptation (FA)

Conclusions et perspectives

- Contrôle réactif de systèmes robotiques mobiles même avec une complexité ascendante (suivre une trajectoire, éviter les obstacles, maintenir une formation, etc.),
- Stabilité globale au sens de Lyapunov des architectures multicontrôleurs (systèmes hybrides) : FLM, FLC et par FA,
- Intégration complète pour la navigation en formation d'un groupe de VipaLab.

PASCAL

