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Abstract In this paper, we present an approach to automatically allocate a set of ex-
ploration tasks between a fleet of mobile robots. Our approach combines a RoadMap
technique and Markovian Decision Processes (MDPs). We are interested in the prob-
lem of exploring an area where several robots need to visit a set of points of interest.
This problem induces a long term horizon motion planning with a combinatorial
explosion. The RoadMap allows us to represent spatial knowledge as a graph of
paths. It can be modified during the exploration mission requiring the robots to use
on-line computation. By decomposing the RoadMap into regions, an MDP allows
the leader robot to evaluate the interest of each robot in every single region. Using
those values, the leader can assign the exploration tasks to the robots.

1 Introduction

The problem of exploring an environment with a fleet of robots is a persistent topic
in mobile robotics [1]. It is difficult to consider the global problematic in a long
term horizon but several studies have contributed in different orientations. Indeed,
the topic can be decomposed to 2 main parts: planning and controling of the robot’s
motion [2][3] with localization [4] ; communicating and computing the collabora-
tive exploration strategies [1][5][6]. The notion of RoadMap (as a topological map
increased by metric informations [7]) appears as an interesting tool to connect the
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Fig. 1 Exploration problem with 4 points of interest {A, B, C, D} and the attached RoadMap.

sensors control and decision making [8]. The approach in this paper proposes the
use of the RoadMap in on-line decision making considering a long-term horizon.

Our research is employed in a project named R-Discover that aims at exploring
an external area using a fleet of robots. An Unmanned Aerial Vehicle (UAV) takes
several pictures of an area and then a fleet of ground robots are set to refine knowl-
edge about this area. Indeed, the pictures allow us to build a first map regarding
detected obstacles. Next, an operator defines key positions which must be visited to
increase the map definition as a set of points of interest in the map (Fig. 1).

The main concern of the paper is based on the robots’ capacities to cooperate
in order to calculate and adapt exploration strategies along the mission. Robots are
equipped with communication devices efficient in a given radius. In this paper, we
focus on the particular steps of the mission where two or more robots of the fleet
can communicate. We suppose that robots are able to share their knowledge. The
present robot with the higher level in a defined hierarchy is set to be the current
leader. We are interested in the capacity of the current leader to re-allocate the local
set of points of interest I = {A,B,C, . . .} between the present robots in few seconds.

Allocating the set of points of interest is computed in a way that maximizes the
sum of individual expected gains. But the complexity of evaluating the interest of a
robot in visiting a sub-set of points of interest does not permit a computation of an
optimal solution for real size problems |I| > 20 (Section 2.2). To bypass the com-
plexity of finding a solution on-line, heuristics are used to partition the RoadMap
which allows the robots to plan and reason over regions instead of the set of points of
interest. The approach permits to solve the problem of exploring an area with a fleet
of robots with planning under uncertainty over long term horizon using methods to
minimize the on-line computation time.

2 Working Context

The used architecture presented in the next section allows us to separate the robot
locomotion problem from the deliberative aspect. This way, we concentrate on the
problem of computing the exploration policies using several levels of abstraction in
order to allocate the points of interest between the present’s robots.
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2.1 The Robot’s Control Architecture

Each robot is composed of two modules. The first is reactive and permits the robot
to move between two positions. The second is deliberative and aims to organize the
tasks and gives the decision to the reactive module (Fig. 2).

The reactive module controls movements according to events of low importance
such as little discovered obstacles to avoid. A hybrid multi-controller [3] is used
for the navigation of the mobile robot in cluttered environments. This architecture
is based on a flexible switching between different atomic controllers as attraction
to a target or obstacle avoidance. That allows the robot to reach a position while
avoiding obstacles.

In this paper, we are not interested in developing the reactive module. In fact, we
are interested in describing the deliberative module. A task (Fig. 2) matches a target
position to reach by avoiding obstacles. A Probabilistic RoadMap [2] is defined as
a graph <W,P > where W is the set of way-points (nodes) and P is the set of paths
(edges). The way-points set W is composed of the points of interest I in addition
to the environment way-points (points around the known obstacles)(Fig. 1). The
RoadMap is assumed fully connected.

RoadMap = {W,P}, where : W = {w1, ...,wk}
P = {(w1, w2,

−→v , c, u) | w1,w2 ∈W, −→v ∈ R2, c ∈ R, u ∈ [0,1]}

Each path p is defined by the current w1 and the targeted w2 way-points. A vector
−→v gives the relative position of w2 from w1. The attribute c is the associated cost; it
depends on the distance and the quality of the path. The attribute u is the probability
to reach a target position without crossing important obstacles.

Structuring knowledge of collision-free connectivity in a RoadMap permits to
use graph algorithms like A* to plan the movements of an agent or a fleet of
agents [6]. Graph theory does not directly fit to the stochastic aspect to find an
optimal policy in uncertain environments. However it is possible to combine the
RoadMap and Markovian Decision Processes. It was used to improve path finding
by minimizing the movement cost and considering collision safe paths [8]. Due to
non-deterministic actions, we propose to compute robot’s policies using Markov
Decision Processes (MDP) [9], where the MDP model is built from the Roadmap
elements.

actuator
perception

Reactive Module

Attraction

Avoidance
switch

adaptation

RoadMap Deliberative

Module
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Fig. 2 The Robot Architecture Schema.
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2.2 The Markovian Decision Processes

An MDP is defined as a tuple < S,A, t,r > with S and A respectively, the state and
the action sets that define the system and its control possibilities. t is the transition
function defined as t : S×A×S→ [0,1] that gives the probability t(s,a,s′) to reach
the state s′ from s by doing action a ∈ A. The reward function r is defined as r :
S×A→ R, r(s,a) gives the reward obtained by executing a from s.

A policy function π : S→ A assigns an action to each system state. Optimally
solving an MDP consists in searching an optimal policy π∗ that maximizes the ex-
pected gain. π∗ maximizes the value function of Bellman equation [10] defined on
each state. For a policy π:

V π(s) = r(s,a)+ γ ∑s′∈S t(s,a,s′)V π(s′), a = π(s)
V π∗(s) = argmax

a∈A
( r(s,a)+ γ ∑s′∈S t(s,a,s′)V π∗(s′) )

The γ parameter in [0,1] balances the importance between future and immediate
rewards. In case of finite horizon problems, as visiting a set of points, γ is set to 1.

Several studies [4][5] use MDPs in mobile robotics. In routing problem, an action
is added for each path p ; transitions and rewards are done considering the values u
and c linked to p (Section 2.1). To visit a set of points, an MDP state needs to include
the set of already visited points of interest I′ and the number of states increases
exponentially regarding the total number of points of interest (|S| > 2|I|). We can
not consider a problem with more than 20 points of interest to solve it on-line.

2.3 MDPs Decomposition

Decomposition permits us to decrease the complexity of the policy computation by
building a hierarchy between local problems and a global solution. It is particularly
efficient in spatial problems as it is based on the topological aspect of transitions.
The idea of Decomposed MDPs is to aggregate strongly connected states together
in sub-MDPs to compute the policy in a distributed way [11][12]. Several policies
are computed for each sub-MDP depending on neighboring parameters values.

The problem of computing an optimal graph partition is known to be NP-
Complete [13][14]. In case of Decomposed MDPs, the optimal partition on S is
the partition that allows to compute the policy the most quickly possible. Indepen-
dent sub-MDPs are desired in order to decrease the number of policies computation
in each sub-MDP. Generally, the criteria is to built partitions as balanced as possible
by minimizing connexions between sub-MDPs [15][16].

The presented approach is based on a greedy decomposition (Section 3.2) of the
RoadMap in order to build a global abstract MDP on the regions set. This global
MDP allows robots to evaluate their interest of exploring each of the regions in
order to allocate the mission between them (Section 3.3).
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3 The Deliberative Module

During the mission, robots meet each other. At this moment, present robots are
able to communicate in order to merge their knowledge. We are interested in how
the current leader can build, on-line, a new partition of the updated RoadMap and
allocate the exploration tasks to the present robots. All points of interest need to
be allocated while minimizing the sum of the expected movement costs of all the
robots. The solution must be able to handle 3 communicating robots, up to 120
targets to visit and an exploration area including around a thousand way-points.

3.1 The RoadMap Partition

After updating its RoadMap regarding transmitted information from present robots,
the current leader partitions the RoadMap into regions in order to re-allocate the set
of regions of interest between the present robots.

We search the k-partition that maximizes the ratio between the number of paths
contained in each region over the number of paths which connect two regions. We
denote a partition as Φk = {R1 . . .Rk}, defined on k regions of the RoadMap. A
partition covers the way-points set with no intersection between two regions:⋃

Ri=Φk

Ri =W, ∀Ri,R j ∈Φk, ( Ri 6= R j )⇒ ( Ri∩R j = /0 )

We define Input(Φk)⊂ P as the set of all internal paths contained in regions. In con-
trast, the set Output(Φk)⊂ P contains all intersected paths by the current partition.

Input(Φk) = {p(w1,w2,
−→v ,c,u) | ∃Ri ∈Φk, (w1,w2) ∈ Ri×Ri}

Output(Φk) = {p(w1,w2,
−→v ,c,u) | ∃Ri,R j ∈Φk, Ri 6= R j, (w1,w2) ∈ Ri×R j}

Finally we search the optimal partition Φ∗k defined on the RoadMap which maxi-
mizes the criteria |Input(Φk)|

|Output(Φk)|
. Graph partitioning is known to be NP-complete and we

need to compute a solution on-line during the mission. Therefore, we use a greedy
heuristic. We choose to build regions incrementally by adding the way-points which
maximize the criteria for a current region.

3.2 The Greedy Heuristic

Similarly to Input(Φk) and Output(Φk), during the construction of the partition Φk
we define Input(Ri,w) and Output(Φk,Ri,w) the sets of paths that connect a region
Ri to a way-point w and that connect w to way-points not contained yet in the current
Φk. Starting with a given way-point w0, Algorithm 1 builds the region Ri by select-
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ing the way-points which maximize criteria(Φk,Ri,w) =
|Input(Ri,w)|

|Output(Φk,Ri,w)| . In case of
no way-point w has a criteria value criteria(Φk,Ri,w) up to a bound b (fixed to 1 in
our study), a new region begins with the closest free way-point to w0.

Algorithm 1 Greedy Partitioning
Require: RoadMap M = {W,P}, w0 ∈W, b ∈ R+, Φk← /0

while
⋃

Ri∈Φk

Ri 6=W do

R′← /0
choose w′ the closest way-point to w0 in term of distance where w′ ∈W −

⋃
Ri∈Φk

Ri

repeat
R′.add(w′)
choose w′ that maximizes M.criteria(Φk,R′,w′) and w′ ∈W −

⋃
Ri∈Φk

Ri

until M.criteria(Φk,R′,w′)> b
Φk.add(R′), (k← k+1)

end while
return Φk

Furthermore, we control the expected size of regions by balancing Output(Φk,Ri,w)
with a parameter e(Ri) that simulates future paths inside Ri. The effect of e(Ri) is
bounded by the number of Output(Φk,Ri,w). We define the criteria as:

criteria(Φk,Ri,w) =
|Input(Ri,w)|

|Output(Φk,Ri,w)|−min( |Output(Φk,Ri,w)|, e(Ri) )+ ε

This way, negative values of e(Ri) force the selection to close the region by increas-
ing the number of cut paths. At each step, e(Ri) is defined inversely proportional
to the number of points of interest added to the region. We denote by d the de-
sired number of points of interest contained in a region. Furthermore, k∗ denotes the
expected number of regions (k∗ = |I|/d). In fact, the greedy partitioning does not
guaranty that k = k∗.

e(Ri) =
d−|Ri∩ I|

d
.
|P|
|W |

, d ∈ N+

3.3 The Global MDP and Region Allocation

We will explain how MDPs are used to model a global exploration problem. The
global MDP allows the leader to valuate each robot interest in exploring a sub-set of
regions. From a partition Φk = {R1 . . .Rk}, a RoadMap and a set I of points of inter-
est to allocate, we define a set of regions of interest J ⊂ Φk as the set of all regions
with at least one point of interest. A state s = (Rs, Js) of the global MDP includes
the region Rs where the robot is positioned and Js ⊂ J the set of explored regions.
A specific state called block is added to represent the situation where an unknown
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obstacle prevents the robot from reaching a task. Falling in the block state means
that the robot needs to recalculate the global computed policy. This situation comes
with important updates of the RoadMap that modifies the region configuration. In
this model, when a robot is in a state (Rs,Js), its possible actions are moving to an
adjacent region R′s or exploring the current region Rs.

S = {(Rs,Js) | Rs ∈Φk, Js ⊆ J} ∪ {block}
A = {gotoR′s | R

′
s ∈Φk} ∪ {exploRs | Rs ∈ J}

In the first case the robot ends up in state (R′s,Js), and in the second case it ends
up in state (Rs,Js∪{Rs}). We denote suc(s,a) the reached state if the execution of
the action a is successful. The transition function t(s,a,s′) gives the probability to
reach the state suc(s,a) or to get blocked.

Optimal transition and reward evaluation depend on the shape of each region. It
depends on the local region policies and the crossed way-points. The computation
time does not permit us to compute all local policies so we chose to approximate
the transition and the reward functions. The approximation is done proportionally
to the values of uncertainty u and the cost c linked to each path p of the RoadMap
and the number of included points of interest |Ri∩ J| of the explored region Ri.

Using the ValueIteration algorithm [9] on the global MDP allows the robots to
compute an abstract policy as moving between regions and exploring them. We
search to automatically allocate a set of regions to explore to each robot of the n
present robots at a communication step of the mission.

We want to find the best allocation J∗n = {J0, . . . ,Jn} where each Ji ∈ Jn matches
the set of regions allocated to the robot Agi. The optimal allocation maximizes the
sum of the robots expected gains in the n|J| possible allocation. Knowing the set RAgi

of the actual regions of the robot Agi, the computed policy π∗ of the global MDP
and the value function of bellman V π(s), we search:

argmax
J∗n∈{J0

n, ..., Jn|J|
n }

(
n

∑
i=0

V π∗(RAgi , Ji) )

A

B

C

D1

2
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2

3

Fig. 3 A partitioned RoadMap and the attached global MDP. For example, a state 213 means that
the robot is in the region 2 and the regions 1 and 3 are explored
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By considering up to 3 robots and 12 regions (n≤ 3 and k∗ ≤ 12) it is possible to
test all the set of n-allocations. The leader, for each possible allocation J j

n, computes
the sum of expected gain for each robot Agi (V π∗(RAgi , J j

i )) and holds J∗n with the
maximum sum. The architecture of a RoadMap with multi-level MDPs permits to
consider more than 3 robots for on-line computations. However, the calculation of
J∗ by an exhaustive way limits us to consider only few robots in this paper.

4 Experiments

A visual representation of the built partitions (Fig. 4) allows us to conclude: when
the environment is more structured with a coherent expected region size, the algo-
rithm builds a partition closer to the expected one. Otherwise, we observe intersected
regions in free space environments. It is due to the non-consideration of the path cost
in the used criteria. This phenomenon is reduced in cluttered environment.

Fig. 4 Examples of partitions built from differently structured environments (RoadMaps)

Fig. 5 The 3 likely trajectories following the computed policy (n = 3, |I|= 80 and d = 10). Each
robot computes its local policies for each crossed region in a similar way to Section 3.3. Local
policies are oriented by the current interest of neighbors regions evaluated in the Global MDP.
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|I| k Ri sizes bounds time (s) allocation
5 1.13 4.382−4.968 0.058822 1−0−0
20 3.414 3.428−8.126 0.047248 2−1−0
40 5.6 4.12−10.144 0.0526601 3−2−1
60 7.708 4.292−11.44 0.11589 4−2−1
80 9.426 4.728−12.742 0.339208 5−3−1
100 10.634 4.356−14.192 0.897122 6−3−1
120 12.422 3.744−14.81 4.9466 6−4−2

Table 1 This table shows, for a selected
set of experiments (function of the num-
ber of points of interest |I|), the average
number of built regions (k), the average
bounds of regions sizes (in regard of the
number of contain points of interest), the
average computing time and the average
allocated number of regions.

(a)
number of region k k∗−3 k∗−2 k∗−1 k∗ k∗+1 k∗+2 k∗+3 k∗+4 k∗+5 k∗+6
experiment (%) 0.0 0.13 3.76 21.87 48.44 23.15 2.56 0.09 0.01 0.0

(b)
worst region size 8− 9 10 11 12 13 14 15 16 17 18 19 20
experiment (%) 7.78 11.0 12.1 11.6 12.5 13.3 13.6 9.21 5.13 2.42 0.88 0.26 0.12

Table 2 A presentation of experiments regarding the numbers of built regions k in function of the
expected number k∗ (a) and the number of contained points of interest in the worst region (b). The
percentages are calculated from experiments with between 5 and 120 random points of interest.

We are interested in evaluating this approach in regard to the number of regions,
their sizes and the time needed to compute the global policy and allocate the set of
regions of interest. The considered problem involved up to 120 points of interest, 3
present robots and a desired number of 10 points of interest by region (|I| ≤ 120,
n = 3 and d = 10). Our experimentation generates targets randomly (Fig. 5) (500
random generations for different numbers of points of interest |I| growing by 5).
We use an Intel Core2 Quad CPU Q9650 at 3.00GHz to compute the partition, the
global policies and the region allocation.

Table 1 and Table 2 present some experimentation results that validate the con-
trol of the expected number of regions, the numbers of points of interest in a region
and the associated computation time. MDP sizes and computation time grow expo-
nentially with the number of regions k or, with the number of points of interest in
a region (in local MDPs). We notice that the allocations are unbalanced, it is nor-
mal in regard to the placement and shapes of obstacles. Indeed, the intention was to
minimize the sum of robots movement cost.

Experiments with few points of interest in regard to the number and the structure
of obstacles lead to a partition with more regions than expected (k > k∗) and worst
regions which have a lower size than desired size d (Table 2). That denotes the
capacity of using the shapes of existing obstacles to built different regions.

5 Conclusion and Future Work

This paper presents a decision making architecture for mobile robots sharing an
exploration mission. It is difficult for a leader to evaluate the allocations of many
tasks between robots. The study is based on knowledge organized in a RoadMap
and a solver based on a abstract MDP. Indeed the problem size and the constraint of
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on-line computation impose to decompose the input data. A greedy decomposition is
instantaneous regarding the computation of decision policies. We have demonstrated
how a greedy decomposition permits to perform on-line a multi-agent long horizon
problem in a stochastic domain by controlling the number of tasks in regions and
the number of regions.

In future work, the partitioning quality will be improved by using algorithms
based on finding minimal cuts. The idea is to converge to a local optimum from the
first greedy decomposition and assume other characteristics as disjunction between
regions. Furthermore, adding cooperation in the local MDPs solving will permit
several robots to explore a region together. But, that will impact the Global MDP
where few robots can explore parts of a same region.
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