Multi Lyapunov Function Theorem Applied to a Mobile Robot
Tracking a Trajectory in Presence of Obstacles

Ahmed Benzerrouk, Lounis Adouane, Philippe Martinet and Mie@&ndreff

firstname. | ast nane@ asmnea. uni v- bpcl ernmont . fr

Abstract— In this paper, a reactive control architecture based becomes possible and important to study each controller and
on hybrid systems (continuous/discrete) is used to control a examine it independently from the whole control system.
unicycle mobile robot tracking a given trajectory while avoiding Theorems for hybrid systems seem consequently the most

obstacles. The main motivation of using hybrid systems is the itable t bi | t troll ithout | .
possibility to define the overall control scheme as a combination SU't@ble 10 combingé elementary controllers without logsin

of several elementary controllers (trajectory tracking, obstale the global stability. Branicky in [2], shows that random
avoidance) that stability can be easily proved. However, there is switches between any stable systems do not guarantee the

a serious risk of oscillatory switching or even instability caused stability of the overall control. He consequently imposes
by random switch between these two elementary controllers. restrictions on switching via multiple Lyapunov function.

The contribution of this paper is to use the multiple Lyapunov M ith aut ¢ h wh h node ai
functions (MLF) theorem to prove the global stability of a oreover, with automata approach where each node gives

trajectory tracking task in presence of obstacles. To satisfy ta  the control law applied to the robot, hard switch may lead
MLF conditions, we propose to introduce a third controller in  to the Zeno phenomenon [7] that exhibits an infinite number

the architecture of control: the go-to-goal controller. Itsroleisto  of discrete transitions between controllers in finite tirte.
satisfy the second and the most difficult condition of MLF in a  otantially appears when the robot is on the boundary where
finite time. The approach is validated by numerical simulation. . . .
the discrete event actuating switch becomes true. Effects
caused by this phenomenon were shown by Egerstedt [6].
|. INTRODUCTION The latter regularizes its automaton by adding a node to
Controlling a nonholonomic mobile robot to follow a overcome these undesirable effects: this node contains the
desired trajectory is a large topic of research investijatesliding dynamics that is defined on the boundary between
since a long time (see [10], [5], for instance). However, whethe two controllers. It comes to use more than one controller
controllers are developed for this specific task, it is imi@ot  to control simultaneously the robot. The advantage of fgavin
to take into account the environment variations. Indeesl, iteach controller in a distinct node is then lost. Therefore,
obvious that these controllers become easily useless add Iesliding dynamics seem not to be the optimal solution for
to collision when an obstacle appears on the robot's waybotics application. In this paper, it is proposed to apply
since they were only designed to track trajectory. Howevetheoretic study of multiple Lyapunov function to guarantee
the obstacle avoidance is not a problem anymore since itligstrictions on switching. Adouane in [1], proposes to dvoi
widely investigated in the literature. Khatib [8] assumieatt this oscillatory switching between controllers commands
the robot moves in a potential field considering the objectivwhile introducing a specific adaptation of each controbev.|
to reach as an attractive point whereas the obstacle sarface
are repulsive fields.To minimize its local minima problems, Here, our idea is to introduce a third controller (go-to-
circular potential fields were used [11]. Zapata and al [13joal) which leads the robot on its trajectory after the obsta
use a deformable virtual zone (DVZ) surrounding the robatle avoidance step. This one allows to verify the multiple
thanks to proximity sensors: if an obstacle is detected, ityapunov function theorem. Moreover, the used automaton
will deform the DVZ and the approach is to minimize thisis regularized by adding a third node corresponding to this
deformation by modifying the control vector. These methodsontroller: the go-to-goal node. Thus, undesirable efface
improve obstacle avoidance task but local minima problenevoided without using sliding mode. The proposed automa-
were not completely solved. To perform the obstacle avoiden has then only one controller in each node. It will be
ance behavior, limit-cycle navigation proposed by Kim angbroved that this controller achieves the desired task inigefin
Kim [9] can be used. time.
The unknown nature of the robot’'s environment leads up
to develop control architectures which guarantee a desiredThe rest of this paper is organized as follows. In section
and a safe navigation in presence of obstacles. In fadt, we give the used mobile robot model and Individual con-
the intuitive idea to make a mobile robot able to avoidrollers. Details on the multiple Lyapunov function themwre
obstacles while tracking the desired trajectory is to haweith its application in the proposed control architectuse i
two simple controllers and to switch from one to anothegiven in section Ill. Convergence of the proposed architect
according to the robot's relative position to the obstaclds proved in section IV. Simulation results, are given in
Brooks [3] proposes a behavior based architecture whesection V. We conclude and give some prospects in section
each layer accomplishes an elementary task. Therefore, Mt



II. ROBOT MODEL AND ELEMENTARY C. Obstacle avoidance controller

CONTROLLERS Limit cycle navigation method allows deciding in which
A. Robot model direction and how far the robot avoids the obstacle. Thet limi
Considering the unicycle mobile robot (cf. Figure 1), letcycle is considered to be the circle characterizedtbyadius
s,e and § be the state variables wheeec R ande ¢ R Which is the radius of the hindering obstacle plus a safe
are the Frenet frame coordinates (curvilinear and latergargin. In order to focus the attention only on the proposed
coordinates respectively) of the center of the wheels axl@rchitecture of control, accurate details about this nttre
0 €] — =, 7] is the robot orientation with respect to tig. ~ available in [9].
axis of the Frenet frame. Linear and angular velocities ef th
robot are respectively notadandw. The kinematic model of Ill. THE PROPOSED CONTROL ARCHITECTURE
the unicycle can be described by the well-known equations The proposed hybrid architecture is applied to a mobile
(cf. Equation 1). robot which uses basic perceptual and decisional capabilit
i = sziEg Therefore, according to the robot’s sensors informatiecj-d
¢ = v.sin(0) 1) sion to apply the conve_nient c_ontroller is made. The robet ha
: to track trajectory while avoiding obstacles. Consequgentl

0 =w—sc(s) the architecture contains at least two controllers: ttajgc
where -L. is the curvature radius in the pointtracking and obstacle avoidance. However, hard switches
of coordinates. between these one may lead to instability even if each

To accomplish a trajectory tracking task in presence d?ontro”er is |nd|V|dUa”y stable. Th-erefore, mO_re restions
obstacles, a classical architecture of control has to @ontsdf€ needed to control these switches. Multiple Lyapunov

a controller responsible of obstacle avoidance. Two maif¥inction theorem [2] gives sufficient theoretic conditicios
controllers are then requested. guarantee stability of an overall hybrid system. The pregos

control architecture is based on it.
B. Trajectory tracking controller
Consider the lateral and the angular errors of the rob& Multiple Lyapunov function theorem
notede andd respectively (cf. Figure 1). Tracking a reference
trajectory with a stable law means thatand # decrease Multiple Lyapunov function theorem (MLF)
always to0. The following controller based on the Lyapunov | Given N dynamical subsystems, o,...0n, €ach with
stability allows that. It is developed in [4] and is exprasse | an equilibrium point at the origin, and N candidate

as follows: Lyapunov functionsVy, Vs,...,Vy. For each subsystem;,
let t1,ta,...,tm, ...,tx be the switching moments in this
v= K ~ ) ) subsystem (only one subsystem is active at a time).
w= —kl.v.e.”ga —ko.|v| .0+ cl(s_):f("j)e If V; decreases whea; is active and

‘/i(tm) S ‘/i(tm—l)

where K, k; and k, are positive constants. Its candi- Then the hybrid system is Lyapunov stable.

2

date Lyapunov function/rr = k.5 + % has a decreas-

ing time derivative. This controller asymptotically stétgs The theorem is illustrated (cf. Figure 2) for a simple
(e = 0,6 = 0) provided that the robot is not on the singularsubsystens;. Thus, wheno; is active (phases | and lIl),
pointe = ﬁ Full demonstration is available in [4]. its Lyapunov function decreases. When the control switches

to another subsystem (phases Il and 1V}, may increase.
However, to insure the global stability, this subsystend(an
so as for all the other subsystems) must be reactivated only
if its Lyapunov function takes a smaller value than the last
time the system switches in.
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Fig. 2. Variation of the Lyapunov function for the subsystem Solid
Fig. 1. The mobile robot on the Frenet frame. lines indicate that; is active, dashed inactive.



In this paper, we prove that it is possible to use thisuitable way such that we allow the control to switch in
theorem to guarantee stability of the robot control duringrajectory tracking for the:*” time, whenVyr(tx_1) ~ 0.
all its navigation. Indeed, since the robot is controlled b
a set of simple controllers whose stability is proved by thé' Go to goal controller
classical Lyapunov theorem, only the second conditionef th The task to accomplish with this controller is to reach
above theorem needs to be satisfied. a desired target. Hergd, 0z) tend to (0,0), whered is

If we assume that the mobile robot is able to reach ite robot-target distance artg; is the robot orientation in
trajectory after achieving avoidance of each obstacledwhi the relative robot frame (cf. Figure 4). control inputs are
is not a heavy assumption since overlapped obstacles c@¥pressed as follows [12]
be seen as one obstacle), the switching steps (Trajectory
tracking— Obstacle avoidance>Trajectory tracking) form o ~ el ~
a new cycle for each obstacle. Then, we have to satisfy the w = Tifficos(Or)sin(0r) + katanh(ksOr)
second condition of MLF theorem for the trajectory trackingyvherev andw are linear and angular velocities respectively.
controller only since it is the only controller which appgar
two times in a cycle. Our idea is to use a specific "Go- |ts time derivativeV; is negative for alld, 53) #(0,0).
to-goal” controller. This one is activated once the obstaclThis controller was shown globally asymptotically stable

is avoided. Its role is to lead the robot on the referencgsing the Lyapunov functioge = I & [12]. Note that
! .

trajectory until the MLF condition for the trajectory tranl§  j; js possible to correct the final orientation of the roboewh

becomes true. The proposed automaton is given (cf. Figufigis one arrives to its goal simply by using the particulas ca
3): Drobot—obstacie 1 the distance between the robot andyt this control law withv,,., = 0 (the robot corrects its

the obstacle, whileR; is defined in section (II-C). It S qentation without linear velocity) and the new contralvla
obvious that undesirable effects due to fast switches B@twepacomes

trajectory tracking and obstacle avoidance controller are
remoyed. Indeed,. when switching from obstacle avoidance v = 0,0 = katanh(ks0r) (4)
in trajectory tracking, control has to go through go-tod{goa
In practice, it is not possible to satisfy the MLF condition
all the time. For example, when the robot is already on th
reference trajectory¥7 — 0. When it meets an obstacle,
Vi naturally increases since the robot leaves the referenceSince it is assumed that after achieving each obstacle
trajectory to avoid the obstacle. Go-to-goal can lead thavoidance, the robot is able to reach its reference trajecto
robot on the reference trajectory again but its convergen&@efore eventually meeting an other obstacle, we have teeprov
is guaranteed 0n|y when time tends to |nf|n|ty In this papeﬁhat this task is achieved in a stable manner and in a finite
the go-to-goal controller designed by Toibero [12] is usedime. It means that it is important to prove that switching
Here, we prove that this controller converges in a finite imdfom obstacle avoidance to trajectory tracking through go-
which is more interesting for practical application. Moren ~ t0-goal controller arrives in a finite time. Trajectory tkaty

we will release the second constraint of MLF theorem in &ontroller is asymptotically stable. By notingrr = (e,0)
(cf. Figure 1) and|zr| the Euclidian norm ofcrr, and

by definition of asymptotic stability

— Ymaz 0
v = 1+|d|dcos(93)

®3)

8. Proof of convergence according to MLF theorem
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Fig. 3. (a) Hard switches between controllers. (b)The psegaegularized
automaton with go-to-goal controller. Fig. 4. Go-to-goal controller.



(cf. Figure 5) until MLF condition is satisfied?, is defined the derivative

as the intersection of the trajectory with a virtual circle o _ o
radius (R; + €) where R; is the circle of influence of the Op = v—
obstacle. The latter is considered as avoided when the robot

is on the pointP,.. P. is the intersection of the influence Since the objective is to lead the robotdp, d ~ 0 but
circle with its tangent going througk; (chosen according ¢ - 0. 0 is then defined.

—w (5)

to the avoidance direction) (Cf Figure 5) By rep|acingv andw from (3) in (5) we get:
Go-to-goal is globally asymptotically stable (cf. Subsec- . ~
tion 1lI-B). By noting =5 = (d, 0r) (cf. Figure 4), we have Or = —katanh(ks0R) (6)
Yoga > 0: |lzaa(0)| < daq = |lzaa®)|| t=%0 It can be noticed from (6) that the variation 6f; is

independent fromd. Thus, if time of convergence of the

Note that asymptotic stability cited above is insured wheGo-to-goal controller is notedy, its maximum is obtained if
t — oo. In practice, if the proposed architecture seems allowfirst 4 ; decreases , and only whép converges, the distance
ing the robot to achieve obstacle avoidance and switchiag inrobot-targetd starts decreasing. It can be concluded that
stable manner, we have to prove that it is also done in a finite
time. In general, switching in trajectory tracking conteol Ty < (Aty + Aty)
for the k" time ¢;, occurs whenVrr(ty) < Vor(te_1).

However, the worst case is whérrr(t;—1) is already
near to 0 Vrr(tx—1) — 0): How to decreasd/rr again
to have Vrr(tx) < Vrr(tk—1)? In this case, it comes
to lead up the robot until|zrr| < dérr. Hence, the
robot is in the convergence area of the trajectory tracking
controller. Switching can then occur and stability is irelir . . i
Moreover, note thafar(t4 )| < Virr (for everyk: > 1 (cf. ?)NeLdecompo;e tkr:e mte;va;mt? two parg; > 0 andfg <
Subsection 1I-B), and the switch condition|isrr(tx)|| < 4, - Letus study t eLcas@R =0 _ )
the constraint/rr(tx) < Vrr(te—1) can then be released. from (6) we get:fr < 0. It means thatl, is decreasing.
This case takes the maximum of convergence time sincelt can be noticed thamax(At,) is whenf —  (since
|zr|have to decrease untjerr| < drr whereas the max(Gr) = m). _
general case ifzrr| < Vir(ty) < Vier(te_1). We wil An important property of tanh(keR) is that
thus study this case proving that this time is still finite. ~ tanh(k0r) — 1 for every anglef >> 0 and with a

We saw that trajectory tracking controller is asymptotical Well chosenf. Let us consider thadR >> 0 if 0 > 10°.
stable provided that the lateral error safisfies< ;. Thus, by replacing in (6) we gélr ~ —k>(1 — 1) where

Since |zr7| = (e, 6), we can define the convergence are§! << ! .
of trajectory tracking controller asrr = (es,0;) where A simple integration gives

where At; is the convergence time @fto 0 (it is the time
of convergence of ; to 0 plus the time of convergence &f
to 0 knowingfr = 0) and At is the convergence time af
(it will be shown later that it means decreasingedto ej).
Hence, ifAt; and At, are finite, T is finite, too.

1) At, is finite: The angledr is such thaby €] — , .

es = mf(c(s ),05 ~ 0. mf( 7) is the smallest curvature Or(t) — O (to)

radius of the reference trajectory We have then to prove tha oty = W—E)

Go-to-goal controller allows to arrive in this area in a #nit 2 !

time. After a timedtq, éR becomes small, we can therefore make

According to (cf. Figure 4) we get the simple equation othe assumption
tanh(ksfg) = ksOr

o4 v O x thanks to a Taylor development of the functioanh of

A order 1. when we replace in (6) we get:

Virtual target 0~R (tg) _ 0~R (tl ) e koks(ta—t1)

; | It means thatd is exponentially decreasing. In addition,
e e ,3 0r(t1) is already small. Consequently it rapidly decreases
chcle of ‘ " and we can make the approximation thatt, = &t; + &

where§ is time of convergence df to 0 knowing 6z = 0 .

In other words, when the robot arrives to the virtual target,
it has to correct its final orientation to hade< ;. This is
Ox ‘ > accomplished thanks to the controller (cf. Equation 4) when

the linear velocityv = 0 as cited. Details will not be given

since it is done in the same way as fo. Demonstration
Fig. 5. Virtual target to reach before reactivating tragegttracking s also given only for one interval. For the second interval
controller. ~ e .

(fr < 0), it is done exactly in the same way.

Reference
trajectory




Robot trajectory in the [O, X, Y] reference

2) At, is finite: The variation ofd can be written

d = —vcos(g) = — i}wr:idcosQ(GR) ) "

After Aty, 0r is sufficiently small to write  *
COSZ(QR) =1—e (2 << 1).

By replacing in (7), we get E
5 Umax ®
= 9% J(1 —
d 1 dd( €) m
where (d = ad)

The solution of this differential equation gives :

_ In(d(t)) + d(t) — In(d(to)) — d(to) =
= (8)
_Umaw(l - 62)

Note also that the relation between the lateral eerand

the distancel can be easily deduced (Cf. Figure 5). Indeed_Fig' 6. Real robot’; path controlled by hard switches. Theainded area
e . . . i5 enlarged on the right.

when switching in trajectory tracking, lateral error aatiog
to P, (cf. Figure 5) is

At

Lyapunov functions variation of the two controllers.

e = dsin(¢)

where¢ = PtﬁePt’, wherePt' is the projection ofP; on .-
the X,. axis (of the Frenet frame). V() -

The worst case to switch in trajectory tracking for tfé V(9 |
time ¢, is whenVpr(t,—1) ~ 0 and the curvature radius in to ERC
Py is inf(5). max(Aty) can then be calculated as: : [ Staac v comte S s i

inf()y |, inf ()
At h’l( sin(é)) )+ sin(%)) 7lll(d(At1)) - d(Atl)
2 = 5 7
_Umax(l - 62) ;n )io

Note thatc(s) # 0 (otherwise, the curvature radius
n f(ﬁ) = oo which means in practice that there is no Fig. 7. Lyapunov function variations of the two controllers
singularity, and switching in trajectory tracking can occu
everywhere).At, is then finite too. Since we saw above
that 7, the whole time of convergence i < Aty + At _ _ ) ) ) _
T} is then finite, too. In next section, numerical simulatiofunctionVrr is decreasing every time the controller is active,
confirms the stability of the proposed control architecture however the second MLF condition is not satisfied.
On the other side, our architecture of control (cf. Section
IV. SIMULATION RESULTS ) allows avoiding these useless switches thanks to go-to
To estimate the relevance of the proposed hybrid archioal controller. The latter prevents hard switches frormuocc
tecture, we compare it with results given by hard switchesng before that the obstacle is passed. The real path fetlow
between the two controllers: trajectory tracking and atlsta by the robot is shown in (Fig. 8) where no oscillation is
avoidance. Results are shown in (Fig. 6). We can noticgbserved. The robot has to avoid two obstacles. According to
that when detecting the obstacle, the robot switches effetheir positions, It avoids the first counter clockwise wtilie
tively in obstacle avoidance. However, when the obstacle second is avoided in a clockwise direction. Switch moments
passed, the robot switches in trajectory tracking cordroll (cf. Figure 9) with Lyapunov functions progress of the agtiv
and oscillations are observed. Indeed, the robot (which tontroller are given in (a). It can be noticed that the Lyapun
now controlled by trajectory tracking command) falls in thefunction of each controller is decreasing when this one is
circle of influence again and tries to avoid it (switch in @bst active (first condition of MLF). Lyapunov function of the
cle avoidance again). Variations of Lyapunov functions ar&ajectory tracking controller is given in (b). Switch monte
illustrated in (Fig. 7) with switching control indicator.h€ are illustrated. It is noticed that switch occurs at the motse
latter indicates which controller is active (its values &rend ¢, andt; whereVrr(ta) < Vpr(t) < Vrr(to = 0), which
2 for trajectory tracking and obstacle avoidance respelgliv  is due to the second condition of MLF. Note that in (c), the
We can notice that undesirable switches are occurring andlue O of the switching control indicator refers to the atide
MLF condition is not satisfied. Indeed, unless geometricalontroller Go-to-goal. Finally, lateral and angular esrare
constraints (distance of the robot to the obstacle), there given in (d) and (e) respectively: It is shown thB} <<
no rules managing these switches. Moreover, the Lyapunavt; + At,. However, note that due to the MLF condition,



Robot trajectory in the [O, X, Y] reference
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Fig. 8. Real robot path when controlled with the proposedtrod
architecture. The surrounded area is enlarged on the right.

there was no need to maintain Go-to-goal controller until
e < es andf =~ 0.

V. CONCLUSIONS AND FUTURE WORKS

We applied hybrid control architecture on a mobile robot
to obtain a stable trajectory tracking while avoiding obsta
cles. Indeed, the robot is controlled by elementary contin-
uous controllers according to the sub-tasks to accomplish
(trajectory tracking, obstacle avoidance) and switchirognf
a controller to an other is done referring to discrete events
We saw that hard switches are not efficient to insure global
stability. Therefore, we propose to design a stable hylwid ¢ Fig.
trol architecture. In addition to elementary stable cdtére
for the two main sub-tasks, we introduce a third controller
which overcomes different constraints (second conditibn o[7;
the multiple Lyapunov function theorem, singularities of
trajectory tracking controller). Simulations show thatr ou
architecture prevents useless switches, guaranteeirgyahu
suitable navigation for the robot. Application to multibat
systems navigating in formation will be done. The objective
is to make each robot able to avoid an obstacle befofgy
regaining the formation.

(8]
(9]
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