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Abstract— In this paper, a reactive control architecture based
on hybrid systems (continuous/discrete) is used to control a
unicycle mobile robot tracking a given trajectory while avoiding
obstacles. The main motivation of using hybrid systems is the
possibility to define the overall control scheme as a combination
of several elementary controllers (trajectory tracking, obstacle
avoidance) that stability can be easily proved. However, there is
a serious risk of oscillatory switching or even instability caused
by random switch between these two elementary controllers.
The contribution of this paper is to use the multiple Lyapunov
functions (MLF) theorem to prove the global stability of a
trajectory tracking task in presence of obstacles. To satisfy the
MLF conditions, we propose to introduce a third controller in
the architecture of control: the go-to-goal controller. Its role is to
satisfy the second and the most difficult condition of MLF in a
finite time. The approach is validated by numerical simulation.

I. INTRODUCTION

Controlling a nonholonomic mobile robot to follow a
desired trajectory is a large topic of research investigated
since a long time (see [10], [5], for instance). However, when
controllers are developed for this specific task, it is important
to take into account the environment variations. Indeed, it’s
obvious that these controllers become easily useless and lead
to collision when an obstacle appears on the robot’s way
since they were only designed to track trajectory. However,
the obstacle avoidance is not a problem anymore since it is
widely investigated in the literature. Khatib [8] assumes that
the robot moves in a potential field considering the objective
to reach as an attractive point whereas the obstacle surfaces
are repulsive fields.To minimize its local minima problems,
circular potential fields were used [11]. Zapata and al [13]
use a deformable virtual zone (DVZ) surrounding the robot
thanks to proximity sensors: if an obstacle is detected, it
will deform the DVZ and the approach is to minimize this
deformation by modifying the control vector. These methods
improve obstacle avoidance task but local minima problems
were not completely solved. To perform the obstacle avoid-
ance behavior, limit-cycle navigation proposed by Kim and
Kim [9] can be used.

The unknown nature of the robot’s environment leads up
to develop control architectures which guarantee a desired
and a safe navigation in presence of obstacles. In fact,
the intuitive idea to make a mobile robot able to avoid
obstacles while tracking the desired trajectory is to have
two simple controllers and to switch from one to another
according to the robot’s relative position to the obstacle.
Brooks [3] proposes a behavior based architecture where
each layer accomplishes an elementary task. Therefore, it

becomes possible and important to study each controller and
examine it independently from the whole control system.
Theorems for hybrid systems seem consequently the most
suitable to combine elementary controllers without loosing
the global stability. Branicky in [2], shows that random
switches between any stable systems do not guarantee the
stability of the overall control. He consequently imposes
restrictions on switching via multiple Lyapunov function.
Moreover, with automata approach where each node gives
the control law applied to the robot, hard switch may lead
to the Zeno phenomenon [7] that exhibits an infinite number
of discrete transitions between controllers in finite time.It
potentially appears when the robot is on the boundary where
the discrete event actuating switch becomes true. Effects
caused by this phenomenon were shown by Egerstedt [6].
The latter regularizes its automaton by adding a node to
overcome these undesirable effects: this node contains the
sliding dynamics that is defined on the boundary between
the two controllers. It comes to use more than one controller
to control simultaneously the robot. The advantage of having
each controller in a distinct node is then lost. Therefore,
sliding dynamics seem not to be the optimal solution for
robotics application. In this paper, it is proposed to apply
theoretic study of multiple Lyapunov function to guarantee
restrictions on switching. Adouane in [1], proposes to avoid
this oscillatory switching between controllers commands
while introducing a specific adaptation of each controller law.

Here, our idea is to introduce a third controller (go-to-
goal) which leads the robot on its trajectory after the obsta-
cle avoidance step. This one allows to verify the multiple
Lyapunov function theorem. Moreover, the used automaton
is regularized by adding a third node corresponding to this
controller: the go-to-goal node. Thus, undesirable effects are
avoided without using sliding mode. The proposed automa-
ton has then only one controller in each node. It will be
proved that this controller achieves the desired task in a finite
time.

The rest of this paper is organized as follows. In section
II, we give the used mobile robot model and Individual con-
trollers. Details on the multiple Lyapunov function theorem
with its application in the proposed control architecture is
given in section III. Convergence of the proposed architecture
is proved in section IV. Simulation results, are given in
section V. We conclude and give some prospects in section
VI.



II. ROBOT MODEL AND ELEMENTARY
CONTROLLERS

A. Robot model

Considering the unicycle mobile robot (cf. Figure 1), let
s,e and θ̃ be the state variables wheres ∈ R and e ∈ R

are the Frenet frame coordinates (curvilinear and lateral
coordinates respectively) of the center of the wheels axle,
θ̃ ∈] − π, π] is the robot orientation with respect to theXr

axis of the Frenet frame. Linear and angular velocities of the
robot are respectively notedv andω. The kinematic model of
the unicycle can be described by the well-known equations
(cf. Equation 1).

ṡ = v.cos(θ̃)
1−ec(s)

ė = v.sin(θ̃)
˙̃
θ = ω − ṡc(s)

(1)

where 1
c(s) is the curvature radius in the point

of coordinates.
To accomplish a trajectory tracking task in presence of

obstacles, a classical architecture of control has to contain
a controller responsible of obstacle avoidance. Two main
controllers are then requested.

B. Trajectory tracking controller

Consider the lateral and the angular errors of the robot
notede andθ̃ respectively (cf. Figure 1). Tracking a reference
trajectory with a stable law means thate and θ̃ decrease
always to0. The following controller based on the Lyapunov
stability allows that. It is developed in [4] and is expressed
as follows:

v = K

ω = −k1.v.e. sinθ̃

θ̃
− k2. |v| .θ̃ + c(s)vcosθ̃

1−ec(s)

(2)

where K, k1 and k2 are positive constants. Its candi-
date Lyapunov functionVTT = k1.

e2

2 + θ̃2

2 has a decreas-
ing time derivative. This controller asymptotically stabilizes
(e = 0, θ̃ = 0) provided that the robot is not on the singular
point e = 1

c(s) . Full demonstration is available in [4].
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Fig. 1. The mobile robot on the Frenet frame.

C. Obstacle avoidance controller

Limit cycle navigation method allows deciding in which
direction and how far the robot avoids the obstacle. The limit
cycle is considered to be the circle characterized byRi radius
which is the radius of the hindering obstacle plus a safe
margin. In order to focus the attention only on the proposed
architecture of control, accurate details about this method are
available in [9].

III. THE PROPOSED CONTROL ARCHITECTURE

The proposed hybrid architecture is applied to a mobile
robot which uses basic perceptual and decisional capabilities.
Therefore, according to the robot’s sensors information, deci-
sion to apply the convenient controller is made. The robot has
to track trajectory while avoiding obstacles. Consequently,
the architecture contains at least two controllers: trajectory
tracking and obstacle avoidance. However, hard switches
between these one may lead to instability even if each
controller is individually stable. Therefore, more restrictions
are needed to control these switches. Multiple Lyapunov
function theorem [2] gives sufficient theoretic conditionsto
guarantee stability of an overall hybrid system. The proposed
control architecture is based on it.

A. Multiple Lyapunov function theorem

Multiple Lyapunov function theorem (MLF)
Given N dynamical subsystemsσ1, σ2,...,σN , each with

an equilibrium point at the origin, and N candidate
Lyapunov functions,V1, V2,...,VN . For each subsystemσi,
let t1, t2, ..., tm, ..., tk be the switching moments in this
subsystem (only one subsystem is active at a time).

If Vi decreases whenσi is active and
Vi(tm) ≤ Vi(tm−1)
Then the hybrid system is Lyapunov stable.

The theorem is illustrated (cf. Figure 2) for a simple
subsystemσi. Thus, whenσi is active (phases I and III),
its Lyapunov function decreases. When the control switches
to another subsystem (phases II and IV),Vσi

may increase.
However, to insure the global stability, this subsystem (and
so as for all the other subsystems) must be reactivated only
if its Lyapunov function takes a smaller value than the last
time the system switches in.
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Fig. 2. Variation of the Lyapunov function for the subsystemσi. Solid
lines indicate thatσi is active, dashed inactive.



In this paper, we prove that it is possible to use this
theorem to guarantee stability of the robot control during
all its navigation. Indeed, since the robot is controlled by
a set of simple controllers whose stability is proved by the
classical Lyapunov theorem, only the second condition of the
above theorem needs to be satisfied.

If we assume that the mobile robot is able to reach its
trajectory after achieving avoidance of each obstacle (which
is not a heavy assumption since overlapped obstacles can
be seen as one obstacle), the switching steps (Trajectory
tracking→ Obstacle avoidance→Trajectory tracking) form
a new cycle for each obstacle. Then, we have to satisfy the
second condition of MLF theorem for the trajectory tracking
controller only since it is the only controller which appears
two times in a cycle. Our idea is to use a specific "Go-
to-goal" controller. This one is activated once the obstacle
is avoided. Its role is to lead the robot on the reference
trajectory until the MLF condition for the trajectory tracking
becomes true. The proposed automaton is given (cf. Figure
3). Drobot−obstacle is the distance between the robot and
the obstacle, whileRi is defined in section (II-C). It is
obvious that undesirable effects due to fast switches between
trajectory tracking and obstacle avoidance controller are
removed. Indeed, when switching from obstacle avoidance
in trajectory tracking, control has to go through go-to-goal.

In practice, it is not possible to satisfy the MLF condition
all the time. For example, when the robot is already on the
reference trajectory,VTT → 0. When it meets an obstacle,
VTT naturally increases since the robot leaves the reference
trajectory to avoid the obstacle. Go-to-goal can lead the
robot on the reference trajectory again but its convergence
is guaranteed only when time tends to infinity. In this paper,
the go-to-goal controller designed by Toibero [12] is used.
Here, we prove that this controller converges in a finite time,
which is more interesting for practical application. Moreover,
we will release the second constraint of MLF theorem in a
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Fig. 3. (a) Hard switches between controllers. (b)The proposed regularized
automaton with go-to-goal controller.

suitable way such that we allow the control to switch in
trajectory tracking for thekth time, whenVTT (tk−1) ≈ 0.

B. Go to goal controller

The task to accomplish with this controller is to reach
a desired target. Here,(d, θ̃R) tend to (0,0), whered is
the robot-target distance and̃θR is the robot orientation in
the relative robot frame (cf. Figure 4). control inputs are
expressed as follows [12]

v = vmax

1+|d|dcos(θ̃R)

ω = vmax

1+|d|cos(θ̃R)sin(θ̃R) + k2tanh(k3θ̃R)
(3)

wherev andω are linear and angular velocities respectively.

Its time derivativeV̇GG is negative for all(d, θ̃R) 6= (0, 0).
This controller was shown globally asymptotically stable
using the Lyapunov functionVGG =

θ̃2
R

2 + d2

2 [12]. Note that
it is possible to correct the final orientation of the robot when
this one arrives to its goal simply by using the particular cas
of this control law withvmax = 0 (the robot corrects its
orientation without linear velocity) and the new control law
becomes

v = 0, ω = k2tanh(k3θ̃R) (4)

C. Proof of convergence according to MLF theorem

Since it is assumed that after achieving each obstacle
avoidance, the robot is able to reach its reference trajectory
before eventually meeting an other obstacle, we have to prove
that this task is achieved in a stable manner and in a finite
time. It means that it is important to prove that switching
from obstacle avoidance to trajectory tracking through go-
to-goal controller arrives in a finite time. Trajectory tracking
controller is asymptotically stable. By notingxTT = (e, θ̃)
(cf. Figure 1) and‖xTT ‖ the Euclidian norm ofxTT , and
by definition of asymptotic stability

∃δTT > 0 : ‖xTT (0)‖ < δ1 ⇒ ‖xTT (t)‖
t→∞
→ 0

If an obstacle is met, and once avoided, Go-to-goal con-
troller leads the robot to a pointPt on the reference trajectory
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Fig. 4. Go-to-goal controller.



(cf. Figure 5) until MLF condition is satisfied.Pt is defined
as the intersection of the trajectory with a virtual circle of
radius (Ri + ǫ) whereRi is the circle of influence of the
obstacle. The latter is considered as avoided when the robot
is on the pointPe. Pe is the intersection of the influence
circle with its tangent going throughPt (chosen according
to the avoidance direction) (cf. Figure 5).

Go-to-goal is globally asymptotically stable (cf. Subsec-
tion III-B). By noting x2 = (d, θ̃R) (cf. Figure 4), we have

∀δGG > 0 : ‖xGG(0)‖ < δGG ⇒ ‖xGG(t)‖
t→∞
→ 0

Note that asymptotic stability cited above is insured when
t → ∞. In practice, if the proposed architecture seems allow-
ing the robot to achieve obstacle avoidance and switching ina
stable manner, we have to prove that it is also done in a finite
time. In general, switching in trajectory tracking controller
for the kth time tk occurs whenVTT (tk) ≤ VTT (tk−1).

However, the worst case is whenVTT (tk−1) is already
near to 0 (VTT (tk−1) → 0): How to decreaseVTT again
to have VTT (tk) ≤ VTT (tk−1)? In this case, it comes
to lead up the robot until‖xTT ‖ ≤ δTT . Hence, the
robot is in the convergence area of the trajectory tracking
controller. Switching can then occur and stability is insured.
Moreover, note that‖xTT (tk)‖ ≤ VTT (for everyk1 ≥ 1 (cf.
Subsection II-B), and the switch condition is‖xTT (tk)‖ ≤ δ,
the constraintVTT (tk) ≤ VTT (tk−1) can then be released.
This case takes the maximum of convergence time since
‖xTT ‖have to decrease until‖xTT ‖ ≤ δTT whereas the
general case is‖xTT ‖ ≤ VTT (tk) ≤ VTT (tk−1). We will
thus study this case proving that this time is still finite.

We saw that trajectory tracking controller is asymptotically
stable provided that the lateral error satisfiese < 1

c(s) .

Since‖xTT ‖ = (e, θ̃), we can define the convergence area
of trajectory tracking controller asδTT = (eδ, θ̃δ) where
eδ = inf( 1

c(s) ), θ̃δ ≈ 0. inf( 1
c(s) ) is the smallest curvature

radius of the reference trajectory. We have then to prove that
Go-to-goal controller allows to arrive in this area in a finite
time.

According to (cf. Figure 4) we get the simple equation of
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the derivative ˙̃
θR

˙̃
θR = v

sin(θ̃R)

d
− ω (5)

Since the objective is to lead the robot toδ1, d ≈ 0 but
d 6= 0. ˙̃

θR is then defined.
By replacingv andω from (3) in (5) we get:

˙̃
θR = −k2tanh(k3θ̃R) (6)

It can be noticed from (6) that the variation of̃θR is
independent fromd. Thus, if time of convergence of the
Go-to-goal controller is notedTf , its maximum is obtained if
first θ̃R decreases , and only whenθ̃R converges, the distance
robot-targetd starts decreasing. It can be concluded that

Tf ≤ (∆t1 + ∆t2)

where∆t1 is the convergence time of̃θ to 0 (it is the time
of convergence of̃θR to 0 plus the time of convergence ofθ̃

to 0 knowingθ̃R = 0) and∆t2 is the convergence time ofd
(it will be shown later that it means decreasing ofe to eδ).

Hence, if∆t1 and∆t2 are finite,Tf is finite, too.
1) ∆t1 is finite: The angleθ̃R is such that̃θR ∈]− π, π].

We decompose the interval into two parts:θ̃R ≥ 0 and θ̃R ≤
0. Let us study the casẽθR ≥ 0 :

from (6) we get: ˙̃θR ≤ 0. It means that̃θR is decreasing.
It can be noticed thatmax(∆t1) is when θ̃R → π (since

max(θ̃R) = π).
An important property of tanh(kθ̃R) is that

tanh(kθ̃R) → 1 for every angle θ̃R >> 0 and with a
well chosenk. Let us consider that̃θR >> 0 if θ̃R > 10◦.
Thus, by replacing in (6) we get˙̃θR ≈ −k2(1 − ǫ1) where
ǫ1 << 1.

A simple integration gives

δt1 =
θ̃R(t) − θ̃R(t0)

−k2(1 − ǫ1)

After a timeδt1, θ̃R becomes small, we can therefore make
the assumption

tanh(k3θ̃R) = k3θ̃R

thanks to a Taylor development of the functiontanh of
order 1. when we replace in (6) we get:

θ̃R(t2) = θ̃R(t1)e
−k2k3(t2−t1)

It means thatθ̃R is exponentially decreasing. In addition,
θ̃R(t1) is already small. Consequently it rapidly decreases
and we can make the approximation that:∆t1 = δt1 + δ

whereδ is time of convergence of̃θ to 0 knowing θ̃R = 0 .
In other words, when the robot arrives to the virtual target,
it has to correct its final orientation to havẽθ ≤ θ̃δ. This is
accomplished thanks to the controller (cf. Equation 4) when
the linear velocityv = 0 as cited. Details will not be given
since it is done in the same way as forθ̃R. Demonstration
is also given only for one interval. For the second interval
(θ̃R ≤ 0), it is done exactly in the same way.



2) ∆t2 is finite: The variation ofd can be written

ḋ = −vcos(θ̃R) = −
vmax

1 + d
d cos2(θ̃R) (7)

After ∆t1, θ̃R is sufficiently small to write
cos2(θ̃R) = 1 − ǫ2 (ǫ2 << 1).

By replacing in (7), we get

ḋ = −
vmax

1 + d
d(1 − ǫ2)

where(ḋ = dd
dt

)
The solution of this differential equation gives

∆t2 =
ln(d(t)) + d(t) − ln(d(t0)) − d(t0)

−vmax(1 − ǫ2)
(8)

Note also that the relation between the lateral errore and
the distanced can be easily deduced (cf. Figure 5). Indeed,
when switching in trajectory tracking, lateral error according
to Pt (cf. Figure 5) is

e = dsin(φ)

whereφ = ˆPtPeP
′

t , whereP
′

t is the projection ofPt on
the Xr axis (of the Frenet frame).

The worst case to switch in trajectory tracking for thekth

time tk is whenVTT (tk−1) ≈ 0 and the curvature radius in
Pt is inf( 1

c(s) ). max(∆t2) can then be calculated as:

∆t2 =
ln(

inf( 1
c(s)

)

sin(Φ) ) +
inf( 1

c(s)
)

sin(Φ) − ln(d(∆t1)) − d(∆t1)

−vmax(1 − ǫ2)

Note that c(s) 6= 0 (otherwise, the curvature radius
inf( 1

c(s) ) = ∞ which means in practice that there is no
singularity, and switching in trajectory tracking can occur
everywhere).∆t2 is then finite too. Since we saw above
that Tf , the whole time of convergence isTf < ∆t1 + ∆t2
Tf is then finite, too. In next section, numerical simulation
confirms the stability of the proposed control architecture.

IV. SIMULATION RESULTS

To estimate the relevance of the proposed hybrid archi-
tecture, we compare it with results given by hard switches
between the two controllers: trajectory tracking and obstacle
avoidance. Results are shown in (Fig. 6). We can notice
that when detecting the obstacle, the robot switches effec-
tively in obstacle avoidance. However, when the obstacle is
passed, the robot switches in trajectory tracking controller
and oscillations are observed. Indeed, the robot (which is
now controlled by trajectory tracking command) falls in the
circle of influence again and tries to avoid it (switch in obsta-
cle avoidance again). Variations of Lyapunov functions are
illustrated in (Fig. 7) with switching control indicator. The
latter indicates which controller is active (its values are1 and
2 for trajectory tracking and obstacle avoidance respectively).
We can notice that undesirable switches are occurring and
MLF condition is not satisfied. Indeed, unless geometrical
constraints (distance of the robot to the obstacle), there is
no rules managing these switches. Moreover, the Lyapunov
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Fig. 6. Real robot’s path controlled by hard switches. The surrounded area
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Fig. 7. Lyapunov function variations of the two controllers.

functionVTT is decreasing every time the controller is active,
however the second MLF condition is not satisfied.

On the other side, our architecture of control (cf. Section
III) allows avoiding these useless switches thanks to go-to-
goal controller. The latter prevents hard switches from occur-
ring before that the obstacle is passed. The real path followed
by the robot is shown in (Fig. 8) where no oscillation is
observed. The robot has to avoid two obstacles. According to
their positions, It avoids the first counter clockwise whilethe
second is avoided in a clockwise direction. Switch moments
(cf. Figure 9) with Lyapunov functions progress of the active
controller are given in (a). It can be noticed that the Lyapunov
function of each controller is decreasing when this one is
active (first condition of MLF). Lyapunov function of the
trajectory tracking controller is given in (b). Switch moments
are illustrated. It is noticed that switch occurs at the moments
t2 and t1 whereVTT (t2) < VTT (t1) < VTT (t0 = 0), which
is due to the second condition of MLF. Note that in (c), the
value 0 of the switching control indicator refers to the added
controller Go-to-goal. Finally, lateral and angular errors are
given in (d) and (e) respectively: It is shown thatTf <<

∆t1 + ∆t2. However, note that due to the MLF condition,
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Fig. 8. Real robot path when controlled with the proposed control
architecture. The surrounded area is enlarged on the right.

there was no need to maintain Go-to-goal controller until
e < eδ and θ̃ ≈ 0.

V. CONCLUSIONS AND FUTURE WORKS

We applied hybrid control architecture on a mobile robot
to obtain a stable trajectory tracking while avoiding obsta-
cles. Indeed, the robot is controlled by elementary contin-
uous controllers according to the sub-tasks to accomplish
(trajectory tracking, obstacle avoidance) and switching from
a controller to an other is done referring to discrete events.
We saw that hard switches are not efficient to insure global
stability. Therefore, we propose to design a stable hybrid con-
trol architecture. In addition to elementary stable controllers
for the two main sub-tasks, we introduce a third controller
which overcomes different constraints (second condition of
the multiple Lyapunov function theorem, singularities of
trajectory tracking controller). Simulations show that our
architecture prevents useless switches, guaranteeing thus a
suitable navigation for the robot. Application to multi-robot
systems navigating in formation will be done. The objective
is to make each robot able to avoid an obstacle before
regaining the formation.
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