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Abstract 

Hybrid architecture for autonomous navigation robots is presented in this paper. The 
principal future aim of this architecture is to achieve multi-robot convoy which must navigate 
in urban background, where autonomous vehicles have to track the desired trajectory while 
avoiding possible obstacles (walkers, other robots, etc.). Currently, we consider only the case 
of fixed obstacles. We propose to coordinate two continuous controllers (trajectory tracking 
and obstacle avoidance) by discrete events. However, hard switch from obstacle avoidance to 
trajectory following controller, may cause collision or undesired effects due to nonholonomic 
constraint or switching effects. Therefore, we introduce a third controller to overcome these 
drawbacks. 
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1 Introduction 
       Controlling a nonholonomic mobile robot to follow a desired trajectory is treated since a 
long time (see [12], [5] for instance) and is still current as the case of trajectory tracking with 
sliding [11]. If controllers [4] were developed to solve it, the environment of robots navigation 
is subject to a lot of variations. Indeed, it’s obvious that these controllers become easily useless 
and lead to collision when an obstacle appears on the robot’s way since they were only 
designed to track trajectory. 
       However, the obstacle avoidance is not a problem anymore since it is widely investigated 
in the literature:  Khatib [9] used the potential fields to give a real time method adapted to the 
obstacle avoidance problem. He assumes that the robot moves in a potential field considering 
the objective to reach as an attractive point whereas the obstacle surfaces are repulsive fields. 
Since the robot’s action is accomplished by the sum of individual gradients at the robot’s 
location, this method suffers from the local minima problem when for instance, this sum is null. 
To overcome this undesirable situation, circular potential fields were used in the direction of 
avoidance [14], [7].  However, Kim and al [10] say that these fields type cannot adjust how far 
the robot avoids the obstacle and propose the limit cycle navigation as a new method. Zapata 
and al [16] use a virtual deformable zone (DVZ) surrounding the robot thanks to proximity 
sensors: if an obstacle is detected, it will deform the DVZ and the approach is to minimize this 
deformation by modifying the control vector. 
        The unknown nature of the robot’s environment in the most of cases, leads up to develop 
control architectures which guarantee a desired and mostly a safe navigation for the  
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robot. In fact, the intuitive idea to make a mobile robot able to avoid obstacles while tracking 
the desired trajectory is to have two simple controllers and to switch from one to another 
according to the robot’s relative position to the obstacle (figure 1). It forms what we call hybrid 
systems where discrete events allow switching between continuous behaviours.   
          However, Branicky, in [2], shows that random switches between two stable systems lead 
easily to instability of the control. He consequently imposes restrictions on switching to 
guarantee a global stability which has been proven via multiple Lyapunov functions [2]. 
Moreover, hard switches may lead to the Zeno phenomenon [8] that exhibits an infinite number 
of discrete transitions between controllers in finite time. In robotics, it potentially appears when 
the robot is on the boundary where the discrete event becomes true causing switch between 
nodes which represent individual controllers. Chattering effects caused by this phenomenon 
were shown by Egerstedt [6]. Adouane in [1], proposes to avoid this hard chattering between 
controllers’ commands while introducing a specific adaptation of each controller law. In [6] 
Egerstedt regularizes its automaton by adding a node to overcome these undesirable effects: 
this node contains the sliding dynamics that is defined on the boundary between the two 
controllers. 
 In the proposed paper, we apply an hybrid architecture for autonomous mobile robot 
using mainly two classical behaviours for an autonomous mobile robot: trajectory tracking and 
obstacle avoidance. We propose to guarantee restrictions on switching via multiple Lyapunov 
functions by introducing an other controller which leads the robot on its trajectory after the 
obstacle avoidance step. Simulation shows that our proposition insures global stability for the 
robot control. 

The rest of this paper is organized as follows. In section 2, we give the proposed control 
architecture and give some details on the multiple Lyapunov function. Stability of individual 
controllers is studied in section 3. Simulation results are presented in section 4. We conclude 
and give some prospects in section 5. 

2 Architecture of control 
       The proposed hybrid architecture is supposed to be applied to a mobile robot using basic 
perceptual and decisional capabilities. Therefore, according to the robot’s sensors information, 
decision to apply the convenient controller is made.  
 

 
 

  P 
  E 
  R 
  C 
  E 
  P 
  T 
  I 
  O 
  N 
  S 

Obstacle avoidance 

Trajectory tracking 

FIG. 1 - Hybrid control architecture for trajectory tracking 
with obstacle avoidance 

Command 

Selection 
mechanism 

Mobile robot 



 3rd National Conference on “Control Architectures of Robots” Bourges, May 29-30, 2008 

 

 
However, as we saw in section 1, hard switches lead to instability or cause chattering 

effects even if each controller is individually stable. Therefore, more restrictions are needed to 
control these switches.  

Multiple Lyapunov function method [2] gives sufficient conditions to guarantee 
stability of the overall system. Based on this method, the following theorem which has been 
demonstrated in [2] will be used. 
 
Theorem  

Given N dynamical systems, Σ1, …,  ΣN, each with equilibrium point at the origin, and 
N candidate Lyapunov functions, V1, …, VN.  

 
If {V i decreases when Σi is active} and  

                {Vi (at the time when Σi switched in) ≤ Vi (at the last time when Σi switched in)} 
 Then the hybrid system is Lyapunov stable (figure 2). 

 
  

In our case, it is possible to use this theorem to guarantee stability of the robot during all 
its navigation. Since we use controllers that stability is proven by the simple Lyapunov theorem, 
we have only the second condition of the above method to satisfy. Moreover, we have to satisfy 
this condition for the trajectory tracking only. Indeed, obstacles that the robot meets are 
independents, and the obstacle avoidance controller is normally activated only one time for 
each obstacle. Therefore, our idea is to use a specific “go-to-goal”  controller (cf. subsection 
3.4). This one is stable and is activated once the obstacle is avoided. Its role is to lead the robot 
toward the reference trajectory until the Lyapunov function of the trajectory tracking controller 
becomes less than the last time this one is switched in. The proposed control architecture is 
given in figure 3.  
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V

FIG.2 – Variation of the Lyapunov function for the “ i” controller. Solid lines 
indicate that i is active, dashed inactive. 
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2.1 The proposed control structure 

Figure 4 shows the possible undesired robot behaviours according to the robot position. 
This is due to inappropriate switches between obstacle avoidance controller and the trajectory 
tracking one. This is what motivate us to search for a regularized automaton that insures safety 
and stable navigation to the robot. 

 
On the left, switching occurs soon enough. Therefore, converging to the trajectory lead the 

robot to the obstacle zone which activates the obstacle avoidance controller again and so forth. 
On the right, the undesired effects are due to the nonholonomic constraint. Indeed, switching to 
trajectory tracking occurs only when the robot is on (or too close) to the reference trajectory. 

 Figure 5 shows an automaton where switch transitions are only guided by geometric 
conditions overlooking other constraints. Note that Drobot-obstacle is the Euclidian distance 
between the obstacle center and the axle center of the robot and Rv is the obstacle radius plus a 
safety distance δ considering the robot dimension and a safety margin. 
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To avoid this, we introduce the “go-to-goal” controller to regularize hard switches due 

to the only distance criterion (figure 6). This controller leads the robot to a virtual target that we 
define on the reference trajectory which keep it away from the risk of oscillation zone (cf. 
figure 7). 
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The virtual target point “Pt” corresponds to the intersection of a circle of radius (Rv + ε) 

where ε> 0. We define also Pe(xend, yend) as the end point where the obstacle is considered as 
already avoided. It is also the intersection of the tangent of the detection zone (circle of radius 
Rv) passing by the virtual target.  

 
 

The position Pe in the case where the robot avoids the obstacle clockwise can be 
calculated by 
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Note: The choice of the way of avoidance (clockwise or counter-clockwise) is indicated in 

subsection 3.3. 
 
The second condition of the multiple Lyapunov function is then satisfied for trajectory 

tracking controller by leading the robot on the virtual target once the obstacle is avoided. 
Indeed, the chosen Lyapunov function (subsection 3.2) depends on the lateral and angular 
errors. Since we can correct the robot position and heading by go-to-goal controller once the 
obstacle is avoided and the virtual target is reached. Therefore, we minimize this Lyapunov 
function (figure 8) before switching in trajectory tracking controller again. 
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3 Mobile robot control 

3.1   Robot model 
         Consider the unicycle mobile robot (figure 9). Let x, y and θ be the state variables where 
x ∈ IR and y ∈ IR are the Cartesian coordinates, θ ∈ ]-π, π]  is the robot’s orientation with 
respect to the X-axis. We note respectively v and u the linear and the angular velocity of the 
robot. The kinematics model of the robot can be described by 

                                   
 

u

vy

vx

=

=
=

θ
θ
θ

&

&

&

)sin(.

)cos(.

 

 
 

3.2 Trajectory tracking controller 
  Considering the lateral and the angular errors of the robot (figure 10): 
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FIG.8 – Evolution of the Lyapunov function of trajectory tracking when go-to-
goal controller is active. Continuous line means that trajectory tracking is active. 
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FIG. 9 – Unicycle mobile robot.  
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Where ),( trajtraj yx  are the coordinates of the set points of the reference trajectory, and cθ is the 

corresponding desired orientation. Tracking a reference trajectory means that e and θ~  must 
tend towards 0. If we take v = constant, the time-variation of these states are given by 
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The following controller based on the Lyapunov stability is developed in [3] and is given by 
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To prove the stability of this controller, we take V= 
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..2 θvkV −=&  ≤ 0.  Then, we can conclude that the controller is 

stable. 
 
3.3 Obstacle avoidance controller 

   We saw in section 1, that the limit cycle navigation method seems overcome the 
drawbacks of the other obstacle avoidance methods. Moreover, it allows deciding in which 
direction and how far the robot avoids the obstacle. We reintroduce briefly the limit cycle 
navigation algorithm proposed in [10] that we use in the avoidance obstacle controller. 
Consider a mobile robot which must reach the target whose global coordinates are (Gx, Gy) 
while avoiding the circular obstacle of global coordinates (Qx, Qy) and a radius Rv 

(corresponding to the real radius of the obstacle plus a distance including the robot size and a 
safe margin) (figure 11). 
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FIG10 – The mobile robot on the Frenet frame. 
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The steps of the limit-cycle method are as follows: 

The line l has  a.x+b.y+c = 0 as equation. 

1) The distance d from the center of the obstacle to the line l is calculated as  
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2) The desired direction of the robot is calculated at each position by 
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Where x and y are relative values of the robot position according to the obstacle. In these 
equations, if d is positive, the robot avoids the obstacle clockwise. Otherwise, it is avoided in a 
counter-clockwise direction.  
To prove stability along the trajectory, the Lyapunov function candidate is given by V = x²+ y²    
 
    yyxxV &&& 22 +=   = 2V(x)(rv²-V(x))  
Which is negative for V(x)>rv². Therefore, we can adjust the radius and consequently control 
the distance that the robot keeps with respect to the obstacle. 
 
3.4 Go-to-goal controller 

  The task to accomplish by the robot is simply to reach a desired position ),( dd yx . It 

means that (e, θ~ ) must tends to (0, 0) (figure 12). 
Developed in [13], the following controller allows the robot to reach a desired position 

without guaranteeing the orientation: 
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FIG 11 – Limit cycle navigation method 
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Cartesian errors are defined as 
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     The time-variation are given by 
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 To prove the Lyapunov stability the following function is candidate: 
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We saw that this controller allows the robot to reach a destination without final 

orientation. However, it is easy to notice that the same controller can control the heading.  
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FIG 12 – Go-to-goal controller 
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Indeed, when v = 0, the controller is still stable and only u controls the desired heading. 

Stability when switching to v = 0 in order to control final heading is immediate since the same 
Lyapunov function is kept. Detailed proof is available in [15]. 

4 Simulation 
  To estimate the relevance of the proposed hybrid architecture, we compare it with results 

given by hard switches between the two controllers: trajectory tracking and obstacle avoidance. 
Indeed, we use MATLAB to simulate a mobile robot tracking a given trajectory while avoiding 
an obstacle. The real path the robot follows with hard switches is given in figure 13. 

 
 

 

 
 
 
 

 

 
 
 

 
 

 
 

 

We can see that when detecting the obstacle, the robot switches effectively to obstacle 
avoidance controller. However, the distance separating the robot from the obstacle is the only 
condition of switching. Therefore, oscillation in the robot’s path is observed. It is due to 
switching to trajectory tracking as soon as Drobot-obstacle is higher than Rv which is the detection 
zone radius. While the obstacle is not passed, the robot (which is now controlled by trajectory 
tracking command) falls in the detection zone again and tries to avoid it again (switch to 
obstacle avoidance controller).  
Switch moments are illustrated in figure 14 which shows clearly undesirable switching to 
trajectory controllers whereas the obstacle is not passed yet. 

Moreover, figure 15 shows the Lyapunov function variation for the different controllers. 
In spite of decreasing when the controller is active, the second condition of the Multiple 
Lyapunov function theorem is not satisfied, and switching in the trajectory tracking occurs with 
a higher Luyapunov function value than the last switch in. 

 
 
 
 
 
 

FIG 13 – Real robot’s path controlled by hard switches. 
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At the contrary, our architecture of control given in section 2 allows avoiding these 
useless switches since our automaton is regularized by the go-to-goal controller (figure 6). This 
latter prevents hard switches occurring before that the obstacle is passed. The real path 
followed by the robot is shown in figure 16 where no oscillation is observed.  

Figure 16 shows clearly that our method prevents any undesired switch between 
controllers. Thereby, the robot does not switch to trajectory tracking before avoiding 
completely the obstacle.  This is confirmed by switch moments (figure 17). 

 

 

 

 

FIG 14 – Switching moments (high state corresponds to trajectory 
tracking controller whereas low state is for obstacle avoidance one). 
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Figure 18 shows also that our method allows to satisfy the second condition of the 
Lyapunov variation function (cf. section 2). Indeed, when trajectory tracking is reactivated, its 
Lyapunov function value is less than the last time it switches in. 

 

 

 

 

 

 

 

FIG 16 – Real robot path when controlled with the proposed 
control architecture 
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controller. Low state is when the obstacle avoidance is active.  
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5 Conclusion and future works 
We applied hybrid control architecture on a mobile robot to obtain a stable trajectory 

tracking while avoiding obstacles. Indeed, the robot is controlled by elementary continuous 
controllers according to the sub-tasks to accomplish (trajectory tracking, obstacle avoidance) 
and switching from a controller to an other is done referring to discrete events. We saw that 
hard switches cause chattering and are not efficient to insure a safe navigation. Therefore, we 
propose to use the multiple Lyapunov function for hybrid systems to design a stable hybrid 
control architecture. In addition to elementary stable controllers for the two main sub-tasks, we 
introduce a third controller which insures the second sufficient condition of multiple Lyapunov 
function (cf. section 2). Simulations show that our architecture prevents useless switches, 
guaranteeing thus a safe navigation for the robot. Applying this stable control architecture to a 
dynamic environment (e.g., moving obstacles), will be the subject of future works. Application 
to multi-robot systems navigating in formation seems also to be interesting. The objective is to 
make each robot able to avoid an obstacle before regaining the convoy. 

 

 

FIG 18 - Lyapunov variation functions of the proposed control 
architecture. 
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