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Solution 2
Cutin

Solution 1
Prioritize

Wait till other cars leave
Safer, slower

Cut in and pass
Risky, faster
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Problem
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Multi-Objective Path Planning
- have to trade-off between multiple desired properties.
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Multi-Objective Path Planning
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c(e) = (c1carem) € (RM

Stewart, B.S. and White 1, C.C., 1991. Multiobjective a.Journal of the ACM (JACM),38(4), pp.775-814.
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A*-Based Path Planning Methods
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https://github.com/npretto/pathfinding
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« Extend paths from the starting vertex
towards the goal

« Systematically explore all possible paths
» Always select the most promising path and
extend it to all possible neighbors.
Keep the best path to reach each vertex
Discard the un-promising path

« Terminate when reach the goal

QO RAP-Lab
@SJTU




@ | JOINT INSTITUTE

3 7; — 2

Challenge
Single Objective Multi-Objective
g-vector
a(v) ={ulalsd 1 =(v,[396)])
> =(v, [4,8,7])
_______________________ I3 =(v, [5,6,7])
/ \ g-value / \ 3
@ @
P v ‘\_jv e
Yo = Uo\N__ ... / Vq
-------- Destination
Scalar comparison \ector comparison
Against one existing scalar Against multiple non-dominated vectors
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@SJTU




Fast Dominance Check

g-vector
a(v) ={lals}
|2 :(V7 [418’7])
'3 =(v, [5,6,7])

’UO\\\_ ________ UVd
Start N ... Destination

(Existing) 2. When there are only two objectives,
all dominance checks are be converted to a scalar
comparison in a lazy fashion [2].
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(Existing) 1. By sorting the vectors in lex order, the
first component of the vectors can be ignored [1].

(4,8,7), (5.6,7)}
{(9,6),(8,7),(6,7)}
{(97 6)7 (67 7)}

Original  {
Truncated
Nondom. Trun.

[1] Pulido, Francisco-Javier, Lawrence Mandow, and José-Luis Pérez-de-la-Cruz. "Dimensionality reduction in multiobjective shortest path search.” Computers & Operations Research 64 (2015): 60-70.
[2] Hernandez, Carlos, William Yeoh, Jorge A. Baier, Han Zhang, Luis Suazo, Sven Koenig, and Oren Salzman. "Simple and efficient bi-objective search algorithms via fast dominance

checks.™ Artificial Intelligence 314 (2023): 103807.

[3] Ren, Zhonggiang, Richard Zhan, Sivakumar Rathinam, Maxim Likhachev, and Howie Choset. "Enhanced multi-objective A* using balanced binary search trees.” In Proceedings of the International [/ RAP-Lab

10 Symposium on Combinatorial Search, vol. 15, no. 1, pp. 162-170. 2022.
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Fast Dominance Check

g-vector
a(v) ={lals}
|2 :(V1 [41877])
'3 =(v, [5,6,7])

’Uo\\\_ ________ UVd
Start N ... Destination

(Existing) 2. When there are only two objectives,
all dominance checks are be converted to a scalar
comparison in a lazy fashion [2].
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(Existing) 1. By sorting the vectors in lex order, the
first component of the vectors can be ignored [1].

(4,8,7), (5.6,7)}
{(9,6),(8,7),(6,7)}
{(97 6)7 (67 7)}

Original  {
Truncated
Nondom. Trun.

Our contribution [3],
incrementally build a
balanced binary search tree
to further expedite the
dominance check for any
number of objectives.

[1] Pulido, Francisco-Javier, Lawrence Mandow, and José-Luis Pérez-de-la-Cruz. "Dimensionality reduction in multiobjective shortest path search.” Computers & Operations Research 64 (2015): 60-70.
[2] Hernandez, Carlos, William Yeoh, Jorge A. Baier, Han Zhang, Luis Suazo, Sven Koenig, and Oren Salzman. "Simple and efficient bi-objective search algorithms via fast dominance

checks.™ Artificial Intelligence 314 (2023): 103807.

[3] Ren, Zhonggiang, Richard Zhan, Sivakumar Rathinam, Maxim Likhachev, and Howie Choset. "Enhanced multi-objective A* using balanced binary search trees.” In Proceedings of the International [/ RAP-Lab

11 Symposium on Combinatorial Search, vol. 15, no. 1, pp. 162-170. 2022.
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Result
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Y NAMOA*-dr x ext-BOA* + ext-BOA*-lex ® TOA*/EMOA* (ours)
M=3 M=4 M=5
Runtime Runtime Runtime
* 10! o 102-; *
T - e ] o
10-1—E *“} “f . 100? 3 i 10 ?ﬁf.
* g* . :-” : L 100-; %
10-2 - L 20 -i ! v E;x ] ?
1-0 o 100 100 1000 200 5000
#Sol. @) #Sol. (c) (e)
Summary:
1. Faster than baselines for up to an order of magnitude.
2. More advantageous for hard instances.
Ay RAP-Lab
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Result

4124

4104

4.08 4

4.06

4.04 4 -

Eg

~7.44

-7.42 -7.40 -7.38

New York City Map from [1], 264,346 nodes, 733,846 edges.

25

10 minutes (600 seconds) runtime limit.

Summary:
- Double the success rates.
- Run faster.

le7

*Mean Runtime

*Median Runtime

Success/All (Sec) (Sec)
NAMOA*-dr 16/50 25.4 92.9
ext-BOA* 17/50 11.6 40.1
ext-BOA*-lex 17/50 9.7 33.7
Ours 33/50 1.8 5.0

* Mean and median are computed for the 16 instances where all four algorithms succeed. The

average and median number of solutions are 389 and 327 respectively.

[1] http://www.diag.uniromal.it//~challenge9/download.shtml




Dynamic Environments
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Edge cost may change during path exeution [1].

QO RAP-Lab

[1] Ren, Z., Rathinam, S., Likhachev, M. and Choset, H., 2022. Multi-objective path-based D* lite.|IEEE Robotics and Automation Letters,7(2), pp.3318-3325. @SJTU
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Dynamic Environments

[ | G
3 1 - H N .. . . .. g .-:
[ | I | 50 o

L4
%
I . 75_.0.

o N
12 - .. ... H B I [ 100 4

0 3 9 12 15 18 21 24 27 30 = Y & w5 i % wh B e

Edge cost may change during path exeution [1]. Moving obstacles along known trajectories [2].
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[1] Ren, Z., Rathinam, S., Likhachev, M. and Choset, H., 2022. Multi-objective path-based D* lite.|IEEE Robotics and Automation Letters,7(2), pp.3318-3325. @SJTU

[2] Ren, Z., Rathinam, S., Likhachev, M. and Choset, H., 2022. Multi-objective safe-interval path planning with dynamic obstacles.IEEE Robotics and Automation Letters,7(3), pp.8154-8161.
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Multi-Agent Multi-Objective Path Planning

Start 1. Shared workspace G=(V,E)

2. Each action takes a time unit.

3. Avoid agent-agent conflict.

4. Each action incurs a cost vector
¢(e) = (c1,¢2,++,cm) € (RTYM

5. Minimize the sum of arrival times.

Goal

Ren, Z., Rathinam, S. and Choset, H., 2021. Subdimensional expansion for multi-objective multi-agent path finding.IEEE Robotics and Automation Letters,6(4), pp.7153-7160.
Ren, Z., Rathinam, S. and Choset, H., 2022. A conflict-based search framework for multiobjective multiagent path finding.IEEE Transactions on Automation Science and % RAP-Lab
@SJTU

Engineering,20(2), pp.1262-1274.
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Multi-Agent Path Finding

De-coupled Planning Coupled Planning

Run fast, incomplete, no Complete, optimal
solution quality guarantee solution, scales poorly.
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Multi-Agent Path Finding

Dynamically Coupled Planning

Conflict at v at t=2.

E.g. Conflict-Based | Lo ;’
Search (CBS) [1] !"1 —

Blue robot detours./\‘Yellow robot detours. \ g
|

i

———————————

How to handle
multiple objectives’

patl B *

QO RAP-Lab
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18 [1] Sharon, G., Stern, R., Felner, A. and Sturtevant, N.R., 2015. Conflict-based search for optimal multi-agent pathfinding.Artificial intelligence,219, pp.40-66.
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1. Ignore conflicts and solve single-agent
multi-objective problems for each agent.

________________________
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Ren, Z., Rathinam, S. and Choset, H., 2022. A conflict-based search framework for multiobjective multiagent path finding.
IEEE Transactions on Automation Science and Engineering,20(2), pp.1262-1274.
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Conflict at v at t=2.

:

Blue robot detours./\Yellow robot detours.
| [
i -

3. Runs CBS-like search to resolve agent-agent conflicts
until all Pareto-optimal solutions are found.
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Duplicated Conflict Resolution

The same conflict may occurs
multiple times in different trees
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Method: Binary Branching MO-CBS

- Redefine search node, each node contains multiple joint paths
- Resolve the same conflict in multiple joint paths at once.

Ren, Z., Li, J., Zhang, H., Koenig, S., Rathinam, S. and Choset, H., 2023, July. Binary branching multi-objective conflict-based ¥
search for multi-agent path finding. InProceedings of the International Conference on Automated Planning and Scheduling(Vol. 33,
No. 1, pp. 361-369).
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Result

- Different maps with two or three objectives (M=2,3).

- Edge cost vectors randomly sampled from {1,2} for
each component.

- 5 min runtime limit for each instance.

Message
- BB-MO-CBS has higher success rates than MO-CBS
in all settings.

Three Objectives
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Success Rates
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Teamwise Cooperative MAPF

Finding conflict-free paths Previous:
Multi-Agent Path Finding

« All agents in one team (fully i 6 :' '

cooperative)

* Minimize sum of individual
cost (vectors)

J

One Team

Here:
» Agents are grouped into teams

« Each team has its own objective i 6 }':‘.‘ '

* — Goal of each agent . — Obstacles
Team 1 Team 2
\ J
Y
Team 3
Ren, Z., Zhang, C., Rathinam, S. and Choset, H., 2023, May. Search Algorithms for Multi-Agent Teamwise Cooperative Path Finding. In2023 IEEE International % RAP-Lab

Conference on Robotics and Automation (ICRA)(pp. 1407-1413). IEEE.

23 Ren, Z., Cai, Y., Wang, H., 2024,. Multi-Agent Teamwise Cooperative Path Finding and Traffic Intersection Coordination. IROS Accepted, 2024 @SJTU




7 Demo 1: Motorcade
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o Demo 3: 8 Agents with 4 Teams
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Summary

* (Single-Agent) Multi-Objective Path Planning
« Fast Dominance Check
« Dynamic Environments

* Multi-Agent Multi-Objective Path Planning
« Agent-agent collision avoidance
« Teamwise cooperativeness

 Discussion and Future Work
« Robot dynamics and uncertainty
« Non-additive path costs
« Bounded sub-optimal methods with scalability
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Related Work

Fact: Multiple non-dominated partial solution paths from the
start to any other Vertice(?vgor say nodesQ)in the graph.

a(u) —{l,1,03 Node-based Expansion (MOA*, MOD
[ ,=(u, [8,9,12]) - In each iteration, a node 1s selected from OPEN and
[ 5 =(u, [10,10,10]) expanded.
P - To expand a node, all labels (i.e. partial solution paths) are
A >@® tended to adiacent nodes
Sart QY hw =765 Goal N . ' .
------- Path-based Expansion (NAMOA?* and its variants)

- Labels (i.e. partial solution paths) are stored in OPEN and

selected for expansion.
Basic Dynamic Environment - When a new label is generated at a node, this label (rather

f mll ARA*_ AD*, than node) is inserted into OPEN.
m ( ATD*, etc.

Si ng |€-Obj€CtiV€ In conventional A*, the search only needs to store one optimal
......................................................... partial path from the start to any other vertices in the graph.
Multi-objective Node-based and Path-based are equivalent.

v___ ] ~ [4]
@de-based MOA* :m

[1] Koenig, Sven, and Maxim Likhachev. "Fast replanning for navigation in unknown terrain." IEEE Transactions
on Robotics 21, no. 3 (2005): 354-363.
[2] Stewart, Bradley S., and Chelsea C. White I11. "Multiobjective a." Journal of the ACM (JACM) 38, no. 4

1 T (1991): 775-814.
(3] [3] Mandow, Lawrence, and José Luis Pérez De La Cruz. "Multiobjective A* search with consistent
Path-based NAMOA~* - heuristics.” Journal of the ACM (JACM) 57, no. 5 (2008): 1-25.

[4] Oral, Tugcem, and Faruk Polat. "MOD* Lite: an incremental path planning algorithm taking care of multiple
objectives." IEEE Transactions on Cybernetics 46, no. 1 (2015): 245-257.




Method MO-PBDx Algorithm Overview

Ug ‘kdestination Ug)

Non-dominated paths Path cost vectors

-y Ist search, (10, 3.3, 331)
(Plot (b)) |=——— | (15.2.1,575)

Ue
start (current node) (b)
(a) Initially, search in as same way

as NAMOA* (path-based)
backwards from the goal to the
start.

11 Ren 7Zhonaoadiana S<ivakiimar Rathinam Mavxim | ikhachev and Howie Cho<et "Miilti-Obhiective Path-Raced D* | ite " IFEFF Robotice and Airitomation | ettere 7 no 2 (2022) R2192-2225



Method

Ug ‘kdestination Ug > Ugd
¢ 2 ¢ >

MO-PBD+ Algorithm Overview 1

.
.
\
Y y
Ue
start (current node) (b) () (d)
(a) Initially, search in as same way When cost(e) changes (either Using a new notion of
as NAMOA* (path-based) increases or decreases), consistency to find all partial
backwards from the goal to the recursively find and delete all paths that need re_expansion_

start.

Def. Label [:= (v, g

partial paths that go through e.

A set of g-vectors
{0} e If V= Uy

Def. RHS(v) = . _ )
nondom(G(u) + ¢c(u,v)),Vu € Adj(v) Otherwise

Def. Label Consistency
A label [ is inconsistent if §(1) is in RHS(v(1)) and (1) is not in G(v(s)).
A label / is consistent if (1) is in both RHS(v(s)) and G(v(s)).

11 Ren 7Zhonaoadiana S<ivakiimar Rathinam Mavxim | ikhachev and Howie Cho<et "Miilti-Obhiective Path-Raced D* | ite " IFEFF Robotice and Airitomation | ettere 7 no 2 (2022) R2192-2225




Method MO-PBDx Algorithm Overview

dest1nat10n Ug) Ud-
)
4 y
uC

start (current node) (b) (c) (d)
(a) Initially, search in as same way When cost(e) changes (either Using a new notion of
as NAMOA* (path-based) increases or decreases), consistency to find all partial
backwards from the goal to the recursively find and delete all paths that need re_expansion_
start. partial paths that go through e.
U
Continue the search until Non-dominated paths Path cost vectors
all cost-unique Pareto-
optimal paths are find. Ist search, (10, 3.3, 331)
(Plot (b)) —_— (15,2.1, 575)
— (15,2.1,575)
2nd search, | (12, 3.6, 461)
(Plot(e)) | (13, 3.4, 501)
(e)

11 Ren 7Zhonaoadiana S<ivakiimar Rathinam Mavxim | ikhachev and Howie Cho<et "Miilti-Obhiective Path-Raced D* | ite " IFEFF Robotice and Airitomation | ettere 7 no 2 (2022) R2192-2225



Results

Test with M=2,3,4 objectives, each
component of edge cost vectors is
randomly selected from [1,5].
Iteratively (1) plan, (2) randomly select
and execute, (3) add/delete obstacles.
Run time limit 5 minutes.

* Goal . Obstacle
‘ Current . Added obstacle
‘ Initial Deleted obstacle

====  Non-dominated Paths

Test Settings

Add or delete two obstacles in the 5x5 box
area centered on the robot every 7 steps.
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Results Test Settings

Fixed map (Maze), varying M. Fixed M=2 (two objective), varying maps

M | Planner | Remove Obst., Add Obst. Grids Algorithm | Exp. RT Sol.
5 MOPBD#* (ours) | 0.0060 (0.070) | 0.018 (0.12) NAMOA* 118 0.03 30
NAMOA* 0.042 (0.15) 0.045 (0.19) _ ’ ) ”
3 MOPBD#* (ours) | 0.037 (4.6) 0.14 (14) _ MOD* 39.1 “'35, 3.0
NAMOA* 0.099 (4.4) 0.17 (6.2) “El}{lfl) MOPBD#* 3.9 0.06 3.0
, | MOPBD* (ours) | 0.062 (144) | 024 (15) _@ NAMOA* | 1556.6 | 0.55 | 10.5
NAMOA* 0.12 (2.13) 0.17 (5.0) MOD#* 92.1 3.15 10.5
Runtime in format Median (Average) (32x32) | MOPBD* | 19.7 0.17 | 10.5
GAv e NAMOA®* | 829.5 022 | 49
From e MOD#* 311.0 | 3.51 | 4.9
lncremental (32x32) | MOPBD* 35.0 0.12 | 49
scratch NAMOA®* | 5923.3 | 2.85 | 16.3
Node-based Mob E MOD* 2084 | 12.6 | 123
MOPBD* (65x81) | MOPBD#* | 28.0 243 | 16.3
Path-based | NAMOA™ | i work) Average over all instances

(*)Timeout in some instances

- MOPBD=* outperforms MOD= in all scenario;
- For run time, MOPBD~%, in general, outperforms NAMOAx* (search from scratch) on average;
- For number of expansion (path-based), MOPBD~* outperforms NAMOAx;



