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Motivation

* Many accidents in using Tesla and Uber self-driving cars
* Dealing with industrial robots is a threat to human life

How to guarantee safety when dealing with CPS?




Can Testing Guarantee Safety?

* Consider a pedestrian crossing the road
* We might do n test scenarios
* Failure may happen at scenario n+1
* It is time for formal safety guarantees during learning and control
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Safety Guarantees through Reachability Analysis

 State z(k) can be position, speed, acceleration ... etc.

* Reachability analysis computes the set of reachable states of a dynamical
system with uncertain initial states, inputs, and parameters

* Reachability analysis traditionally requires a model

z(k+1)=f(x(k),u(k)) +w(k)
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Effect of Model Choice

* CPS are becoming too complex to model
* One often has an abundance of data but no model to guarantee safety

Can we depend on data without trusting a single model?

Untuned model Tuned model 5



Problem Formulation

How to compute (over-approximate) reachable sets from data?
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/onotope

A zonotope Z = (¢,G) Is a set

y
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where ¢ € R" is the center and G = [g1, ..., g,] € R™*” the generator vectors
A matrix zonotope M consists of center matrix and list of generator matrices
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Fedorov, Elemente der Gestaltenlehre. Zeitschrift fiir Krystallographie und Mineralogie, 1893



/onotope Properties

e Zonotopes Z = (¢,G) are closed under linear maps L:
LZ ={Lz|z € Z} = (Lc, LG)
* Closed under Minkowski sum:

Z1® 2y ={21+ 22|21 € 21,20 € 2o} = <61 + ca, [G17G2]>

* Cartesian product:
21 € Z1,29 € ZQ} — < [2] | [%1 C?J >

Zy X 2y = { [2]
R

Linear map

[Kiihn, 1998]
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Model-based Reachability using Zonotopes

Consider a system

z(k+1) = Ax(k) + Bu(k) + w(k)
with initial state set, control set, and noise set all are zonotopes.
Then, the reachable set can be computed as

Rk_H:f_le D Bb{k b 2, = [}_1 B} (Rk X Z/{k) b Z,

Linear map Minkowski sum
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[Girard, HSCC, 2005]



Related Work

Reachability computation is a classical topic in systems and control theory:
e E.g., [Pecsvaradi & Narendra, 1971]

Many recent techniques for formal verification:
* Ellipsoidal techniques [Kurzhanski & Varaiya, 2000]
 Hamilton-Jacobi approaches [Mitchell et al., 2001]
* Barrier certificates [Prajna & Jadbabaie, 2004]
* Simulation-based approaches [Girard & Pappas, 2006]
e Zonotopes [Girard, 2005] [Althoff, 2010]
* Monte Carlo method [Devonport,2020]
* Intervals [Djeumou,2021]
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How to compute data-driven reachable sets?



Proposed Approach

* Given the noisy-data, there is no single model that can be trusted and fits the
data

* We compute a set of models that is consistent with the data instead of
depending on a single model

* We guarantee that the true model is inside the set of models

Linear System: z(k + 1) = Az(k) + Bu(k) + w(k)
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Set of Models Consistent with Data

z(k+1) = Ax(k) + Bu(k) + w(k)

The set of all models consistent with the input-state data is denoted

Ns={[A B]| X, =AX+BU+W,W € M,} U= [u(0) u

Noisy state-

input data

| \‘00

—_—

(1) ... u(T-1)]
X =[z(0) z(1) ... z(T-1)]
X =lz(1) (2 x(T)]
W=w0) wl) ... wT-1)

True model inside Ng



Computation of Over-approximate Set of Models

We assume bounded noise. From system model, it follows that Mu Ms 2 Ny
X,=[A B [)(5] + W, N G
which can be rearranged as W A B

Yw X T
[A B} — (X-I- — O'w — Z/Bi,wGi,w) [U:|
i=1

for some choice of 5;..,. Hence, by considering all possible values of 3;,, where
-1 < Biw < 1,i=1,...,7% ,the matrix zonotope
Xr

o = (6, ) [

contains all models in Nx
Ms is an over-approximation of the set of models Mx 2 N5



Data-Driven Reachable set

Algorithm 1 LTI-Reachability

. . cip .
The true SyStem model 1S Wlthln the set Of Input: input-state trajectories D = (U_, X),

models [/_1 B} e Ny, € My, initial set Xy, process noise zonotope Z,,
) and matrix zonotope M,,, input zonotope Uy,
* Compare with model-based Vk=0,... N—1
Rirs = [}—1 B} (Ri x Up) ® 2 OutPut: reachable sets Ry, Vk=1,..., N
1: Rop = Xy
X T

2: ME — (X+ @Mw) !U]
3: fork=0:N-1do
4: Ri+1 = M\;}(Rk X Z/{k) D Zy
5: end for

Noisy state-

input data Set of models over approximated

€ZT
A \ . . |n|t|al set reach ble set
°
o o .
° o0
°




Example

* Linear system

z(k+1) =

A

[0.9323 —0.1890 0 0 0
0.1890  0.9323 0 0 0
0 0 0.8596  0.0430 0
0 0 —0.0430 0.8596 0
|0 0 0 0 0.9048
i

x(k) +

[0.0436 |
0.0533
0.0475
0.0453

0.0476
S
B

u(k) + w(k)

* The data-driven reachable set over approximates
the model based reachable set %, - %,
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Can we have a tighter over approximate set?




Exact Noise Description Consistent with Model

 We aim to find a tighter over approximate reachable set

* Our previous solution My is based on finding [A B]

for each W e M,

* There might not exist a solution [A B] forall W € M,
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* An exact description for all systems consistent with the data and the noise
bound would therefore be the set [A. Koch, 2020]
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Constrained Matrix Zonotope

* We propose constrained matrix zonotope as a hew set representation
* A constrained matrix zonotope C is a set

C={X eRr™?

vy o
X:C’—FZ@;G@',Z@A@:B,—1§5¢§1}-
i—1

1=1

where, C is the center matrix

D
|

G1,...,G,] are the generator matrices, and

A1,...,A,] and B are constraining the factors 181,y By]
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How to incorporate system model side
information?



Side Information on System Model

* Consider prior side information about the unknown models:
e prior bounds on entries in the system matrices
e decoupling in the dynamics
 partial dynamics knowledge

* We propose a general framework |Q [A B] ~-Y| <R
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Example

[0.9323  —0.1890 0 0 0 [0.0436 ]
0.1890  0.9323 0 0 0 0.0533
rk+1)=| 0 0 0.8596 0.0430 0 | x(k)+ |0.0475
0 0 —0.0430 0.8596 0 0.0453
0 0 0 0  0.9048 0.0476
~— s - — —/
A B
e Rk : Reachable sets computed based on matrix zonotopes
¢ R : Reachable sets computed using exact noise description Al
e R: : Reachable sets using state decoupling as side information 1 5 [[—Tnitial set %, @“
h N _ _ . [ |Set from mode]A’R,k
o D) D) D |—Set from data R
We notethat R,k DR, DR, DO R 1o rom data Ky ]
——Set from data 72; /
0.5 '

1 1.5
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SVEA Reachable Sets

e The inputs to the vehicle are the steering angle | E
and the velocity and the output is the position

of the vehicle. The model of the vehicle is
nonlinear in general

Y Position (m)

Small-Vehicles-for-Autonomy (SVEA) equipped X Fostion(m)
with NVIDIA Jetson TX2 embedded computer
and Qualisys motion capture system
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How to incorporate signal temporal logic side
information?



STL Side Information

* |n certain scenarios, the reachable sets can be conservative due to the amount
of noise in the data

* We often have side information about the system or environment which can be
generally described using signal temporal logic (STL)

e STL is a formal language for describing a broad range of real-valued, temporal
properties in cyber-physical systems

0



Incorporating STL Side Information

* We have data-driven zonotope R« and STL side information
* Construct a predicate function b.(z) from ¢, such that if bi(z) >0 then = | ¢i

[Fainekos, 2009]
* Represent p.(z) >0 as strip or nonlinear strip

Linear and nonlinear Strips

STL
Conversion
r = Go25)(P) N Gl25.40(S) > hr(z) >0 > /




Intersection with Strips

* We provide intersection with nonlinear strips
by linearization and considering a zonotope
that over approximates the linearization error

Linear and nonlinear Strlps

Reachable sets

R Intersection over “approximation

Algorithm 1 Reachability analysis under STL
side information using zonotopes

Input: data-driven zonotope ZA’;C = (¢, G’k),
STL side information ¢; , Vi =1,...,n4
Output: STL zonotope Z;, = (ck, Gk>

1: Zk—Zk
2: fori=1,...,ng,
3:

kdO

Construct b; () from ¢;
if h; «(x) is linear then

/] bix(x) =

Tik —

\H; 1 — i k|

Cr = Ck + Aik (Vi g — HixCr)
Gr=[(I = XipH;1)Gr NigTik)|

else if b; () is nonlinear then

—_
<

11: Gr= [(I A

Ch=Cr— i k @z k( i k)—l_ Dz

8hzk
k™9

/] Dik(x) = rig — |hir(z)]

Oh; i

oy k(_k 37 )‘|‘CL,i,k)

ot )G AikTik _)\z‘,kGL,i,k-‘

12: end if
13: end for
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How to obtain safety guaranteed
reinforcement learning?



Reinforcement Learning (RL)

* Powerful in learning optimal policies

* Requires exploration and exploitation
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RL and Safety Critical Systems

* Most RL algorithms explore all possible actions, which is not safe for real-
world

* RLis rarely applied to safety critical systems especially when models of
the robot and environment are unknown




Black-box Reachability-based Safety Layer (BRSL)

e BRSL consists of three main components
» Data-driven reachability analysis for a black-box robot and environment
* Rollout trajectory planner
 Differentiable collision check

* Rollout trajectory planner: the agent dreams a sequence of actions by using an
ensemble of neural networks to plan a head
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s it safe action?

» After having a sequence of actions from the rollout trajectory planner, we verify their safety

 Check the intersection between the reachable sets and unsafe sets

e What if we have an unsafe action?
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Differentiable Collision Check

e Adjust unsafe action by solving an optimization problem to push zonotopes out
of intersection

. (- ——\
4 Data-Driven A noisy
Reachability state-input

data
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Initial N /
L set set °
\\\\ J 4—_ ...
\\\\ . ] [ X J
R Adjust *

@ /action U
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gradient Differentiable
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Apply Safe Action

* Apply safe/adjusted first action to the real environment
* Give penalty when adjusting an action

e [ 8

4___
h f Data-Driven \
S Envirpn_ment Dream Reachability noisy
Mimic _ Planned _
state + \ / action : ”» state-input data
actions Initial reachable
reward 4 ) t
\/ > L set ¢ J T 5 /
(00 |
Adjust o oo

RL Agent / / : .
N / action I
N = T - D u
state +
reward Penalty E> <:|

Apply Black-box Safe/adjusted Differentiable
action (___robot dynamics action \___ Collision Check j/

Environment
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Can We Enhance the learning?
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/onotopic Predictive Controller (ZPC)

e We do not have the robot model

e The true model is within the set of system models My

e Predict ahead using the set of system models My

e Find a controller such that the output stays within the reachable region

Planned Trajectory Prediction
Data-driven reachable set

\
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o
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o [ N J
° ‘ @ ZPC [ Optimization ]

Uu

Noisy input-
output data Set of models current state




Adjust the Unsafe Action

e Adjust unsafe action by solving a new optimization problem

minimize

subject to

Difference between old action and
new safe action

output stays within the reachable set
Input constraints

output constraints

bounded process noise

bounded measurement noise
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Adjust the Unsafe Action

e Adjust unsafe action by solving a new optimization problem

min
U, Y ySu,S1

S.t.

|urL — Ut|t||?2 w

N

N

Ritrr1jt = Mu(Regkp X Zuprk) T 2w+ Zo = Zav,
Upg k|t € Upik,

~

Yttkt+1)t T Suttkt+1)t = Ruttkt+1,
Yt+k+1|t — Sit+k+1t — Rl,t-l—k-l—la
Yi+k+1lt T Sut+k+1]t < yu,t+k+1,
Yttkt1lt — SLt+k+1)t = Vi t+k+15
Sut+k+1)t = 0,

Sit+k+1)t = 0,

Y|t = y(t)

Vi t+k+15 Yut+k+1 : lower and upper bounds of the output constraint zonotope

7A2;,Hk+1, 7%%“;”1 : lower and upper bounds of the reachable set
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Example

[0.9323  —0.1890 0 0 0 [0.0436 |
0.1890  0.9323 0 0 0 0.0533
r(k+1) = 0 0 0.8596  0.0430 0 | x(k)+ |0.0475| u(k) + w(k).
0 0 —0.0430 0.8596 0 0.0453
0 0 0 0 0.9048 | 0.0476 |
ar +JI —Reach;,ble set TRy

’—J + System trajectory y(t) @
38F * » y-pred(t) g @ﬁ
asf | @ﬁ

5.5 Reachable set R,
+ System trajectory y(t)
= y-pred(t)

3.4+

3.2F

2.8 -

2.6+

Y2
w
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Drone_Environment
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Conclusion

e Data-driven safety verification of an embedded system using reachability with formal guarantees
e Compute a set of models that is consistent with the data
e How to incorporate a model-based side information to get a tighter set

Ongoing work

e STL-based side information
e Guaranteed safe reinforcement learning

https://sites.google.com/view/amr-alanwar/

https://github.com/aalanwar/
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