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Motivation
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• Many accidents in using Tesla and Uber self-driving cars 

• Dealing with industrial robots is a threat to human life

How to guarantee safety when dealing with CPS?



• Consider a pedestrian crossing the road

• We might do n test scenarios

• Failure may happen at scenario n+1 

• It is time for formal safety guarantees during learning and control

Can Testing Guarantee Safety?
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? ?



Safety Guarantees through Reachability Analysis

• State          can be position, speed, acceleration … etc.

• Reachability analysis computes the set of reachable states of a dynamical 
system with uncertain initial states, inputs, and parameters

• Reachability analysis traditionally requires a model
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Effect of Model Choice
• CPS are becoming too complex to model 

• One often has an abundance of data but no model to guarantee safety 
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Can we depend on data without trusting a single model?

Untuned model Tuned model



Problem Formulation
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How to compute (over-approximate) reachable sets from data?

𝑢1

𝑢2

𝑥1

𝑥2

Black-box 
Embedded System



1- Basic Reachability 2- Data-driven Reachability

3- Side Information
5- Safe Reinforcement Learning



A zonotope is a set

where             is the center and                              the generator vectors 

A matrix zonotope      consists of center matrix and list of generator matrices 

Zonotope

8Fedorov, Elemente der Gestaltenlehre. Zeitschrift für Krystallographie und Mineralogie, 1893



Zonotope Properties
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• Zonotopes                  are closed under linear maps    :

• Closed under Minkowski sum: 

• Cartesian product:

[Kühn, 1998]

Linear map

Minkowski 

sum



Model-based Reachability using Zonotopes
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Consider a system

with initial state set, control set, and noise set all are zonotopes. 

Then, the reachable set can be computed as

[Girard, HSCC, 2005]

Linear map Minkowski sum



Related Work
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Reachability computation is a classical topic in systems and control theory:
• E.g., [Pecsvaradi & Narendra, 1971]

Many recent techniques for formal verification:
• Ellipsoidal techniques [Kurzhanski & Varaiya, 2000]

• Hamilton-Jacobi approaches [Mitchell et al., 2001]

• Barrier certificates [Prajna & Jadbabaie, 2004] 

• Simulation-based approaches [Girard & Pappas, 2006]

• Zonotopes [Girard, 2005] [Althoff, 2010]

• Monte Carlo method [Devonport,2020]

• Intervals [Djeumou,2021]



How to compute data-driven reachable sets?
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Proposed Approach
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• Given the noisy-data, there is no single model that can be trusted and fits the 
data

• We compute a set of models that is consistent with the data instead of 
depending on a single model

• We guarantee that the true model is inside the set of models

initial set

over approximated 

reachable set
Set of models

Noisy state-

input data

Linear System:



Set of Models Consistent with Data
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The set of all models consistent with the input-state data is denoted 

Noisy state-

input data

True model inside 



We assume bounded noise. From system model, it follows that

which can be rearranged as

for some choice of        .  Hence, by considering all possible values of         where  

,                     , the matrix zonotope

contains all models in

is an over-approximation of the set of models

Computation of Over-approximate Set of Models
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• The true system model is within the set of 
models                                 

• Compare with model-based 
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initial set

over approximated 

reachable set
Set of models

Noisy state-

input data

Data-Driven Reachable set



• Linear system

• The data-driven reachable set over approximates 
the model based reachable set 

Example
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Can we have a tighter over approximate set?



Exact Noise Description Consistent with Model
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• We aim to find a tighter over approximate reachable set

• Our previous solution is based on finding             

for each 

• There might not exist a solution for all

• An exact description for all systems consistent with the data and the noise 
bound would therefore be the set  [A. Koch, 2020]

with



Constrained Matrix Zonotope
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• We propose constrained matrix zonotope as a new set representation 

• A constrained matrix zonotope     is a set

where,     is the center matrix

are the generator matrices, and 

and      are constraining the factors                 
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How to incorporate system model side 
information?



Side Information on System Model 
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• Consider prior side information about the unknown models:
• prior bounds on entries in the system matrices 

• decoupling in the dynamics

• partial dynamics knowledge

• We propose a general framework



Example
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 : Reachable sets computed based on matrix zonotopes

 : Reachable sets computed using exact noise description 

 : Reachable sets using state decoupling as side information

 We note that



SVEA Reachable Sets
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 The inputs to the vehicle are the steering angle 
and the velocity and the output is the position 
of the vehicle. The model of the vehicle is 
nonlinear in general

Small-Vehicles-for-Autonomy (SVEA) equipped 
with NVIDIA Jetson TX2 embedded computer 

and Qualisys motion capture system 
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How to incorporate signal temporal logic side 
information?



STL Side Information

• In certain scenarios, the reachable sets can be conservative due to the amount 
of noise in the data

• We often have side information about the system or environment which can be 
generally described using signal temporal logic (STL)

• STL is a formal language for describing a broad range of real-valued, temporal 
properties in cyber-physical systems
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• We have data-driven zonotope      and STL side information 

• Construct a predicate function         from      such that if                then  

[Fainekos, 2009]

• Represent                as strip or nonlinear strip

Incorporating STL Side Information
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STL

Linear and nonlinear Strips

Conversion



• We provide intersection with nonlinear strips 
by linearization and considering a zonotope 
that over approximates the linearization error

Intersection with Strips

28Intersection over approximation

Reachable sets

STL
Linear and nonlinear Strips
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How to obtain safety guaranteed 
reinforcement learning?



Reinforcement Learning (RL)
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Actionstate reward

RL Agent

Environment

• Powerful in learning optimal policies

• Requires exploration and exploitation 



RL and Safety Critical Systems
• Most RL algorithms explore all possible actions, which is not safe for real-

world

• RL is rarely applied to safety critical systems especially when models of 
the robot and environment are unknown 
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Black-box Reachability-based Safety Layer (BRSL) 

• BRSL consists of three main components 
• Data-driven reachability analysis for a black-box robot and environment 
• Rollout trajectory planner 
• Differentiable collision check 

• Rollout trajectory planner: the agent dreams a sequence of actions by using an 
ensemble of neural networks to plan a head

RL Agent

Environment

Mimic
Dream 
action

Dream 
state + reward
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• After having a sequence of actions from the rollout trajectory planner, we verify their safety

• Check the intersection between the reachable sets and unsafe sets

• What if we have an unsafe action?

Is it safe action?

Planned
actions 

noisy

state-input

data
Initial

set

Data-Driven 
Reachability 

unsafe 
set

Differentiable
Collision Check 

Adjust 
action

Environment

Mimic
Dream 
action

Dream 
state + 
reward

RL Agent
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• Adjust unsafe action by solving an optimization problem to push zonotopes out 
of intersection

Differentiable Collision Check

noisy

state-input

data
Initial

set

Data-Driven 
Reachability 

unsafe 
set

Differentiable
Collision Check 

Adjust 
action
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Safe/adjusted 
action

• Apply safe/adjusted first action to the real environment

• Give penalty when adjusting an action

Apply Safe Action

Planned
actions 

noisy

state-input data

Penalty

Environment

state + 
reward

Environment

Mimic
Dream 
action

Dream 
state + 
reward

RL Agent

Black-box 
robot dynamics

Apply
action

Initial

set

Data-Driven 
Reachability 

unsafe 
set

Differentiable
Collision Check 

Adjust 
action
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Safe
action

Can We Enhance the learning?

action 

noisy

state-input dataPenalty

Environment

state + 
reward

RL Agent

Black-box 
robot dynamics

Apply
action

Initial

set

Data-Driven 
Reachability 

unsafe 
set

Zonotopic Predictive 
Controller (ZPC)

Adjust 
action
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Zonotopic Predictive Controller (ZPC)

 We do not have the robot model

 The true model is within the set of system models

 Predict ahead using the set of system models

 Find a controller such that the output stays within the reachable region 

Set of models

Noisy input-

output data

ZPC

current state

Data-driven reachable set

Planned Trajectory Prediction 

Optimization 
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Adjust the Unsafe Action

noisy

state-input

data
Initial

set

Data-Driven 
Reachability 

unsafe 
set

Adjust 
action

Zonotopic Predictive 
Controller (ZPC)

minimize Difference between old action and 

new safe action

subject to output stays within the reachable set

input constraints 

output constraints 

bounded process noise 

bounded measurement noise 

 Adjust unsafe action by solving a new optimization problem 
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Adjust the Unsafe Action

noisy

state-input

data
Initial

set

Data-Driven 
Reachability 

unsafe 
set

Adjust 
action

Zonotopic Predictive 
Controller (ZPC)

 Adjust unsafe action by solving a new optimization problem 

: lower and upper bounds of the output constraint zonotope

: lower and upper bounds of the reachable set
41



Example
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Conclusion 
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 Data-driven safety verification of an embedded system using reachability with formal guarantees

 Compute a set of models that is consistent with the data

 How to incorporate a model-based side information to get a tighter set

https://sites.google.com/view/amr-alanwar/

https://github.com/aalanwar/

Ongoing work
 STL-based side information

 Guaranteed safe reinforcement learning
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